Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения в в зоне концентрации — Определение

Лиль [37] установил, что при травлении технических железных сплавов возникают значительные поверхностные напряжения (напряжения сжатия), что выражается в увеличении параметров решетки (от 4-10 до 9-10" единиц). Это поверхностное состояние, напряжение травления, создается предположительно во время снятия поверхностного слоя химическим или электролитическим способом при определенной концентрации кислоты. Величина напряжения травления зависит от материала, от его термообработки (тонко- или грубозернистая структура), а при электролитической полировке — также от плотности тока, и не зависит от вида применяемой кислоты. Имеются различные гипотезы, объясняющие возникновение напряжения при травлении. Точка зрения, которая основана на том, что при термообработке загрязнения и примеси выделяются дисперсно на границах зерен и мозаики и что вследствие сильного взаимодействия с реактивом в этих зонах напряжения травления должны сниматься, является самой достоверной. Это подтверждается тем, что у электролитического железа не обнаруживается никаких изменений постоянной решетки. В результате возможного наложения внутренних напряжений и напряжения травления усложняется определение фактического напряженного состояния.  [c.25]


Для регистрации деформаций образцов и изделий при нагружении их внутренним давлением применимы практически все современные методы и средства тензометрии метод делительных сеток и струнные тензометры— для определения больших деформаций тензорезисторы и механические тензометры, оптические активные покрытия — для измерения относительно малых деформаций. Для оценки напряженного состояния в зонах концентрации напряжений используют тензометрические и оптические методы.  [c.72]

Приведенный выше инженерный метод расчета малоцикловой прочности в номинальных напряжениях требует достаточно сложных экспериментальных исследований на натурных узлах и соединениях конструкций в зависимости от целого ряда факторов вида и способа нагружения, характеристик цикла, температуры, технологии изготовления и т. п. В связи с этим упомянутый выше расчет по местным деформациям (см. гл. 1 и 11) является более универсальным, так как он основан на результатах испытаний лабораторных образцов, используемых для оценки прочности конструкций в зонах концентрации напряжений. Применимость деформационных подходов к расчету сварных конструкций определяется наличием данных по теоретическим коэффициентам концентрации напряжений в сварных швах, циклическим свойствам материала различных зон сварного соединения и по уровню остаточных сварных напряжений. В 2 приведены предложения по определению коэффициентов концентрации напряя ений и деформаций в стыковых и угловых швах листовых конструкций. Для стержневых конструкций, выполняемых из фасонного проката, необходимы дополнительные исследования напряжений и деформаций в зонах их концентрации. Свойства строительных сталей при малоцикловом нагружении изучены достаточно подробно, и по ним получены величины параметров для построения расчетных кривых  [c.189]

Это есть отношение предельной амплитуды гладкого образца к предельной амплитуде образца с концентратором напряжений, причем предполагается, что оба они разрушаются при одном и том же заданном числе циклов и что местное (с учетом концентрации) значение среднего напряжения в самой зоне концентрации равно среднему напряжению в гладком образце. Такое определение эквивалентно формулировке, что рассматриваемый коэффициент представляет собой отношение значения местной амплитуды напряжений в зоне концентрации к номинальной амплитуде напряжений (см. разд. 7.4). Этот коэффициент при нулевом среднем напряжении совпадает с коэффициентом, известным в литературе по усталости как просто эффективный коэффициент концентрации.  [c.14]


Целью испытания на усталость образцов с надрезами, выточками, галтелями и отверстиями является определение сопротивления материала разрушению в условиях неравномерного распределения напряжений у поверхности, В расчете на прочность, а также при тензометрировании деталей, имеющих концентраторы напряжений, определяются номинальные напряжения. Максимальные напряжения, действующие в зоне концентрации напряжений в трех главных направлениях Oi, 02, 0з, могут быть во многих случаях определены расчетом в упругой области.  [c.72]

Для вычисления наибольших напряжений при изгибе в каком-либо сечении необходимо найденный изгибающий момент в этом сечении разделить на момент сопротивления (см. табл. 4). Обычным путем определяют напряжение растяжения (сжатия) как частное от деления нормальной силы, действующей в рассматриваемом сечении, на величину его площади. Сложив напряжение при изгибе с напряжением растяжения (сжатия), получим суммарное напряжение. Если точка, в которой найдено наибольшее суммарное напряжение, расположена в зоне концентрации, то для определения максимального напряжения необходимо умножить номинальное напряжение на коэффициент концентрации.  [c.70]

Недостаточное совершенство НД, в частности, по нормированию остаточного ресурса нефтегазохимического оборудования, объясняется тем, что они базируются в основном на критериях статической прочности бездефектного металла. Между тем, в процессе эксплуатации в металле конструктивных элементов происходит постепенное накопление необратимых повреждений и по истечении определенного времени возможны разрушения. Процессы накопления повреждений в металле усиливаются в зонах концентрации напряжений, которыми являются дефекты металлургического, строительномонтажного и эксплуатационного характера, а также зоны геометрических конструктивных концентраторов в местах приварки днищ, переходов, патрубков штуцеров в корпус аппарата. При этом особую опасность представляют трещиноподобные дефекты холодные и горячие трещины, непровары и подрезы швов, механические (царапины) и коррозионные (стресс-коррозия) повреждения и др.  [c.328]

Заметим, что определение напряжений в зоне их концентрации не может быть выполнено методами сопротивления материалов эти напряжения определяют методами теории упругости или экспериментально.  [c.318]

Основы надежности закладываются конструктором в содружестве с технологом при проектировании. Заданная надежность обеспечивается в процессе производства применением прогрессивной технологии. В эксплуатации заданная функция надежности реализуется выполнением всех правил эксплуатации. Надежность изделия тесно связана с его долговечностью. Эффективных мер повышения долговечности много, в их числе закалка стальных деталей при нагреве т. в. ч., дающая возможность увеличить износостойкость зубчатых передач в 2—4 раза хромирование трущихся деталей дает возможность увеличивать срок службы по износу в 3—5 раз и др. Хорошая система смазки является необходимым условием обеспечения надежности и долговечности машин. Широкое применение в машиностроении т. в. ч. для упрочнения деталей машин с целью повышения их ресурса объясняется многими их преимуществами по сравнению с другими видами термической обработки деталей. Однако реализовать эти преимущества возможно только при условии правильного установления параметров закалки. Важнейшими из них являются глубина закалки х , твердость HR , зона перехода закаленной части детали к незакаленной, частота тока и скорость процесса упрочнения. Теоретически глубина упрочнения трущейся детали должна равняться предельному допуску ее износа. Однако практически при ее определении следует учитывать условия работы детали, ее геометрические размеры и материал. Опыт применения т. в. ч. показывает, что при невыполнении этих условий закалка при индукционном нагреве приводит к отрицательным результатам. В тех случаях, когда зона перехода закаленной части детали к незакаленной совпадает с наиболее опасным сечением и местом концентрации напряжений, в этих зонах первоначально возможно появление микротрещин, а затем их развитие под действием знакопеременных нагрузок и усталостный излом. Аналогичные результаты могут быть и при недостаточной глубине закаленного слоя.  [c.206]


В сборнике рассматриваются основы методов расчетного и экспериментального определения прочности и долговечности циклически нагруженных элементов конструкций в широком диапазоне температур, времен и чисел циклов. Приводятся критерии и основные уравнения статических и циклических предельных состояний в температурно-временной постановке рассмотрены закономерности деформирования и разрушения в зонах концентрации и в связи с неоднородностью напряженных состояний. Рассмотрены методы испытаний на циклическое нагружение, описан ряд опытных результатов. Систематизированы данные по характеристикам малоцикловой усталости, по концентрации напряжений и деформаций, необходимые для расчета прочности. Излагаемый материал в значительной степени основывается на результатах работ сотрудников Института машиноведения, доложенных на Всесоюзном симпозиуме по малоцикловой усталости при повышенных температурах в Челябинске в 1974 г.  [c.2]

При определении деформации в характерных точках сферического корпуса (см. рис. 2.50) и в зонах концентрации напряжений пластины с отверстием (штрихпунктирная линия на рис. 2.51). При расчете пластин с отверстием модифицированное интерполяционное соотношение  [c.106]

От погрешности определения деформаций зависит точность расчета малоцикловой долговечности на основании деформационных критериев (табл. 2.7). Значения малоцикловой долговечности Nj-, полученные с помощью интерполяционных соотношений для пластины с полукруглым вырезом при а = 2,36 в зоне концентрации напряжений (см.  [c.117]

Анализ НДС локальных зон телескопического кольца. Для определения малоцикловой долговечности кольца необходимо знать циклические и односторонне накопленные деформации в зонах концентрации напряжений, а также иметь кривые малоцикловой усталости применяемых конструкционных материалов с учетом закона нагружения.  [c.139]

Из формул (147) и (148) видно, что при фиксированной частоте электромагнитного излучения величина МОВ прямо пропорциональна длине пути света в веществе, величине напряженности приложенного магнитного поля, концентрации электронов в зоне проводимости и обратно пропорциональна их эффективной массе. Таким образом, если известна концентрация электронов, то формулы (147) или (148) могут быть использованы для определения их эффективной массы. Если же возникает задача определения  [c.195]

Метод определения градиентов напряжений в зонах концентрации предназначен для определения относительного градиента первого главного напряжения по порядкам полос интерференции, получаемым на плоских или объемных моделях поляризационно-оптического метода.  [c.125]

Рекомендуемый способ определения в зоне концентрации напряжений 1) прилагается наибольшая нагрузка к модели и отмечаете-, место на контуре 2) с применением лупы с 10- или 20-кратным увеличением (снабжается диафрагмой с небольшим отверстием) подсчитываете в отмеченной точке величина г ах точностью до 0,1 полосы, начиная счет с нулевой полосы 3) нагрузка уменьшается ступенями (через i/io V.5 наибольшей нагрузки) и замеряются в той же точке величины т 4) по графику — нагрузка" определяется число полос на  [c.526]

При определении местных максимальных условных упругих напряжений в зонах концентрации (в отверстиях, резьбах, пазах, галтелях, буртах и усилениях сварных швов и т. д.) учитываются напряжения, указанные в п. 2.3.3 температурные местные напряжения (вне зон действия краевых сил), возникающие в оболочках только вследствие радиальных градиентов температур и разности коэффициентов линейного расширения основного ме-  [c.220]

Сопротивление деформированию и разрушению в зонах концентрации напряжений высоконагруженных конструкций определяется местной напряженностью, которая связана с номинальной соответствующими коэффициентами концентрации напряжений и деформаций. Известно [10], что по приведенным номинальным о и местным Ощах напряжениям, определенным по той или иной методике, а также коэффициентам концентрации приведенных напряжений о возможно определение коэффициентов концентрации местных упругопластических напряжений и деформаций в исходном полуцикле нагружения  [c.110]

Разработанная простая инженерная методика определения значений К при сложных полях нагрузок не может быть непосредственно использована в зонах концентрации напряжений без ее дальнейшего развития. Решение этой задачи базируется на следующих положениях  [c.119]

В целях определения временных эффектов малоциклового деформирования ([20] изучали кинетику напряженно-деформированного состояния при растяжении-сжатии типичных конструктивных элементов пластины с отверстием при растяжении-сжатии по контуру, цилиндрического стержня с кольцевой выточкой и сильфонно-го компенсатора при заданных осевых перемещениях. Первые два конструктивных элемента, нагруженные заданными максимальными усилиями, имитировали напряженно-деформированное состояние зон концентрации напряжений сосудов давления, работающих при повторных нагрул<ениях внутренним давлением. У сильфонных компенсаторов отсутствуют зоны концентрации напряжений места возникновения максимальных напряжений определяются изгибом гофр, причем повторное нагружение происходит в условиях заданных осевых перемещений. Принятые конструктивные элементы являются характерными и контрастными по условиям нагружения.  [c.202]

В работе [68] выполнен анализ долговечности в зонах концентрации напряжений, В целях определения влияния ползучести на число циклов до разрушения (появления трещины) рассчитали долговечность при циклическом осевом растяжении плоских образцов (пластина с отверстием при повторном осевом растяжении) жаропрочных алюминиевых сплавов. Температуры испытания 120.,, 190° С являются для рассматриваемых материалов достаточно высокими ползучесть и релаксация напряжений выражены.  [c.209]


Таким образом, при нагружении в условиях однородного напряженного состояния образцов истинные деформации и напряжения могут существенно отличаться от условных, и это обстоятельство следует учитывать при определении напряженно-деформированных состояний в зонах концентрации напряжений, основанных на использовании данных о циклических характеристиках сплошных образцов.  [c.176]

Интерпретация эффективного коэффициента концентрации напряжений в испытаниях на изгиб. При определении уточненных значений эффективного коэффициента концентрации для образцов, испытывающих изгиб, возникают серьезные затруднения, они связаны с масштабным фактором, проявляющимся для гладких образцов, как описано в разд. 2.6 и 3.5. Здесь надо условиться, какое из значений предела выносливости для гладких образцов надо принять за основу либо значение, которое относится к малым образцам с тем же диаметром поперечного сечения, что и у образцов с концентрацией напряжений в зоне концентратора, либо значение, относящееся к образцам полного диаметра. Первый метод приводит к слегка завышенному эффективному коэффициенту концентрации, причем иногда он оказывается больше теоретического коэффициента по второму же методу получается несколько уменьшенный эффективный коэффициент концентрации, который в образце с плавным вырезом может оказаться меньше единицы. Такие результаты не являются вполне ясными и потому предпочтительнее вести испытания не на изгиб, а на осевую нагрузку. При определении чувствительности к концентрации напряжений правильнее было бы сопоставлять результаты с некоторым стандартным параметром  [c.116]

Для предотвращения быстрого разрушения сосудов, работающих под давлением, необходимо оговаривать минимальную вязкость разрушения различных материалов, что допускает наличие в материале дефектов определенного размера при соответствующем уровне напряжений. При установлении уровня напряжений следует учитывать обусловленные расчетом напряжения в конструкции, зоны значительной концентрации напряжений, а также вторичные температурные и остаточные напряжения сварочного процесса. Уровень вязкости разрушения должен быть связан с условиями работы материала. Например, необходимо учитывать, будет ли иметь место охрупчивание материала у сварных швов. Для этих обоих случаев вероятность разрушения значительно уменьшается в результате термического снятия напряжений. Уровень локальных напряжений может быть снижен механическим снятием напряжений.  [c.254]

Напряжения превышают не только общие мембранные или номинальные напряжения 0гп определяемые методами сопротивления материалов, но и их сумму с местными изгибными напряжениями сгм.и. вызванными краевым эффектом и определяемыми по теории оболочек и пластин [1, 2]. Эти дополнительные составляющие суммарных напряжений представляют собой приращения местных напряжений См.к в зонах концентрации и не могут быть определены методами теории оболочек и пластин при резком изменений геометрии вследствие искривления нормали в зоне сопряжения. Напряжения (Ум.и затухают на расстоянии порядка Нк от источника неоднородности, напряжения См.к — в значительно более узкой зоне протяженностью У Средний радиус и толщина оболочки, р — радиус галтели). Вне этой зоны напряжения, определенные по теории оболочек и пластин, близко совпадают с вычисленными более точными методами. Для галтельного сопряжения о м.к максимальны на внешней поверхности, причем не в самом тонком месте сопряжения, а на малом по сравнению с радиусом р расстоянии от него порядка ар (а 10 —15°) вдоль меридиана.  [c.74]

Определяемые при поверочном расчете напряжения с учетом местных изгибных напряжений от краевых сил и моментов существенно выше мембранных. Поэтому получающиеся по упругому расчету напряжения о и их интенсивности Ог в зонах краевого эффекта, таких, как жесткая заделка, сопряжение оболочки с плоским днищем, места приложения сосредоточенных нагрузок и т. п., могут значительно превышать предел текучести даже без учета местного повышения напряжений в местах их концентрации. Так, в жесткой заделке цилиндрической оболочки 6% вдвое выше, чем в гладкой части и превышает Ст прй давлениях р и Рг соответственно в 1,16 и 1,44 раза. Найденные в результате упругого расчета перемещения и деформации, необходимые для оценки прочности и работоспособности конструкции, оказываются ниже действительных, определенных по упругопластическому расчету, а жесткость при растяжении и изгибе — завышенной. Исходя из упругого расчета Це представляется возможным отгнить возникающую погрешность в определении наибольших деформаций в упругопластических зонах конструкций.  [c.122]

Анализ погрещностей при определении внутренних силовых факторов, связанных с плохой обусловленностью систем линейных уравнений, а тем более с установкой датчиков, показывает, что они в большой мере зависят от выбора точек замера деформаций по контуру поперечных сечений. Хотя критерии хорошей обусловленности могут быть получены только путем просчетов различных вариантов расположения точек замеров по контуру конкретных сечений, а зоны концентраций напряжений — путем расчета конкретных узлов и соединений от основных нагрузок, однако накопленный опыт позволяет дать общие рекомендации по расположению датчиков на тонкостенных стержневых элементах несущих систем самосвала.  [c.213]

Для различных концентраторов напряжений и разных материалов значения и можно найти в технической литературе. Для примера на рис. 125 приведены графики для определения коэффициента чувствительности <7 в зависимости от предела прочности стали Ств, отношения сГх/ в и радиуса г в зоне концентрации напряжений. При этом значения и д определяют, исходя из соответствующих числовых значений д на графиках (рис. 125) по следующим соотношениям  [c.213]

Расчет строительных конструкций осуществляется в соответствии со строительными нормами и правилами [1]. Получаемый при этом уровень номинальной нагруженности сварных элементов и уровень концентрации напряжений свидетельствуют о возникновении в зонах концентрации локальных пластических деформаций, которые при повторном характере внешней нагрузки приводят к образованию трещины малоцикловой усталости. Так, при обследовании воздухонагревателей доменных печей появление трещин в кожухе было зафиксировано после 2—3 лет эксплуатации, что соответствовало 5 — 6 тыс. циклов. В подкрановых балках тяжелого режима работы повреждения в виде поверхностных трещин вдоль угловых швов приварки верхнего пояса к стенке наблюдались при числах циклов до 2 х 10 , или после 4 лет эксплуатации, в газгольдерах аэродинамических станций — после 4 X 10 циклов нагружения. Опасность появления трещин малоцикловой усталости в сварных конструкциях связана с тем, что трещина данной длины может при определенном соотношении уровня 4нагрузки, климатической температуры эксплуатации, скорости нагружения и других факторов оказаться критической, что приводит к катастрофическому хрупкому разрушению. Раз-рушение может наступить в разный период эксплуатации в зависимости от наступления критического сочетания инициирующих факторов. В этом заключается определенное отличие в разрушении циклически нагруженных конструкций по сравнению со статически нагруженными, основная масса аварий которых приходится на период эксплуатации с первыми похолоданиями при дальнейшей эксплуатации таких конструкций число хрупких разрушений резко сокращается (рис. 9.1). Для циклически нагруженных конструкций в первую зиму и во время испытаний разрушается только 34% конструкций от общего числа зарегистрированных разрушений. При последующей эксплуатации в течение примерно трех лет разрушения отсутствуют, и затем число разрушений начинает увеличиваться с 4 до 10% в год. Такой характер распределения разрушений конструкций под воздействием повторных нагрузок связан с необходимым периодом подрастания дефектов до критических размеров, и поэтому в течение определенного периода разрушения не наблюдаются. При дальнейшей эксплуатации идет накопление повреждений и развитие трещин усталости до образования полного разрушения.  [c.170]


С увеличением концентрации напряжений более отчетливо проявляется влияние напрягаемых объемов и температуры на переход от вязкого состояния к хрупкому. Поэтому для определения условий перехода от вязкого к квазихрупкому или хрупкому разрушению широко используют температурные зависимости характеристик прочности и пластичности. В качестве примера на рис. 1.10 приведены результаты испытаний для малоуглеродистой стали 22К при растяжении образцов с площадью сечения f=lOOO мм . При испытаниях образцов с острыми надрезами регистрировались разрушающее напряжение Ск, сужение площади поперечного сечения ij) и максимальная деформация бтах в зоне концентрации напряжений после разрушения, измеренной методом сеток с шагом 0,1 мм. Кроме указанных характеристик на диаграмме рис. 1.10 нанесены величина Fb — доля вязкой ягтp и.члома (как хаоареристика степени  [c.17]

При неоднородных напряженных состояниях для определения вероятнрсти разрушения Р(атах) для данного. уровня максимальных напряжений Отах, входящего в показатель экспоненты выражения (7.5), осуществляется интегрирование по неравномерно напрягаемому объему или площади. Для усталостных разрушений, возникающих в зонах концентрации напряжений или от исходных дефектов, существенна роль неравномерного распределения напряжений по наиболее нагруженному сечению. Это распределение характеризуется выражением  [c.134]

При этом предполагается, что в зонах концентрации напряжений, где, как правило, происходят малоцикловые разрушения, накапливаются в основном усталостные повреждения в результате действия знакопеременных упругопластических деформаций. Вместе с тем в эксплуатационных условиях в результате работы конструкции на нестационарных режимах, в том числе при наличии перегрузок, возможно накопление односторонних деформаций, определяювцих степень квазистатического повреждения и влияю-ш их на достижение предельных состояний по разрушению. Для обоснования методологии учета накопления конструкцией (наряду с усталостными) квазистатических повреждений по результатам тензометрических измерений требуется решение прежде всего вопросов расшифровки показаний датчиков с целью воспроизведения истории нагруженности в максимально напряженных местах конструкции и оценки малоциклового повреждения для эксплуатационного контроля по состоянию. Малоцикловое повреждение может в общем случае оцениваться по результатам измерений, выполненных обычными тензорезисторами, но с расширенным диапазоном регистрируемых деформаций (до величин порядка нескольких процентов), характерных для малоцикловой области нагружений. Исследование [20] выполнялось в Московском инженерно-строительном институте и Институте машиноведения на базе разработанных в лаборатории автоматизации экспериментальных исследований МИСИ специальных малобазных тен-зорезисторов больших циклических деформаций. Аппаратура и методика эксперимента подробно описаны в [229]. На серийной испытательной установке УМЭ-10Т с тензометрическим измерением усилий и деформаций, а также крупномасштабным диаграммным прибором осуществлялось циклическое нагружение цилиндрических гладких образцов по заданному и, в частности, нестационарному режиму. Одновременно соответствующей автоматической аппаратурой производилась регистрация истории нагружения с помощью цепочек малобазных тензорезисторов, наклеенных на испытываемый образец. Сопоставление показаний тензорезисторов с действительной историей нагружения и деформирования образца, регистрировавшихся соответствующими системами испытательной установки УМЭ-10Т, давало возможность определить метрологические характеристики датчиков и особенности их повреждения в условиях малоциклового нагружения за пределами упругости. Наиболее существенными особенностями работы тензорезисторов в условиях малоциклового нагружения оказываются изменение коэффициента тензочувствительности при высоких уровнях исходной деформации и в процессе набора циклов нагружения, уход нуля тензорезисторов и их разрушение через определенное для каждого уровня размаха деформаций число циклов.  [c.266]

Для инженерных расчетов долговечности конструкций применяют численные методы определения полей напряжений и деформаций, реализуемые с помощью ЭВМ на базе соответствующих расчетных процедур для установления максимальных напряжений и деформаций в зонах концентрации напряжений используют интерполяционные, зави-О1М0СТИ, а также прочностные характеристики, полученные в результате базовых экспериментов. Необходимо учитывать зависимость характеристик сопротивления деформированию и разрушению от формы циклов нагруз и и температуры.  [c.3]

Результаты расчета максимальных деформаций в зонах концентрации (рис. 2.60, а) показывают, что соотношения Нейбера (2.150) и Ма-хутова (2.151) практически в равной мере обеспечивают достаточную точность (10-15%) при умеренных нагрузках (Оу < 2,5. .. 3,0). При больших нагрузках наблюдаются систематические отклонения результатов расчета деформаций, полученных с помощью соотношений Нейбера и Махутова, причем в зависимости от уровня концентрации напряжений погрешность определения деформаций может достигать 30 и даже 70 %.  [c.116]

Как следует из результатов гл. 3-5, обоснованный анализ местных напряжений, оценки прочности и ресурса конструкций АЭС с ВВЭР требует использования уточненных подходов, позволяющих получить распределение напряжений и деформаций в зонах концентрации. Такие подходы оказьшаются необходимыми особенно при температурных нагрузках, когда возникают трудности даже при определении номинальных напряжений вследствие неоднородных температурных полей и теплофизических свойств как по толщине корпуса сосуда давления, так и вдоль их образующей. Эти трудности усугубляются при анализе местной напряженности в зонах концентрации, где при коэффициентах концентрации, превышающих 3 единицы (корпус реактора — патрубковая зона, тройниковые соединения трубопроводов), возможно появление пластических деформаций. В связи с этим условно-упругие напряжения, соответствующие пластическим деформациям, оказьшаются значительно выше упругих, полученных через номинальные напряжения и теоретические коэффициенты концентрации.  [c.217]

Определение градиентов главных напряжений основано на использовании соотношений, которые были составлены на основании уравнений равновесия деформируемого тела. Для наиболее нагруженной точки в зоне концентрации на ненагруженном участке поверхности объемной детали относительный градиент первого главного напряжения находится по зависимости, в которую входят значения радиусов кривизны поверхности детали, а также значения и разности главных напряжений в рассматриваемой точке (определяются непосредственно по данным с помощью поляри-зационноюптического метода). Указанные значения главных напряжений и разности главных напряжений определяют по порядкам полос интерференции, получаемым при прямом просвечивании в полярископе соответствующих срезов замороженной модели.  [c.125]

На рис. 38 представлены экспериментальные точки при растяжении — сжатии и кручении, соответствующие моменту образования микротрещин размером 0,1 мм в зоне концентрации напряжений. Как видно из рисунка, экспериментальные точки для исследуемых материалов укладываются в общую полосу разброса зависимости (Ig Mf). Оэвпадение кривых усталости при кручении и растяжении — сжатии в данных координатах для образцов с концентраторами напряжений в виде круглого отверстия подтверждает справедливость использования полученных выражений для определения расчетных кривых усталости.  [c.67]

Приведенные выше уравнения теории подобия усталостного разрушения применимы для радиусов закругления в зоне концентрации напряжений р > и не применимы при р < Рпред. где Рпред — предельное значение радиуса кривизны, ограничивающее область применимости описанной теории подобия. Значение Рпред обычно достаточно мало (лежит в пределах 0,1— 0,3 мм) и несколько увеличивается с ростом размеров. Характерно также, что при уменьшении радиуса кривизны в зоне концентрации (р) значения эффективных коэффииентов концентрации увеличиваются, но только до р = Рпред. после чего они остаются практически постоянными и равными Яапред) что соответствует постоянству значений пределов выносливости деталей = " ст 1дпред с предельно острыми надрезами, т. е. при изменении р в пределах О < р <р ред. Это свойство Рпред и лежит в основе методики их определения.  [c.80]

Конечно же, в реальном материале напряжения могут расти до определенных пределов, и формулу (39) нельзя применять без тщательного дополнительного анализа. В зоне концентрации нанря5кений активизируются необратимые процессы, которые могут снижать эту концентрацию (например, в пластичных материалах). Зачастую в таких зонах происходит постепенное накопление повреждений, приводящее в последующем к появлению трещины. Ясно одно — концентрацию напряжений следует тщательно учитывать в расчетах на прочность. Необходим и обоснованный расчет конструкций с подкреплениями, вводимыми для предотвращения разрушения,— ведь они сами могут служить концентраторами напря-  [c.65]


Для элементов машин и конструкций в экстремальных условиях нагружения (в зонах концентрации, в местах действия высоких температ рны5в и остаточных напряжений, в окрестности трещин) традиционно применяемые в инженерной практике расчеты прочности, основанные на определении номинальных и местных напряжений (методы сопротивления материалов), оказываются недостаточными и в целом ряде случаев неправол1ерньдаи-Поэтому запасы прочности и долговечности в рамках поверочных расчетов устанавливают на базе деформационных критериев разрушения, т. е. по предельным нагрузкам, местным упругопластическим деформациям, коэффициентам интенсивности напряжений и деформаций по размерам дефектов типа трещин.  [c.6]

Расчет местных максимальных деформаций (напряжений) в зонах концентрации Св отверстиях, резьбах, пазах, радиусах скруглений, буртиках и усилениях сварных швов и т. д.) проводят о учетом названных напряжений. По компонентам деформаций (напряжений) вычисляют приведенные (по той или иной теории прочности) деформации (напряжения). При определении напряженно-деформированного состояния конструктивного элемента для исходного (статического) нагружения в случаях, когда приведенные максимальные деформации (напряжения) превышают предел текучести, расчет выполняют по компонентам деформаций, устанавливаемым экспериментально или из упругопластическото расчета. При этом используют диаграмму статического растяжения конструкционного материала при расчетной температуре.  [c.123]


Смотреть страницы где упоминается термин Напряжения в в зоне концентрации — Определение : [c.25]    [c.365]    [c.336]    [c.41]    [c.19]    [c.21]    [c.208]    [c.27]    [c.130]    [c.110]   
Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.507 ]



ПОИСК



Зона Определение

Зоны концентрации напряжений

Концентрация напряжений

Концентрация напряжений — Определение

НАПРЯЖЕНИЯ ГЛАВНЕ в зоне концентрации — Определение

НАПРЯЖЕНИЯ Экспериментальное определение в зонах концентрации

Напряжение Определение

Напряжения Концентрация — си. Концентрация напряжений

Напряжения в брусьях винтовых в зоне концентрации—Определение

Определение концентрации напряжений Определение



© 2025 Mash-xxl.info Реклама на сайте