Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Собственные влияния элементов

Собственные влияния элемента диагональные члены в матрице граничных коэффициентов влияния  [c.68]

Уравнения (4.6.10) и (4.6.11) о пределяют касательные и нормальные смещения и напряжения в t-м граничном элементе через фиктивные нагрузки р1 и Pi во всех N элементах, т. е. / = = 1,. .., N. Влияния фиктивных нагрузок Ps и Р t-ro элемента на смещения и напряжения самого i-ro элемента называют собственными влияниями элемента. Эти эффекты можно определить, вычислив диагональные члены в матрице граничных коэффициентов влияния, т. е. такие члены, для которых / = t.  [c.68]


Собственные влияния элемента получаются из (4.6.8) и (4.6.9), когда X, у и 7 == — р/ равны нулю (см. рис. 4.7). В результате находим  [c.68]

Нетрудно показать, что диагональные члены матрицы граничных коэффициентов влияния (собственные влияния элементов) в рассматриваемой задаче таковы  [c.96]

С ТОЧКИ зрения вычислений ключевым моментом любого метода граничных элементов является определение диагональных членов матрицы граничных коэффициентов влияния (собственного влияния элементов). Как мы видели, во всех методах граничных элементов, рассмотренных в книге, некоторые из этих членов терпят разрыв, или скачок , при переходе с одной стороны граничного контура на другую. Мы всегда подготавливали определение разрывных членов предварительным интегрированием сингулярности вдоль отрезка и затем переходили к пределу, приближаясь к отрезку по соответствующему направлению. В частности, в нашем изложении прямого метода граничных интегралов вначале мы интегрируем влияния от действия сосредоточенной силы в точке Р (точке нагружения) по отрезку с центром в другой точке Q (точка поля) и затем находим пределы результирующих выражений, когда Р приближается к Q извне рассматриваемой области R. Пределы необходимо брать именно таким образом, поскольку мы использовали форму теоремы взаимности, которая несправедлива, если точка нагружения лежит внутри области R (см. 6.3).  [c.134]

Сингулярные решения 10, 15 Смешанная краевая задача 30, 40—41, 71—73, 120 Собственные влияния элементов 68, 95—96, 115—120, 134, 150 Соотношения напряжения — деформации 189—190 Сосредоточенная сила 52—55, 160— 161  [c.326]

Рабочее усилие Р толкателя, приложенное в шарнире С, создается за счет действия центробежной силы от грузов G и центробежной силы от масс шарниров А. Влияние моментов от собственного веса элементов рычажной системы и грузов оказывается малым по сравнению с влиянием центробежных сил в приведенном ниже расчете эти моменты не учитываются. По принципу независимости действия сил определяется та часть общего рабочего усилия толкателя, которая создается действием центробежных сил от грузов G.  [c.520]

Общее гидравлическое сопротивление группового, а также батарейного циклона включает в себя сопротивление не только собственно циклонных элементов, но и подводящих и отводящих участков (от сечения О—О до сечения 2—2, см. схемы диаграмм 12-5 и 12-6). Кроме того, общее сопротивление учитывает и влияние условий входа в циклонные элементы.  [c.567]


Диагональные члены коэффициентов влияния, отражающие собственные воздействия элементов, получаются использованием этих результатов в (6.4.5) и (6.4.6) с учетом того, что 7 = — — р/ = 0  [c.119]

Жесткость оказывает влияние на частоту собственных колебаний элементов, а следовательно, на возможность возникновения резонанса при переменных нагрузках.  [c.102]

Вследствие высокого электрического импеданса кристалла в состав широкополосного кристаллического гидрофона обычно входит предварительный усилитель. Таким образом, кристаллический гидрофон состоит из собственно чувствительного элемента, крепежного узла, основания, акустического окна и жидкости, связывающей кристалл с окном, предварительного усилителя в корпусе и кабеля. Взаимное влияние этих элементов конструкции друг на друга и на акустическое поле являются важнейшими факторами, которые нужно учитывать при планировании измерений. Некоторые основные параметры сульфата лития и АОР приведены в табл. 5.1.  [c.266]

Характерные неисправности аппаратуры, вызываемые вибрацией. Вибрационные перегрузки вызывают механические повреждения аппаратуры, ее монтажа и нарушение режима работы, а Б некоторых случаях могут быть причиной неработоспособности аппаратуры. При совпадении частоты вибрации с собственными резонансными частотами элементов аппаратуры возможен обрыв проводов в местах их закрепления или соединения с деталью, нарушение герметизации, возникновение коротких замыканий между деталями и т. д. Мелкие радиодетали с выводами диаметром 0,6—1,06 мм, длиной 30 мм и массой 0,03—12,4 г имеют собственные резонансные частоты 200—450 Гц. Уменьшение длины выводов до 12,5 мм приводит к росту собственной резонансной частоты до 1000—1500 Гц, что можно использовать для уменьшения влияния вибрации. Повышение резонансной частоты  [c.282]

В первой задаче вьшолнен расчет собственных колебаний сложной разветвленной трубопроводной системы (рис. 3.14) при различных схемах конечноэлементной аппроксимации, включающих в себя соответственно 37 узлов и 36 элементов и 78 узлов и 77 элементов. Рассчитывались первые 6 частот и форм собственных колебаний, две из которых вместе с расчетной схемой МКЭ приведены на том же рисунке. При этом оценивалось влияние подробностей сетки МКЭ и поперечного сдвига в трубопроводе на результаты расчета, которые сведены в табл. 3.6. Из таблицы следует, что учет сдвигов оказывается существенным для элементов с меньшими относительными размерами (сетка 2) и приводит к снижению, как это должно быть, более высоких частот собственных колебаний. Использование принципа вложенных сеток позволяет заключить о достаточной точности первой из двух схем конечноэлементной аппроксимации. Исследования выполнены для следующих характеристик трубопровода. Температура протекающей в нем жидкости 270° С, коэффициент Пуассона для материала труб -0,3, модуль Юнга при температуре 300° С - 1,91 10 МПА, при 20° С -2,1 10 МПА. Наружный диаметр тройника В на участке АВ - 0,46 м при толщине стенки 0,04 м, а на участке BF - соответственно 0,328 м и 0,024 м. Наружный диаметр тройника С - 0,475 м, толщина стенки 0,048 м. Наружный диаметр трубопроводной ветки BF — 0,325 м, толщина стенки — 0,019 м, на остальных участках трубы имеют наружный диаметр 0,426 м и толщину стенки 0,024 м. Остальные размеры и характеристики жесткостей опор приведены на рис. 3.14. Решение этой задачи и других [48, 49] по-  [c.109]

Всесторонние исследования, проведенные с целью выявления величин и характера возмущений, действующих на градуируемое изделие на роторном стенде, показали влияние отклонений геометрической формы, податливости, дебаланса, непостоянства передаточного числа конструктивных элементов P на точность воспроизводимых ускорений. Детально рассмотрены также возмущающие воздействия со стороны электродвигателя и системы управления, ряда других конструктивных и эксплуатационных факторов. В результате сформулированы следующие основные требования к проектированию P градуировочных стендов а) конструктивно P целесообразно выполнять в виде единого, удобного в монтаже функционального модуля б) в качестве валов P следует использовать шпиндельные узлы точных металлообрабатывающих станков или им подобные конструкции в) вращение шпинделей нужно осуществлять непосредственно от регулируемого электродвигателя без промежуточных зубчатых н иных передач г) муфта, соединяющая шпиндель с электродвигателем, должна вносить минимально возможный уровень возмущений в скорость ротора д) ротор в сборе необходимо статически и динамически отбалансировать, уровень собственных вибраций P должен быть минимальным.  [c.147]


При изготовлении термобиметаллических элементов необходимо соблюдать точность заданных размеров, свойств и учитывать, что на условия изгиба влияет неравномерность распределения температуры как по сечению, так и по длине полосы, принимать во внимание влияние внешних сил, собственной массы полосы, параметры термобиметалла при нагревании и охлаждении.  [c.334]

Вид решения определяется корнями Ху уравнения F (X) = 0. Минимальную частоту собственных колебаний отдельной оболочки м определим как наименьшее значение, при котором 64 = 0. Этому условию и корню X = 0 соответствуют колебания оболочки как кольца Л = 0. При частоте а> (и влияние сил инерции на деформации оболочки невелико, все корни имеют действительную часть Ке X,- 0. Уравнение (со) = 0 имеет три корня со, со", со". Если частота равна одному из этих значений, то решение имеет особенность, характерную для кратных корней линейных дифференциальных уравнений. Помимо указанных частот имеются другие, когда уравнение Т (X) имеет кратные корни. Поскольку при наличии кратных корней Ху матрица А становится вырожденной, она не может использоваться непосредственно для расчета составной конструкции и должна быть преобразована. Другая цель преобразования матрицы А — получить матрицу с действительными Элементами, так как, используя матрицы с комплексными элементами, мы теряем в точности расчета.  [c.20]

Целью настоящего исследования является нахождение взаимосвязи между динамическими свойствами указанной жидкости и геометрическими размерами элементов гидросистемы, а также анализ влияния этих динамических свойств на значения собственных частот продольных колебаний исследуемой системы.  [c.87]

А. А. Гусаров. Влияние ступенчатой формы ротора на его собственные частоты,— Сб. Колебания и переходные процессы в машинах, приборах и элементах систем управления . Изд-во Наука , 1972.  [c.27]

Для резьбовых калибров погрешности шага, половины угла профиля и собственно среднего диаметра устанавливаются отдельно. Каждый из этих элементов подлежит проверке независимо от остальных. При использовании же резьбовых калибров на результат измерения будет оказывать непосредственное влияние приведённый средний диаметр резьбы калибров, правила определения которого (как с учётом, так и без учёта параметров рассеивания отклонений составляющих элементов) были уже приведены в статье Допуски резьбовых изделий . Пользуясь этими правилами, рекомендуется при проверке изделий 1-го класса точности производить отбор резьбовых калибров таким образом, чтобы сумма действительных отклонений по шагу, половины угла профиля и собственно среднего диаметра составляла не более 500/о суммы наибольших допустимых отклонений этих элементов. Такое ограничение допуска приведённого среднего диаметра производится для того, чтобы снизить влияние погрешностей калибров на относительно малые допуски резьбовых изделий 1-го класса точности.  [c.152]

Для того чтобы выяснить влияние собственных колебаний механизма на процессы заклинивания ролика, разобьем время заклинивания на два промежутка — промежуток времени от момента первого соприкосновения до наибольшего сближения звездочки и обоймы, в течение которого поверхности соприкасающихся тел деформируются и максимально сжимаются и промежуток от момента максимального сближения до того момента, при котором расстояние между обоймой и звездочкой станет максимальным в этом промежутке происходит восстановление недеформированного состояния тел и меняются величина и направление относительных скоростей. Дальнейшая работа роликового механизма сопровождается собственными колебательными движениями элементов.  [c.44]

Экранирование мостовых цепей. На высоких частотах мостовые цепи могут быть применены -при условии тщательного экранирования и предварительного уравновешивания моста с целью устранения влияния паразитных емкостей и собственных индуктивностей элементов моста. Четырехплечие мосты, применяемые при испытаниях материалов в диапазоне частот 1—100 МГц, охватывают как трансформаторные, так и безындуктивные (емкостно-резистивные) мосты.  [c.72]

По литературным данным рассмотрено влияние двадцати трех элементов на ллотность р жидкого железа и тридцати трех — на его свободную поверхностную энергию а. Для удобства систематизации влияние элементов на р и о железа рассмотрено по группам периодической системы Д. И. Менделеева. В обзор включены полученные авторами данные для двойных сплавов железа с медью, золотом, алюминием, галлием, углеродом, германием и оловом. Используя известные критерии поверхностной активности, авторы провели оценку надежности имеющихся литературных и собственных данных. Табл. 2, библиогр. 109.  [c.222]

Путь распространения вибраций от источника до измерительного прибора достаточно велик, за исключением случаев непосредственного размещения измерительных приборов на технологическом оборудовании. Элементы системы, передающей вибрации, имеют сравнительно низкие собственные частоты. Так, частота собственных колебаний элементов железобетонных междуэтажных перекрытий лежит в диа- Рис. 34. Формы автоколеба-пазоне 10. .. 30 Гц. Частота собствен-ных колебаний амортизаторов, применяемых для металлорежущих станков в качестве активной виброзащиты, находится в пределах 10. .. 35 Гц. Частота собственных колебаний деревянных столов с установленными на них приборами находится в диапазоне б. .. 20 Гц. Несколько в ином положении средства измерений, установленные непосредственно на суппорте или станине станка и воспринимающие более интенсивные и с большими частотами вибрационные помехи. Однако и здесь часто имеются виброизолирующие прокладки, амортизаторы и тому подобные виброгасящие устройства. Вследствие влияния указанных систем связи вибрации, вызываемые их источниками, и вибрации, действующие на измерительные приборы, не идентичны. Для получения более полной информации  [c.111]


Выражения 1+GxxRn и I+G22R22 являются характеристическими полиномами несвязанных контуров управления, состоящих из главных элементов передачи и главных регуляторов. Член — G12RXXG21R22 описывает взаимосвязь собственных движений главных контуров управления при наличии элементов перекрестной связи Gx2 и G21. Этот член определяет изменение характеристических уравнений изолированных контуров управления, обусловленное влиянием элементов связи. Если Gi2=0 и/или G2i=0, то коэффициенты отдельных контуров управления не изменяются.  [c.314]

При оценке влияния параметров корпусных деталей на поведение системы станка под действием динамических нагрузок и на устойчивость при резании определяющими являются относительные перемещения инструмента и заготовки на соответствующих частотах. Основное значение имеют относительные перемещения на частотах, соответствующих собственным частотам систеиш. Величины этих перемещений зависят от масс и моментов инерции узлов, собственной жесткости элементов несущей системы (в том числе корпусных деталей) и их сопряжений, демпфирования в системе и связей между перемещениями отдельыых элементов.  [c.252]

Влияние элементов, расположенных вне основного потока касательных напряжений (например, продольных ребер, направляющих, сое-диняюпщхся с основным контуром сечения одной переходной стенкой, и т. н.), на жесткость, определяемое собственной жесткостью этих элементов при свободном кручении, невелико и может не учитываться.  [c.282]

Элементы, растворяясь в жидкой и твердых фазах чугуна, изменяют положение критических точек, как это показано в табл. 1.3 [43]. В результате этого они расширяют или сужают область аустенита и являются аустенитообразующими или ферритообразующими, В некоторой мере с этим связано также и графитизи-рующее влияние элементов, хотя основное значение в этом отношении имеет сила связи между Fe и С. Чем сильнее эта связь, тем легче образуются карбиды как комплексные, например (Fe, Мп)зС, FegAl , (Fe, Mo)j , так и собственные, например Сг,Сз, r s e, V .  [c.17]

Расчег влияния элементов на структуру чугуна. Существуют различные теории, объясняющие действие легирующих элементов на свойства чугуна. Здесь излагаются элементарные основы структурно-электронной теории, которая связана с кластерной моделью строения жидкого чугуна, изложенной выше. Жидкий чугун содержит кластеры аустенита, графита и зоны их взаимодействия, в которых периодически образуются и распадаются связи железо-углерод. Различные вводимые в чугун элементы обладают различной растворимостью в этих элементах структуры расплава чугуна или обладают способностью накапливаться в межкластерных зонах. Расположение элементов в структуре расплава можно охарактеризовать по их взаимной растворимости в твердом и жидком состояниях. Растворимость элемента в твердом железе или аустените характеризует также его растворимость в кластерах аустенита в расплаве чугуна. Избыток растворимости в жидком состоянии характеризует способность элемента накапливаться в межкластерной зоне или образовывать собственные кластеры. Растворимость характеризует степень взаимодействия элемента с матрицей, но не характеризует направление этого взаимодействия.  [c.421]

Однако недостаточная жесткость элементов УСП снижает эффективность применения УСП на станках с программным управлением. Исследованиями установлено, что примерно 85% деформаций компоновок УСП составляют собственно деформации элементов УСП, а остальные—контактные деформации стыков. При этом влияние количества стыков на общую деформацию невелико [6]. Таким образом, увеличение количества стыков в УСП по сравнению с неразборными приспособлениями не оказывает существенного вляния на увеличение деформаций, возникновение вибраций и, следовательно, точность обработки, что является основным фактором при обработке заготовок на станках с ЧПУ.  [c.63]

Во всех исследуемых соединениях — тавровом, стыковом, штуцерном — распределение собственных ОСН крайне неоднородно по толщине листа, что обусловлено спецификой температурных полей, возникающих при многопроходной сварке. В случае применения многопроходной сварки, выполняемой по методу отжигающего валика, структурные превращения практически не оказывают существенного влияния на ОСН в области сопряжения шва с основным металлом собственные ОСН для всех сварных узлов практически одинаковы и составляют примерно 0,8ат Е поперечном и (0,8-Ь 1,0) а в продольном направлениях. На основании исследования собственных ОСН в различных сварных узлах установлено, что источниками реактивных напряжений являюся те узлы, швы которых перерезают несущий элемент и образуют замкнутый контур.  [c.326]

Сплавы для нагревательных элементов должны иметь высокое удельное электросопротивление, малый температурный коэффициент электросопротивления, высокую ока-линостойкость и крипоустойчивость (ползучесть при высоких температурах под влиянием нагрузки или веса собственной тяжести), стабильность структуры и свойств.  [c.245]

Собственная проводимость. Полупроводник, не содержащий примесей, в нормальных условиях обладает так. называемой собственной проводимостью. Например, в германии — элементе IV группы — между атомаг.ш в кристаллической решетке существуют парноэлектронные (ковалентные) связи под влиянием теплового движения появляются свободные электроны и часть ковалентных связей нарушается. Одновременно со свободными электронами появляются и положительные носители, так называемые дырки. Понятие дырки означает вакантное место — недостаток электрона в атоме и нарушение одной из связей. Вакантное место может запять валентный электрон соседнего атома тогда нарушенная связь восстанавливается, по зато исчезнет связь в другом месте, откуда был переброшен электрон там появится дырка. Хотя этот процесс представляет собой переход электрона, он вместе с тем сопровождается как бы перемещением дырки в противоположном направлении.  [c.171]

ЧТО роль покрытии заключается в предотвращении повреждения поверхности волокна при механическом и химическом взаимодействии и в облегчении смачивания и образования связи. Ранее Саттон и Файнголд [34] указали на противоречивость этих требований. Основываясь на собственных исследованиях влияния добавки в никель 1% того или иного легирующего элемента на прочность связи между никелевой матрицей и пластинкой окиси алюминия (сапфира), они заключили, что поверхностные повреждения и связь компонентов зависят от степени развития реакции  [c.154]

Система медь—вольфрам является примером композита, в котором незначительные. изменения характеристик поверхности приводят к заметным изменениям собственной прочности упрочнителя. Эти незначительные изменения связаны с переходом поверхностно-активного элемента — кобальта — в вольф рамовую проволоку и с влиянием свойств данного элемента. Другим медным сплавам, составляющим с вольфрамом систему второго класса, не свойственно столь значительное изменение характеристик упрочнителя. I  [c.180]

Влияние нагрузки на величину Иг или на собственную коррозию протектора обусловлено тем, что катодный частичный ток 1к зависит от потенциала или тока. Коррозия с кислородной деполяризацией не зависит от материала и потенциала, а выделение водорода с увеличением токовой нагрузки уменьшается. Кроме того, выделение водорода существенно зависит от материала, причем более благородные элементы сплава стимулируют собственную коррозию протектора. Поскольку в обоих случаях частичный ток /д не пропорционален токоотдаче /, согласно уравнению (7.6), не может быть значений а з или собственной коррозии, не зависящих от величины I. Однако в противоположность этому при анодной реакции по уравнению (7.5а) эквивалентная реакция по уравнению (7.56) с повышением потенциала или нагрузки тоже усиливается. В таком случае / и / получаются пропорциональными между собой, и коэффициент аг становится независимым от нагрузки. Приблизительно такие условия наблюдаются в случае магниевых протекторов, причем значение 2=0,5 мож,ет быть однозначно объяснено величинами z=2 и =1 [2]. Другое объяснение этой величины 02 основывается на механизме, по которому на поверхности протектора имеется активный участок, пропорциональный току, на котором вследствие гидролиза происходят коррозия с кислородной деполяризацией и выделение водорода [3, В этом случае понятны и значения, отличающиеся от аг=0,5, в том числе и меньшие. Оба механизма практически уже нельзя различить, если места протекания частичных реакций по уравнениям (7.5а) и (7.56) очень близки между собой.  [c.177]


Тогда эти центробарические компоненты будут теми же функциями времени и новых переменных элементов, которые могли быть выведены иначе посредством исключения из интегралов (Q2). Они будут строго представлять (путем распространения теории на эти ранее упоминавшиеся интегралы) компоненты скорости возмущенной планеты т относительно центра тяжести всей солнечной системы. Мы предпочли (и это вполне соответствует общему направлению нашего метода), чтобы эти центробарические компоненты скорости были вспомогательньши переменньши, объединяемыми с гелиоцентрическими координатами. Их возмущенные эначения были в этом случае строго выражены формулами невозмущенного движения. Этот выбор сделал необходимым видоизменить эти последние формулы и определить орбиту, существенно отличающуюся теоретически (хотя мало отличающуюся практически) от орбиты, так блестяще разработанной Лагранжем. Орбита, которую он себе представлял, была более просто связана с гелиоцентрическим движением единственной планеты, следовательно, она давала для такого гелиоцентрического движения как скорость, так и положение (планеты). Орбита, которую мы избрали, быть может, более тесно связана с концепцией множественной системы, движущейся относительно ее общего центра тяжести и подверженной в каждой ее части влиянию со стороны всех остальных. Какая бы орбита ни была в будущем принята астрономами, следует помнить, что обе они одинаково пригодны для описания небесных явлений, если числовые злементы каждой системы будут соответствующим образом определены при наблюдениях, а элементы другой системы орбит будут выведены из результатов наблюдения в процессе вычисления. Тем временем математики решат пожертвовать ли частично простотой той геометрической концепции, исходя из которой выведены теории Лагранжа и Пуассона для простоты другого рода (которая хотя еще не введена, но была бы желательна для этих превосходных теорий), получаемой благодаря нашим достижениям в строгом выражении дифференциалов всех наших собственных новых переменных элементов через посредство единственной функции (поскольку до сих пор казалось необходимым употреблять одну функцию для Земли, возмущенной Венерой, и другую функцию для Венеры, возмущенной Землей).  [c.281]

Температура различных элементов тормоза измерялась с помощью железоконстантановых термопар, установленных на этих элементах, а температура поверхности трения фрикционной накладки, определяющая степень надежности тормоза в целом, измерялась с помощью скользящей термопары. Применение скользящих термопар имеет тот недостаток, что показания их искажаются теплом от собственного трения термопары по поверхности трения, так как термопара истирается вместе с накладкой. Однако применение их не требует экстраполяции температур, необходимой при использовании термопар, заложенных в толще исследуемого изделия. Следовательно, неоднородность материала фрикционной накладки, изменение ее свойств в процессе работы и изменение геометрии накладки при изнашивании не оказывают влияния на результаты измерений скользящими термопарами. Скользящая термопара позволяет определить не фактическую температуру в контактной точке двух трущихся тел, а некоторую усредненную температуру по поверхности трения, но эта особенность не является недостатком. Важно лишь, чтобы во всех случаях измерения — при определении температуры поверхности трения для данных условий использования тормоза и при определении допускаемой температуры нагрева для данного фрикционного материала — применялась одна и та же методика измерений и однотипная измерительная аппаратура. На основании результатов измерений температур строились графики нагрева отдельных точек тормоза в процессе работы (фиг. 356).  [c.623]

Основными достоинствами математического моделирования динамических процессов на АВМ являются а) высокое быстродействие б) простота набора задачи в) практически полная собственная безынерциопность решающих элементов г) практическое исключение влияния собственных характеристик решающих элементов модели на результаты исследований д) возможность воспроизведения типовых нелинейностей и кусочно-линейного аппроксимирования сложных нелинейных зависимостей, и др.  [c.325]

С. Рабочий диапазон температур датчиков очень широк и составляет от —230 до -fl50 , Фирма выпускает также двух- и трехкомпонеитные датчики, разделение компонентов измеряемой силы в которых осуществлено путем подбора чувствительных элементов со специальными срезами кристаллов кварца. Взаимное влияние компонентов измеряемой силы у них не более 1 % от величины номинальной силы. Собственные частоты многоканальных датчиков в пределах 0,2— 4 кГц.  [c.384]

Устойчивость экскаватора во время работы ( рабочая устойчивость") определяется статическим соотношением сил, возникающих в системе элементов машины при резании грунта, когда помимо собственных весов конструкций следует учитывать также реакцию грунта, действующую на зубья ковша. Величина и направление этой реакции могут быть весьма разнообразны и их влияние на устойчивость экскаватора в целом зависит в первую очередь от вида рабочего оборудования. В наиболее неблагоприятных условиях находится прямая лопата, устойчивость которой при принятых в ГОСТ 518-41 размерных и весовых соотношениях начинает обеспечиваться в полньй мере только для экскаваторов с ковшами 2 и выше.  [c.1176]

Формула (8) позволяет проанализировать влияние отдельных параметров пневморессоры на собственную частоту колебаний и выбрать при заданной величине Dq основные параметры упругого элемента.  [c.293]

Значительный интерес представляют методы расчета и оценки ресурса конструкций из композитов с учетом тепловых эффектов при вибрационном нагружении (рис. 4) краевых эффектов в разноориентированных композитах и системах металл—композит, а также способы определения концентрации напряжений, в том числе при низких температурах. Разработанные методы расчета конструкций из композитных материалов позволяют определять собственные частоты, перемещения и напряжения в элементах конструкций при случайном динамическом нагружении и, кроме того, оценивать их ресурс с учетом влияния повреждений на декремент колебаний.  [c.17]


Смотреть страницы где упоминается термин Собственные влияния элементов : [c.69]    [c.134]    [c.165]    [c.166]    [c.201]    [c.272]    [c.9]    [c.21]    [c.81]   
Методы граничных элементов в механике твердого тела (1987) -- [ c.68 , c.95 , c.96 , c.115 , c.120 , c.134 , c.150 ]



ПОИСК



Вес собственный, его влияние



© 2025 Mash-xxl.info Реклама на сайте