Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Импеданс электрический

Анализ частотной зависимости емкостной и омической составляющих измеряемого импеданса путем сравнения с частотными зависимостями составляющих импеданса электрических схем, представленных на рис. 4, позволяет выяснить вопрос о том, какая из этих схем является эквивалентной исследуемой границе электрод — электролит. Если импеданс границы электрод — электролит компенсировать при измерениях мостовым методом параллельно включенными емкостью Сп и сопротивлением i n, то очевидно, что для простейшей схемы III (см. рис. 4) измеряемые С и не должны зависеть от частоты переменного тока Для схемы II (см. рис. 4)  [c.32]


Следует кратко остановиться на двух особых значениях величины Qм Одно из них соответствует случаю оптимального согласования. В этом случае акустическую нагрузку и импеданс электрического генератора можно свести к некоторому импедансу преобразователя, представленного в виде полосового фильтра с индуктивностью 1/(Ог Со, которая подключена к преобразователю (см. п. 6 настоящего параграфа).  [c.307]

Это значит, что вещественные части нулей передаточных импедансов электрической системы, вообще говоря, должны быть отрицательными. Следовательно, нули передаточных-импедансов должны образовывать I сопряженных пар в левой половине комплексной плоскости Я = а + /ю.  [c.19]

Импеданс движения. Электрический импеданс системы, приводящей в действие ультразвуковой преобразователь, меняется при его колебаниях. Э. д. с., возникающая при колебаниях в механической части, действует противоположно э. д. с., подаваемой на преобразователь от генератора, в результате чего импеданс электрической цепи меняется. Изменение, вызванное этой причиной, носит название импеданса движения, его величина является показателем эффективности работы преобразователя [28].  [c.53]

Поверхностный импеданс Z определяется как отношение комплексной величины ( )), описывающей переменное электрическое поле с частотой (о на поверхности, к проинтегрированной комплексной плотности тока J x)  [c.751]

Излучающий вибратор возбуждается импульсным генератором 6. Акустический импульс вводится в контролируемое изделие 7, принимается приемном вибратором и преобразуется им в электрический сигнал. Последний усиливается усилителем 8 и поступает па схему амплитудно-фазовой обработки 9 с выходным индикатором 10. Блок 11 управляет сигнализирующими и регистрирующими устройствами. Изменение механического импеданса Zh изделия в зоне дефекта изменяет амплитуду и фазу колебательной скорости изделия в зоне приема, вызывая регистрируемое аппаратурой изменение амплитуды и фазы принятого сигнала.  [c.299]

ВЫВОД формул для излучения и приема акустических волн, а также определение эквивалентного электрического импеданса преобразователя. Представить преобразователь в виде пассивного электрического элемента важно для оптимизации согласования его с генератором и усилителем импульсного прибора, а также для определения экстремальных режимов работы приборов резонансного типа, поскольку именно при этих режимах измеряют резонансные частоты.  [c.63]

Однако широкополосным преобразователям как с СВП, так и с пьезоэлементами, имеющими другой профиль поверхности, присущ и ряд недостатков. Один из них — повышенный уровень радиальных колебаний,который проявляется в качестве длинного хвоста низкочастотных колебаний после излучения зондирующего импульса, увеличивающего мертвую зону контроля. Поскольку пьезоэлемент возбуждается кольцами, составляющая вектора электрического поля, направленная вдоль поверхности пластины, при использовании СВП имеет большее значение, чем при использовании плоскопараллельной пластины, что и определяет повышенный уровень радиальных колебаний. Одна из мер уменьшения мертвой зоны — электрическое и механическое демпфирование, поэтому пьезоэлемент в прямом преобразователе (как и в обычном узкополосном) наклеивают на демпфер. Импеданс демпфера подбирают, исходя из оптимального демпфирования радиальных колебаний.  [c.170]


Величина рс, пропорциональная отношению напряжения к скорости, называется акустическим импедансом и аналогична соответствующему параметру в электрических системах.  [c.288]

Рие. 9. Эквивалентная электрическая схема электрода (i 5 - сопротивление электролита Сд - емкость двойного электрического слоя L -индуктивность, J , и Rj - сопротивления) и спектры импеданса для некоторых типов электродов (i — активная компонента, X — реактивная компонента, стрелками указано возрастание круговой частоты и)  [c.18]

Для коррозионно-электрохимических исследований в последнее время с успехом применяется метод измерения импеданса (полного сопротивления) двойного электрического слоя, возникающего на границе раздела корродирующий металл-электролит (измерения производят серийно выпускаемыми мостами переменного тока). Это дает возможность изучить кинетику коррозионных процессов, оценить эффективность в данных условиях исследуемых ингибиторов коррозии или же лакокрасочных  [c.37]

В настоягцей работе расчет волновых процессов в неоднородной гидросистеме проводится методом входных импедансов, разработанным в теории длинных линий [2]. Изучение волновых процессов в сложных гидросистемах при этом проводится на основании формальной аналогии записи дифференциальных уравнений Движения жидкостей в трубопроводах и уравнений распространения электрического тока вдоль линии с распределенными по длине емкостью С, индуктивностью Ь и сопротивлением Е,  [c.16]

Технологическим ЭИ-процессам свойственен глубоко осциллирующий режим разряда емкостного накопителя в разрядном контуре, содержащем искровой канал в твердом диэлектрике как единственную полезную нагрузку. В такой ситуации разрядный ток ограничивается в основном внутренним импедансом генератора, а электрическое активное сопротивление R(t) искрового канала является базовой величиной для отыскания других электрических характеристик канала энергосодержания, внутренней энергии и в конечном итоге с учетом механизма динамического нагружения среды и разрушения - для построения расчетных схем всего процесса ЭИ-технологии.  [c.54]

Можно провести аналогию между этим соотношением и параметрами электрической цепи. В цепи переменного тока с напряжением и и полным сопротивлением (импедансом) Z течет ток I. Эти величина для переменного тока связаны законом Ома U = = ZI. Если Z — чисто активное сопротивление (Z = R), то U = = RI. В общем случае импеданс является величиной комплексной  [c.68]

Измерение толщин пленок осуществляется электрическими методами с помощью поверхностных датчиков. Электрические методы, основанные на измерении изменений импеданса датчика, разделяются на две группы 1) емкостные 134], с помощью которых производятся измерения малых изменений реактивной составляющей импеданса датчика, обусловленных наличием пленки 2) методы электрической) проводимости, в основе которых лежит измерение активной составляющей сопротивления пленки. Электрические методы выгодно отличаются от других методов измерения тем, что датчик, установленный в стенке канала, не возмущает пленку, а электрическая аппаратура позволяет регистрировать волновые процессы.  [c.62]

В общем случае импеданс — это величина, которая характеризует полное сопротивление прохождению электрического тока, движению тел и сплошных сред. Он определяется как отношение силового фактора (электрического напряжения, силы, давления) к скоростному фактору (электрическому току, скорости, объемному или массовому расходу) [58].  [c.8]

В электротехнике, в частности, импеданс получил название электрического сопротивления, а вышеупомянутое отношение — общеизвестного закона Ома.  [c.9]

Использование понятия гидравлического сопротивления (импеданса) предоставляет возможность видоизменить общеизвестное уравнение Эйлера (1.3) к виду, удобному для составления схемы замещения ИЦН. Такие схемы, которые лежат в основе моделирования электрических цепей и электрических машин, в частности [45], в значительной степени содействуют пониманию физических процессов в гидромашинах, открывают новые аспекты их моделирования. С этой целью запишем уравнение Эйлера для ИЦН (1.3) в виде разницы скалярных произведений векторов абсолютной с и тангенциальной й скоростей идеальной жидкости на выходе и входе в рабочее колесо  [c.13]


В цепях перем. тока полное Э.с. определяется помимо активной составляющей также т.н. реактивной составляющей Э. с., зависящей от индуктивности и ёмкости электрической (см. Импеданс) цепи. Единица Э.с. в СИ—Ом.  [c.516]

Также показано, что в теории лопастных машин, отсутствующее использование понятия импеданса — аналога электрического сопротивления, которое есть одним из фундаментальных параметров в теории ЭМ. Эта компонента, которая характеризует полное сопротивление прохождению электрического тока, движению тел и сплошных сред, определяется как  [c.7]

Электрический импеданс преобразователя го образован сопротивлением капилляров Ro — , шунтированным межэлектродной емкостью С . Значение велико,  [c.196]

Измерительную информацию несет закон изменения уровня электрической величины. Хотя такой преобразователь принципиально должен быть нелинейной системой, в определенных условиях его выходной сигнал может считаться линейно связанным со входным и даже прослеживается аналогия с генераторными МЭП. Например, в простейшем случае преобразователь, имеющий электрический импеданс 2о, включен последовательно с нагрузкой г/ и питается от источника с ЭДС е и внутренним сопротивлением R,. Внешнее воздействие изменяет импеданс преобразователя на Дго, вследствие чего ток в цепи изменяется на величину г. Отсюда имеем  [c.196]

В резистивных преобразователях можно полностью пренебречь воздействием электрической стороны на механическую и рассматривать обе как независимые. Механический импеданс тензорезистора относительно невелик и носит упругий характер в реостатном преобразователе скользящий контакт является нелинейным элементом (типа трения без смазки). Чувствительность резистивных преобразователей обоих типов, например по току, определяется формулами  [c.203]

Под импедансом электроакустического преобразователя обычно понимают электрический импеданс, измеренный на его электрических зажимах. Если этому понятию придают другое значение, то его поясняют. Например, можно сказать, что мягкий преобразователь имеет низкий акустический импеданс . Электрический импеданс наряду с чувствительностью или уровнем чувствительности и диаграммой направленности является обычным и обш епринятым параметром при градуировке и оценке свойств электроакустических преобразователей. Импеданс служит для трех целей I) дает информацию о согласовании импедансов между преобразователем и электронным излучающим или приемным оборудованием 2) используется при вычислении к. п. д. преобразователя и возбуждающего напряжения по известным чувствительностям по току (или наоборот)  [c.107]

Рис 39 Схема электрического моста для измерения импеданса полимерного покрытия Z/, Z - нмпедансы плеч электрического моста Zj - регулируемый импеданс Z4 - импеданс электрохимической ячейки О осциллограф Г - генератор переменной частоты  [c.65]

Рассмотрим работу преобразователя на простом примере включения пьезопластины в электрический контур генератора (рис. 1.38, й). Считая пластину бесконечно протяженной в направлении, перпендикулярном х, тем самым не будем учитывать ее колебаний в поперечном направлении (одномерное приближение). Поверхности пластины нагружены средами с входными акустическими импедансами в направлении объекта контроля и Zft в противоположном направлении (там располагают демпфер). Здесь под входным импедансом понимается выражение, учитывающее активное и реактивное сопротивления границы колебаниям пьезопластины по толщине. Формулы для входного импеданса приведены в подразд. 1.4. Они учитывают наличие промежуточных слоев между пластиной и протяженной средой, удовлетворяющей условию (1.57). Такой средой являются расположенный с одной стороны пьезопластины демпфер, а с другой — изделие или акустическая задержка.  [c.63]

Рассмотрим работу пьезопластины, нагруженной на демпфер и протяженную среду в реальных условиях. Пластину подключают к генератору с помощью электрического колебательного контура. На рис. 1.38, г показано подключение с использованием последовательного колебательного контура, в который входит сама пьезопластина. Электрические импедансы = Ra — jfaLa, Zh = l/(—/(o ft), где Сь — емкость соединительного кабеля и монтажа. Для упрощения анализа значением пренебрежем, поэтому оо. Общий импеданс цепи генератора  [c.65]

Современные ЭЦВМ позволяют выполнить исследования колебаний механической системы практически любой сложности. Но изменение структуры модели требует разработки новых алгоритмов и программ расчета, поэтому в последние годы уделяется большое внимание исследованию общих закономерностей колебания сложных механических систем, не зависящих от их конкретной структуры. Наиболее полно эти вопросы освещаются в литературе по акустике, в особенности в работах Е. Скучика [1]. При этом вместо принятых в литературе по механике понятий динамической жесткости, податливости и гармонических коэффициентов влияния применяется терминология, установившаяся для описания переходных процессов в электрических цепях импеданс, сопротивление, проводимость и т. ц. Это связано с использованием получившего широкое распространение в последние годы математического аппарата теории автоматического регулирования и, в частности, с рассмотрением задач в комплексной области. Переход в комплексную область позволяет свести динамическую задачу для линейной системы при гармоническом возбуждении к квазистатической с комплексными коэффициентами, зависящими от частоты. После определения комплексных амплитуд сил и перемещений у, действующие силы и перемещения выражаются действительными частями произведений и  [c.7]

Метод импедапсов дает возможность анализировать сложные колебательные системы путем применения ряда правил, заимствованных из теории электрических цепей. Задача определения кинематических параметров колебательной системы сводится к определению импедансов элементов механической расчетной схемы.  [c.209]


Помимо предусилителей напряжения и заряда при работе с пьезоэлектрическими ударными акселерометрами в ряде случаев используют предусилители тока. Эквивалентная электрическая схема такого предусилителя с соединительным кабелем и датчиком приведена на рис. И, в. Предусилитель тока содержит последовательно включенный линейный усилитель, расположенный в непосредственной близости от датчика и преобразующий выходное напряжение последнего в электрический ток, и усилитель тока, соединенный с линейным усилителем кабелем связи. Питается линейный усилитель через сигнальный кабель от схемы усилителя тока. Линейный усилитель служит модулятором входного тока усилителя тока. Поскольку динамический входной импеданс усилителя тока очен мал, напряжения между проводниками соединительного кабеля, соответствующие полезным сигналал близки к нулю. Поэтому у датчика с предусилителем тока повышенная  [c.355]

ПОВЕРХНОСТНЫЙ ИМПЕДАНС электром аг-нитного поля — соотношение, определяющее связь между тангенциальными компонентами комплексных амплитуд гармония, электрического (г)ехр(1Сйг) и магнитного Н(г)ехр(гсй1) нолей на нек-рой поверхности 5. В случае произвольной поляризации полей и ориентации 5 П. и. является двумерным тензором второго ранга. Если тангенциальные составляющие полей Е.,. и перпендикулярны, вводят скалярный П. и. EJH. обладающий многими сходными свойствами с импедансом участка цепи переменного тока. Подробнее см. Импеданс (электрич.). ПОВЕРХНОСТНЫХ ВОЛН АНТЕННА — антенна, в к-рой используется открытая линия передач с замедляющей системой частный случай антенны, бегущей волны. Бегущие замедленные волны оказываются прижатыми к направляющей поверхности, поэтому их называют поверхностными (поперечная составляющая волнового вектора является в таких системах мнимой величиной, т. е. амплитуда поля в направлении нормали к поверхности экспоненциально убывает), поток энергии вдоль поверхности концентрируется вблизи неё.  [c.653]

Усиление и регистрация сигнала С. производятся электронными устройствами, находящимися при комнатной темп-ре. Для ослабления влияния НЧ-шумов вида 1// (см. Флуктуации электрические) используется модуляц. метод обработки сигнала С. в отд. катушку модуляции ( да на рис. 1) вводится перем. ток частотой 100—200 кГц, создающий через кольцо С. поток с амплитудой Фо/4. Перем, напряжение на С. усиливается, синхронно детектируется и фильтруется. Согласование низкого импеданса С. с высоким импедансом усилителя осуществляется согласующим устройством типа последоват. контура или резонансного трансформатора. Для измерений в большом диапазоне Д ф,. > ф( используется глубокая отрицаг. обратная связь по магн. потоку. Напряжение через сопротивление обратной связи Я с подаётся в катушку модуляции. В результате измеряемый поток компенсируется, а напряжение на резисторе Лдс служит выходным сигналом прибора, линейно связанным с измеряемым потоком в диапазоне 100—1000 Ф .  [c.540]

Полное сопротивение электрической цепи переменного тока Z определяется вырал<ением импеданс)  [c.221]

Описание работы МЭП. Механоэлектрический преобразователь является системой, которая обменивается со средой механической и электрической энергией. Наличие электрических цепей предопределяет использование для описания работы МЭП операторных имнедансов или обратных им величии — операторных проводимостей и подвии<ностен для электрических и механических цепей соответственно. Операторный импеданс линейного элемента или системы вводится как отношение преобразованных по Лапласу—Карсону обобщенных силы и скорости [2Ц. За обоб-  [c.183]

МЭП удобно рассматривать как четырехполюсник с входной механической и выходной электрической сторонами. Когда заданной функцией на механической стороне является сила, действие преобразователя удобнее описывать в импедансных параметрах. Вход преобразователя характеризуется силой F и скоростью v, выход — напряжением U и током i. На рис. 2, а, б МЭП показан соответственно с неявно и явно выраженной механической и электрической нагрузкой. Внешнее воздействие на преобразователь с механической и электрической сторон учитывается по теореме Тевенина источниками силы и электродвижущей силы и импедансами нагрузок h и zi 5о и 2о — собственные механический и электрический импедансы преобразователя и —дополнительные сила и ЭДС, создаваемые при наличии движения на противоположных сторонах преобразователя в процессе преобразования мергии и, как правило, противодействующие внешним воздействиям. Величины е и вт определяются как преобразованные по Лапласу—Карсону производные соответственно энергии электрического (или магнитного) поля в преобразователе  [c.184]

Следовательно, преобразователь является обратимым, причем коэффициент связи (X = В/ не зависит от р. Электрический импеданс г определяется последовательно соединенными сопротивлением и индуктивностью. Чувствительность преобразователя к силе по току, как следует из уравнения (13), постоянна, если (В/) -[-+ (So + ti) (2о + г,) Ki onst. Это возможно либо вблизи механического резонанса, либо в случае, когда первый член этого выражения преобладает. Такой режим возможен только в электродинамическом преобразователе [4]. Значение fx может достигать 5 Т м. Собственный механический импеданс имеет инерционный характер и практически пропорционален fx.  [c.194]


Смотреть страницы где упоминается термин Импеданс электрический : [c.218]    [c.26]    [c.100]    [c.303]    [c.170]    [c.55]    [c.18]    [c.84]    [c.8]    [c.184]    [c.184]    [c.186]    [c.191]    [c.191]    [c.206]   
Колебания и звук (1949) -- [ c.51 ]



ПОИСК



Импеданс



© 2025 Mash-xxl.info Реклама на сайте