Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Охлаждение сталей при обработке термической

Скорости нагрева и охлаждения сталей при обработке давлением. Во избежание образования трещин (В слитках и заготовках вследствие термических напряжений и напряжений от неравномерных фазо-вых превращений, создающихся при неравномерном нагреве и охлаждении, скорости нагрева и охлаждения сталей при обработке давлением должны быть обоснованными.  [c.78]

Метод по СТ 1729-г [3], В основу метода положено сравнение свойств стали в состоянии поставки (после нормализации) и после специальной термической обработки. Режимы термообработки примерно совпадают с условиями нагрева и охлаждения стали при дуговой сварке. Сопоставление результатов испытаний образцов позволяет установить ориентировочную величину и характер изменения свойств стали в наиболее опасных околошов-ных участках.  [c.292]


Термическое старение происходит в результате изменения растворимости углерода и азота в а-железе при повышении температуры. Если в сталях при предшествующей термической обработке был зафиксирован пересыщенный а-твердый раствор (как, например, при сварке, охлаждении тонкого листа после прокатки и др.), то в процессе последующей вьщержки при нормальной естественное старение) или повышенной (50...100°С) искусственное старение) температуре происходит распад твердого раствора с вьщелением третичного цементита в виде дисперсных частиц. Старение технического железа может быть связано также и с вьщелением из твердого раствора частичек нитридов или Fe N.  [c.185]

Термическая обработка приводит к изменению физико-механических и физико-химических свойств стали. Получение требуемых свойств обусловлено изменением структуры стали под воздействием различных температур и скоростей охлаждения, а при химико-термической обработке, кроме этого, и под воздействием изменения химического состава поверхностного слоя.  [c.609]

Нагрев и охлаждение стали при термической обработке  [c.74]

Развитие металлургии во второй половине XIX в. неразрывно связано с именем выдающегося русского ученого Д. К. Чернова. Он является создателем учения о металлографии и термической обработке. В 1868 г. Д. К. Чернов установил, что во время нагревания и охлаждения стали при определенных температурах (точки а и б) происходят внутренние превращения, приводящие к изменению структуры и свойств стали. Д. К. Чернов является создателем теории аллотропических превращений в железе и стали, создателем современного представления о теории закалки и отпуска стали, теории кристаллизации стали.  [c.8]

Как было сказано выше, технология термической обработки базируется на закономерностях фазовых превращений, происходящих при нагреве и охлаждении стали. При изучении технологических процессов термической обработки особое внимание обратите на разнообразие видов термической обработки и их назначение.  [c.8]

Необходимые свойства стали и сплавов можно получить термической обработкой, в результате которой изменяются внутреннее строение и структура. Термическая обработка состоит из ряда процессов, сопровождающихся нагревом, выдержкой и охлаждением стали и сплавов при определенных режимах.  [c.89]


Хромоникелевые цементуемые стали приобретают после термической обработки высокие прочность, вязкость и прокаливаемость. При повышении содержания N1 в хромоникелевых сталях увеличивается прокаливаемость и снижается критическая скорость охлаждения. Стали с высоким содержанием N1 используют для изготовления деталей больших диаметров поперечного сечения и сложной формы, закаливаемых на воздухе.  [c.179]

При экономической нецелесообразности применения дорогостоящих высоколегированных сталей используют малоуглеродистые низколегированные стали с припуском на коррозию иногда до 6—10 мм с учетом скорости проникновения коррозии и расчетного срока эксплуатации оборудования. Однако во избежание сероводородного растрескивания эти стали должны применяться при ограниченной твердости металла — не выше HR 22. Это ограничение накладывается и на металл сварного соединения. Кроме того, все сварные соединения должны быть подвергнуты послесварочной обработке. Наиболее распространенный метод снятия остаточных сварочных напряжений — термическая обработка сварного соединения (высокий отпуск). При этом очень существенны скорости нагрева и охлаждения, которые обязательно регламентируются для каждой из марок сталей. Так, для малоуглеродистых сталей типа стали 20 режим термической обработки следующий нагрев до температуры 893—933 К выдержка после прогрева 1 ч скорость нагрева 523—573 К/ч охлаждение до 573 К совместно с печью. И только для стыков диаметром менее 114 мм, имеющих толщину стенки менее 6 мм, режим может быть упрощен увеличением скорости нагрева до 873 К/ч, сокра-щение.м времени выдержки до 0,5 ч и нерегулируемым охлаждением.  [c.177]

Нами излагаются некоторые результаты исследования путей обеспечения хладостойких свойств стали Ст. 3 при ее упрочняющей обработке. Возможности положительного влияния термической обработки этих сталей были показаны в наших ранних работах [67, 68]. В дополнение к данным, полученным в этих работах, были проведены эксперименты на сталях Ст. 3 с различной степенью раскисленности (табл. 1). Образцы на ударную вязкость были вырезаны поперек прокатки из листов толщиной 12 мм. Микроструктура рассмотренных сталей состояла из феррита и перлита. По ГОСТу 5639—65 величина зерна соответствовала 7—8 баллу. Исследуемые стали подвергались термической обработке по одному из следующих режимов нормализация при 920°С термическое улучшение (нагрев до 890° 10°С с охлаждением в воде отпуск при температуре 560°С с выдержкой 2ч, охлаждение на воздухе). После термической обработки заметно улучшились механические свойства сталей (табл, 2).  [c.44]

Испытание на ударную вязкость по Шарпи имеет практическое значение в отношении контроля технологии термической обработки по операции отпуска легированных сталей. При вполне удовлетворительных показателях по всем механическим свойствам снижение ударной вязкости, если не обнаружено пороков металла, указывает на нарушение технологии вследствие охлаждения деталей с печью или на воздухе вместо охлаждения их в воде или масле, в результате чего возникает хрупкость после отпуска. При менее резком снижении ударной вязкости, когда она несколько ниже нижнего предела, можно констатировать, что не было выдержано время, установленное технологией.  [c.496]

После ковки или прокатки сталь подвергают смягчающей термической обработке, состоящей из нормализации при 1000—1050° С и отпуска при 750—780° С, НВ до 365. Окончательная термическая обработка состоит из закалки с 1050° С с охлаждением в масле или на воздухе и отпуска при 530—550 или 350—370° С.  [c.136]

Подготовка и обработка концов труб под сварку может производиться любым способом, обеспечивающим необходимую форму, размеры и качество кромок. При газовой обработке под сварку сталей, чувствительных к концентрированному нагреву и быстрому охлаждению в процессе обработки, необходимо избегать ухудшения качества металла на кромках реза и в зоне термического влияния.  [c.72]

Рекомендуемая по условию снятия остаточных напряжений для сварных изделий из аустенитных сталей термообработка (стабилизация) при температурах 800—900° может приводить не к улучшению, а в ряде случаев к ухудшению свойств металла шва и околошовной зоны сварного соединения (п. 4, глава II). Поэтому оптимальным видом термической обработки для сварных соединений аустенитных сталей является аустенизация — закалка с температур 1050—1200° в зависимости от марки стали. Этот режим термической обработки принят в качестве основного для сварных стыков паропроводов и ряда других ответственных конструкций из аустенитных сталей. В случае необходимости снятия остаточных напряжений, созданных в процессе быстрого охлаждения при аустенизации, конструкция может дополнительно подвергаться стабилизации по режиму 800- 900° — 10 час.  [c.92]


В последнее время конструкторы машин и приборов стали интересоваться стабильностью размеров различных отливок в эксплуатации. В частности, встал вопрос о стабилизации размеров прецизионных изделий из легких сплавов алюминия. Поскольку стабильность размеров зависит от наличия в отливках внутренних напряжений, возник вопрос о снятии этих напряжений при помощи термической обработки. Этой темой в Советском Союзе много занимался В. Г. Воробьев, которым были опубликованы ценные экспериментальные работы по термической стабилизации размеров точных металлических деталей (1962 г.) и уменьшению внутренних напряжений в изделиях из алюминиевых сплавов (1964 г.). В последней работе получены интересные результаты В. Г. Воробьев пришел к заключению, что охлаждение при низких температурах сплавов АЛ2 и АЛ9 сильно понижает остаточные внутренние напряжения и, следовательно, повышает стабильность размеров точных деталей. Эффективность охлаждения до отрицательных температур увеличивается при соче-  [c.83]

Бейнитные стали с хорошими низкотемпературными свойствами могут быть разработаны на основе подходящих углеродистых сталей при добавлении заметных количеств никеля, хрома, молибдена и ванадия (3,5% Ni, 1% Сг, 0,5% Мо, 0,25% V —оптимальный состав высокопрочной стали) в сочетании с подходящей термической обработкой. Стали с хорошими высокотемпературными свойствами можно создать при добавлении хрома, молибдена и ванадия (оптимальный состав стали 2,25% Сг, 1% Мо и 0,5—1% Сг, 0,5% Мо, 0,25% V). Если высокие механические свойства не являются обязательными или если трудности со сваркой делают легирующие добавки нежелательными или неэкономичными, надо применять более простые стали, не требующие высоких скоростей охлаждения. Типичными сталями этого типа являются 1% Сг, 0,5% Мо Мп, Ni, Мо Мп, Сг, Мо, V и 1% Ni, Сг, Мо, V стали, ссылка на которые сделана при описании отдельных узлов.  [c.50]

Условия работы инструмента определяют выбор режимов термической обработки сталей. Высокое качество термической обработки обеспечивается защитой поверхности от обезуглероживания соблюдением условий и температур нагрева, а также условий Охлаждения для достижения оптимального сочетания свойств при наименьшей деформации инструментов.  [c.638]

Для правильного проведения термической обработки метал-лов и сплавов необходимо хорошо представлять, какие превращения происходят в них, как влияют на эти превращения скорость нагрева, максимальная температура и время выдержки при нагреве и скорость охлаждения. Поэтому сначала подробно рассмотрим основные превращения, происходящие в стали при нагреве и охлаждении, и уже потом перейдем к конкретным режимам термической обработки.  [c.119]

Механические свойства стали (ударная вязкость, предел усталости и другие) зависят только от величины действительного зерна стали, т. е. от размеров зерен, которые имеются в стали в данных конкретных условиях. Наследственная зернистость стали и величина начального зерна влияют косвенно, так как от них зависит размер действительного зерна. В конструкционной углеродистой стали из крупных зерен аустенита получаются при охлаждении крупные зерна феррита и перлита. Они являются действительным зерном стали при комнатной температуре. При правильном проведении режима термической обработки можно получить действительное мелкое зерно даже в наследственно крупнозернистой стали. В то же время при значительном перегреве выше Асз можно получить очень крупное зерно в наследственно мелкозернистой стали.  [c.125]

Замедленное охлаждение после сварки и термической обработки низколегированных жаропрочных сталей необходимо для получения равновесных структур, обладающих высокой жаро прочностью. При медленном охлаждении в асбесте или с печью напряжения от разности температур по сечению стыка практически устраняются. Нежелательно накладывать а остаточные сварочные напряжения и напряжения от превращения структуры в стали еще температурные напряжения.  [c.268]

При нагреве и охлаждении стали в процессе термической обработки ее структура претерпевает ряд последовательных превращений, которые определяются диаграммой состояния системы Fe-Fe . Следует представлять за символами отдельных фаз и структур реальные кристаллы с особенностями их строения и состава. Для этого необходимо знать механизм кристаллизации и перекристаллизации, который включает образование центров новых кристаллов и их рост в соответствии с температурными зависимостями изобарных потенциалов жидкой G и твердой Gy фаз. В процессе охлаждения стали, нагретой выше температуры аустенитного превращения, происходят фазовые превра1цения в зависимости от скорости охлаждения. При этом при любом виде термической обработки реализуются четыре основных превращения. Рассмотрим эти превращения для звтектоидной стали (содержание углерода 0,8%).  [c.160]

Для обеспечения необходимого комплекса свойств отливки подвергаются термической обработке по режиму нормализации с высоким отпуском. Отливки из стали 15X1М1ФЛ проходят две нормализации. Первая, высокотемпературная (1030—1050 °С), играет роль гомогенизации, вторая (980—1020 °С) формирует окончательные свойства отливок. Отпуск проводится при температуре 730—760 °С. Формирующаяся в стали при такой термической обработке структура зависит от скорости охлаждения при нормализации.  [c.36]

При правильном режиме термической обработки хромоиике-левых сталей, при температуре 1080—1150°С весь углерод переходит в твердый раствор аустенита и при достаточно быстром фиксировании этого состояния (охлаждение в воде) достигается однородность твердого раствора и исключается вероятиост]) появления у стали склонности к межкристаллитпой коррозии.  [c.165]


Второе превращение - при охлаждении стали - состоит в превращении аустенита в перлит или перлитоподобные продукты. Третье превращение происходит при быстром охлаждении стали (закалка), когда аустенит превращается в мартенсит. Четвертое превращение заключается в разложении мартенсита при отпуске закаленной стали, при этом в зависимости от температуры отпуска получаются различные структуры, которые будут рассмотрены Р1иже. Любой технологический процесс термической обработки стали состоит из соответствующих комбинаций этих четырех превращений.  [c.161]

В большинстве случаев приведенные в ГОСТ 4543—71 после закалки сталей режимы отпуска и охлаждения после отпуска исключают развитие обратимой отпускной хрупкости. Что касается развития хрупкости сталей при медленном охлаждении после умягчающей термической обработки (состояние поставки проката потребителям), то это следует рассматривать как положительный факт, так как обрабатываемость стали в охруиченном состоянии на металлорежущих станках улучшается, а при последующей термической обработке деталей из такого проката охрупченное состояние устраняется.  [c.14]

Рис. 91. Превращение аустенита при непрерывном охлаждении стали 20Х2Н4А. Диаграмма построена с применением электронного вакуумного дилатометра с автоматическим программированием заданного режима. Скорость нагрева до 800° С—100° С/с, выдержка 5 мин. Образцы охлаждали в аргоне, скорость охлаждения от 0.036 до 22° С/с. Образцы предварительно подвергались ложной цементации и термической обработке [94] Рис. 91. Превращение аустенита при непрерывном охлаждении стали 20Х2Н4А. Диаграмма построена с применением электронного вакуумного дилатометра с автоматическим <a href="/info/106311">программированием заданного</a> режима. Скорость нагрева до 800° С—100° С/с, выдержка 5 мин. Образцы охлаждали в аргоне, <a href="/info/166555">скорость охлаждения</a> от 0.036 до 22° С/с. Образцы предварительно подвергались ложной цементации и термической обработке [94]
Накоплен значительный опыт по контролю качества термической обработки плунжерны х пар различных агрегатов двигателей (например, топливных насосов) из стали ХВГ (С —0,9-М,05 Мп —0,8-1,1 Si — 0,15- 0,35 W—1,2- 1,6%). Она относится к мартенситным сталям. При низком отпуске этой стали мартенсит закалки переходит в отпущенный мартенсит с решеткой, близкой к кубической, тер мическ ие и фазовые напряжения снимаются. Нарушения режима термической обработки приводят к появлению больших внутренних напряжений и при последующей шлифовке — к трещинам. Общепринятый цикл термической обработки этой стали включает нагрев под закалку при температуре 830 10°С, охлаждение на воздухе или в масле, П1ромывку (иногда пассивирование), обработку холодом до температур—(70— 78 °С) в течение 2,5—3 ч, выдержку на воздухе, низкий отпуск при температуре 200—240 С с выдержкой в течение четырех часов.  [c.118]

Продолжительность импульсов определяет не только температуру, развивающуюся в канале разряда, глубину распространения тепла в электроде, но и величину гидродинамических сил в межэлектрод-ном промежутке, от которых зависит удаление продуктов эрозии из зоны обработки. Импульсы малой длительности (до десятков микросекунд) пригодны для обработки твердых сплавов и других тугоплавких материалов, большой продолжительности (до нескольких тысяч микросекунд) — для обработки стали и вообще материалов со сравнительно небольшой температурой плавления. Применение импульсов большой продолжительности при обработке твердых сплавов нежелательно не только из-за невысокой температуры в канале разряда, но и по той причине, что быстрое охлаждение твердого сплава при прогреве его на значительную глубину может вызвать термические напряжения и образование микротрещин. При большой продолжительности импульсов, когда преобладает не взрывное испарение металла, а происходит перевод ею в капельно-жидкое состояние, ухудшается выброс отходов из зоны обработки и,  [c.146]

Термическая обработка стали Х18Н10Т (закалка при температуре 1100—1200° С с охлаждением в воде или на воздухе) придает ей аустенитную структуру. Термин закалка не означает повышения твердости, а характеризует лишь быстрое охлаждение металла, при котором получается аустенитная структура.  [c.68]

Стали относятся к группе мартенситных, хорошо закаливаются на воздухе или в масле, обладают высокими механическими свойствами при комнатных и повышенных температурах. При температурах глубокого холода имеют малую ударную вязкость. Коэффициент линейного расширения этих сталей невелик, что очень важно для уменьшения зазора в осевых компрессорах газовых турбин. Большинство сталей при охлаждении на воздухе с температур выше критических нодзакаливаются, что следует учитывать при сварке, термической обработке и обработке давлением.  [c.131]

Когда содержание Ti или Nb в стали находится на нижнем пределе по отношению к С, сталь ие всегда обеспечивает отсутствие склонности к межкрнсталлитной коррозии, особенно в условиях длительной службы деталей при высоких температурах, С одной стороны, это связано с влиянием азота, всегда присутствующего в стали и образующего нитрнды титана, и, с другой стороны, влиянием высоких температур закалки. При закалке стали типа 18-8 с Ti с очень высоких температур часть карбидов хрома растворяется и ири замедленном охлаждении выделяется по границам зерен, сообщая стали склонность к межкристаллитной коррозии. Поэтому перегрев стали при термической обработке (выше 1100° С) или сварке считается вредным, особенно в тех случаях, когда соотношение между Ti и С находится на нижнем пределе по формуле Ti 5 (С — 0,03%).  [c.146]

Таким образом, при проведении термической обработки стали Х16Н7М2Ю и других подобных ей сталец, необходимо производить обработку холодов при —70° С по возможности непосред-ствЁнно после охлаждения после высокотемпературного нагрева/ не допуская медленного охлаждения в опасном интервале температур (от 200 до —20° С) и малых степеней пластической деформации.  [c.133]

Термическая обработка для получения ковкого чугуна типа 4 заключается в полном проведении первой стадии графитизации, последующей закалке и отпуске при температуре 650—700° С (фиг. 103, е). После проведения первой стадии графитизации устанавливается равновесие аустенит — углерод отжига. При последующем быстром охлаждении в основной металлической массе происходят превращения, анало--гичные превращениям в стали при её закалке. В зависимости от условий охлаждения (температура закалки, охлаждающая среда) могут быть получены следующие структуры основной металлической массы мартенсит с остаточным аустенитом, мартгнсит, мар-  [c.551]

Процессы, протекающие с диффузионным насыщением поверхности стали различными элементами и приводящие к изменению химического состава поверхностного слоя стального изделия, называются химико-термической обработкой. К ним относятся цементация (науглероживание), азотирование, цианирование, алитирование, хромирование, силицирование, борирование, сульфиди-рование и др. При химико-термической обработке нагрев, выдержка и охлаждение стали производятся в активной среде определенного состава, насыщающей поверхность стали различными элементами.  [c.666]

Широко используют в паротурбостроении хромомолибденовые стали 15ХМ и 20ХМ, а также хромомолибденованадиевые стали, например теплоустойчивую феррито-перлитную сталь 20ХМФЛ, предназначенную для длительной работы при температурах до 540° С. Сталь не склонна к механическому старению и тепловой хрупкости и обладает стабильными механическими свойствами после весьма длительной выдержки при рабочей температуре. Особенностью этой стали является необходимость строгого регулирования скорости охлаждения отливки при термической обработке во избежание получения низкой ударной вязкости лри комнатной температуре.  [c.7]


В процессе термической обработки стали часто превращение переохлажденного аустенита происходит ие при изотермической выде1ржке, а при непрерывном охлаждении. Так как диаграмма изотермического распада аустенита построена в координатах температура — время, то на нее можно наложить кривые охлаждения стали (рис. 73).  [c.133]

Закалкой называется операция термической обработки, при которой путем нагрева металлического сплава выше критических температур (температуры фазового превращения, напримф для стали выше линии GSK на фиг. 106, а или вблизи линии D E на фиг. 106, б для других сплавов), выдержки и последующего быстрого охлаждения образуется при нагреве и сохраняется после охлаждения неустойчивая структура пересыщенного Твердого раствора или структура, состоящая из продуктов превращения твердого раствора различной степени дисперсности (измельчения).  [c.176]

Нормализацией называется операция нагрева стали на 30—50° С выше линии GSE (точки Ас , Асст) (см. фиг. 142) с выдержкой при этой температуре и последующим охлаждением на спокойном воздухе. Нормализацию применяют для устранения внутренних напряжений и наклепа, повышения механических свойств стали, а также для подготовки структуры перед окончательной термической обработкой, холодной иГгамповкой или перед механической обработкой. Нагрев выше линии SE (точки Л ) заэвтектойд-ной стали при ее нормализации производится с целью растворения цементитной сетки или для подготовки структуры для закалки. Само слово нормализация указывает на то, что сталь после этой операции получает нормальную, однородную для данной партии деталей мелкозернистую структуру, перлит приобретает тонкое строение.  [c.226]


Смотреть страницы где упоминается термин Охлаждение сталей при обработке термической : [c.7]    [c.280]    [c.385]    [c.258]    [c.81]    [c.53]    [c.231]    [c.172]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.0 ]



ПОИСК



Обработка термическая сталей

Охлаждение и термическая обработка слитков нержавеющих сталей

Охлаждение при термической обработке

Охлаждение сталей при закалк при обработке термической

Сталь обработка

Термическая Охлаждение



© 2025 Mash-xxl.info Реклама на сайте