Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Долговечность — Определение при испытаниях на усталость

Долговечность — Определение при испытаниях на усталость 136—145  [c.226]

При испытаниях на усталость наблюдается значительный разброс долговечности при постоянном а , разброс амплитуд напряжений при данной долговечности (или базе) много меньше. Предел выносливости можно найти построением кривой сТд — N на основании результатов испытаний 8. .. 10 образцов. Если два-три образца из этого числа не разрушаются при данной базе испытаний, то соответствующее напряжение можно считать пределом выносливости. Результаты многочисленных опытов показывают, что определенный таким образом предел выносливости соответствует вероятности разрушения Р 0,5.  [c.179]


Событие. Исходом любого опыта (испытания), осуществляемого при вполне определенных условиях, является событие. Событие может иметь качественную или количественную характеристику. Так, при испытаниях на усталость факт разрушения или неразрушения образца за базовое число циклов нагружения является каче. ственной характеристикой события. Долговечность же разрушившихся образцов является количественной характеристикой.  [c.4]

ОПРЕДЕЛЕНИЕ ДОЛГОВЕЧНОСТИ ПРИ ИСПЫТАНИЯХ НА УСТАЛОСТЬ  [c.137]

Определение долговечности при испытаниях на усталость  [c.139]

Предложены устройство и стенд для определения долговечности сильфонов. Создана установка [53] для циклических испытаний компенсационных крестовин металлических кровель и их стыковых соединений с заданными усилиями или деформациями в двух взаимно перпендикулярных направлениях. Муфты испытывают на специальных стендах" " . Машина для испытания на усталость гибких элементов волновых передач кольцевой формы состоит из электродвигателя, который передает вращение при помощи муфты на приводной вал, установленный на станине, устройств базирования и нагружения исследуемого элемента, а также для контроля режима испытаний и момента разрушения элемента. При испытаниях испытуемый образец кольцевой формы устанавливают внутренней поверхностью на наружные поверхности роликов.  [c.233]

Для определения зависимости характеристик усталости от поверхностного наклепа (a i h , N — Дд) были проведены усталостные испытания трех групп серий образцов, фрезерованных, шлифованных и обкатанных роликом, из которых одну группу серий образцов испытывали на усталость непосредственно после механической обработки, а остальные две группы до испытания на усталость подвергали термообработке, — одну для снятия технологических макронапряжений, а вторую для снятия поверхностного наклепа. При этом исключали влияние шероховатости поверхности и технологических макронапряжений вычисленные значения сопротивления усталости и усталостной долговечности зависели только от поверхностного наклепа после заданных режимов механической обработки.  [c.202]

С целью иллюстрации процедуры сравнения рассмотрим следующий пример. Предположим, что год назад при постоянном уровне напряжения 90 ООО фунт/дюйм были проведены испытания на усталость выборки из 8 образцов из старой отливки материала. Результаты определения долговечности приведены в табл. 9.12.  [c.349]

Усталость — это постепенное накопление повреждений в материале под действием повторно-переменных напряжений, максимальное значение которых меньше прочности материала при испытаниях на одноосное растяжение. Усталостная долговечность, определяемая числом циклов перед разрушением при определенном напряжении, складывается из числа циклов до зарождения треш,ины и числа циклов распространения усталостной трещины.  [c.219]


При испытаниях большого числа образцов может наблюдаться систематическое отклонение малых долговечностей от логарифмически нормального распределения, как это следует (рис, 3,6, а) из результатов испытания на, усталость алюминиевого сплава В95 (500. .. 600 образцов) при постоянном значении напряжения [70]. Для получения лучшего соответствия экспериментальных данных логарифмически нормальному распределению в формулу для определения плотности вероятности вводится порог чувствительности по циклам No, до которого не происходит разрушения  [c.108]

Данные по величине изменения критической температуры хрупкости, полученные различными авторами, также значительно отличаются между собой. Так, если в работах [8, 26] максимальное повышение критической температуры при наибольшем из исследованных уровней напряжения ((Т=1,8 О- ) и длительности испытания (равной 0,8—0,9 от долговечности) составляло 10—20°, то в работах (3—4,14, 27—30] оно достигало 60°. Отмеченные различия, возможно, обусловлены применением разных методик испытания на усталость и определения критической температуры хрупкости.  [c.99]

В сборнике рассматриваются основы методов расчетного и экспериментального определения прочности и долговечности циклически нагруженных элементов конструкций в широком диапазоне температур, времен и чисел циклов. Приводятся критерии и основные уравнения статических и циклических предельных состояний в температурно-временной постановке рассмотрены закономерности деформирования и разрушения в зонах концентрации и в связи с неоднородностью напряженных состояний. Рассмотрены методы испытаний на циклическое нагружение, описан ряд опытных результатов. Систематизированы данные по характеристикам малоцикловой усталости, по концентрации напряжений и деформаций, необходимые для расчета прочности. Излагаемый материал в значительной степени основывается на результатах работ сотрудников Института машиноведения, доложенных на Всесоюзном симпозиуме по малоцикловой усталости при повышенных температурах в Челябинске в 1974 г.  [c.2]

Однако наиболее универсальным и объективным остается метод построения уравнений повреждений на основе экспериментальных данных о разрушении образцов при заданных программах нагружения. В определенных случаях можно фиксировать не момент полного излома образцов, а момент появления видимых трещин. Опыты на длительное разрушение трудоемки, так как для построения кривой статической или циклической усталости необходимо испытать довольно много образцов, увеличению числа которых способствует и явление рассеяния долговечностей, отвечающих одинаковым условиям испытаний. Напомним, что при исследовании деформационных процессов такого большого числа образцов не требуется, так как выборочная диаграмма деформирования или кривая ползучести может быть построена по результатам испытаний только одного образца.  [c.97]

Характер рассеивания долговечности при испытании образцов на усталость при определенном уровне напряжений будет вполне определен, 36  [c.36]

Количественные испытания проводят для определения числа циклов до разрушения или термоциклической долговечности материала при упрощенной, но достаточно точно фиксированной системе действующих на образец тепловых нагрузок, при которой возможен анализ напряженного и деформированного состояний. При этом циклические термические напряжения и деформации определяют или непосредственным измерением, или аналитически. В результате испытания получают зависимость числа теплосмен до разрушения от параметров термодеформационного цикла, по которой можно дать общую количественную оценку долговечности различных материалов при термической усталости и установить основные закономерности процесса термоциклического деформирования и разрушения.  [c.26]

При оценке долговечности в зависимости от амплитуды упругопластической деформации (что более удобно для практических целей, ввиду трудностей точного определения пластической деформации) пределы изменения расчетных коэффициентов значительно меньше. Данные табл. 2 и 4 свидетельствуют о неплохом соответствии результатов испытаний на термическую усталость в жестком режиме для однотипных материалов при близком уровне температур.  [c.72]


Влияние улучшающей термической обработки (920° С —1ч — охлаждение отпуск 590° С) на усталостную прочность проводилось в работе [14]. Цилиндрические образцы диаметром рабочей части 5 мм из сплавов ВТ8 и ВТЗ-1 после указанной термообработки на воздухе, в аргоне и в вакууме подвергались циклическим испытаниям при чистом круговом изгибе. Результаты усталостных испытаний обрабатывались статистически для определения границ областей рассеивания, что позволило провести сравнение с учетом рассеивания по нижним, средним пределам усталости и верхним границам рассеивания долговечности на фиксированном уровне перенапряжения. В табл. 49 приведены результаты исследования. По среднему пределу усталости для сплава ВТ8 термообработка не только на воздухе, но и в аргоне и вакууме заметно снижает предел усталости. При оценке по нижней границе областей рассеивания предел усталости образцов, прошедших термообработку на воздухе, ниже исходного на 13%, а в аргоне и в вакууме дают превышение исходного на 7%. При испытаниях сплавов ВТ8 и ВТЗ-1 на фиксированных уровнях напряжений  [c.179]

Испытания образцов в этих условиях с доведением их до разрушения показывают, что, малоцикловая долговечность образцов с концентрацией напряжений, определенная с помощью кривых усталости (для гладких образцов) по интенсивностям циклических деформаций в зоне надреза (расчет по МКЭ), хорошо совпадает с результатами эксперимента (см. рис. 2.3, а). Роль формы цикла силового и температурного нагружений проявляется в условиях концентрации напряжений в той же мере, что и при однородном напряженном состоянии. На это указывает сравнение данных испытаний как при синфазном, так и при противофазном сочетании циклического нагрева и механического нагружения (см. рис. 2.3, а).  [c.115]

К первой группе относится постоянное нагружение испытуемого образца, экспериментальное определение левой ветви кривой усталости с относительно малыми долговечностями и экстраполяция кривой в правую часть с определением предела выносливости. Ускорение испытаний достигается за Счет экономии времени на испытания при напряжениях, близких к пределу выносливости. К этой группе относятся предложения Вейбулла, Ивановой [6], Муратова и др. [1].  [c.77]

Стандарт на метод испытаний на малоцикловую усталость при термомеханическом нагружении ГОСТ 25.505-85 предусматривает определение статистических характеристик рассеяния значений долговечности на каждом уровне нагружения.  [c.189]

Благодаря статистическому анализу результатов усталостных испытаний сплавов удается выявить некоторые закономерности усталостных свойств титана, которые не удается раскрыть при обычном определении среднего предела выносливости. Следует отметить, что большой разброс данных при циклических испытаниях сплавов заставляет строить полные вероятностные кривые не только для определения гарантированного предела выносливости металла с заданной надежностью (вероятностью) неразрушения, но даже при выборе сплава, так как по средним значениям предела выносливости (при Р-, = Б0 %) может быть выбран один сплав, а по вероятности неразрушения 99,9 % —другой сплав из-за меньшего разброса данных по его долговечности. При статистическом анализе более точно можно подобрать и математическую форму кривой усталости в координатах а—1дЛ/, что дает более точные сведения о пределе выносливости при большом количестве циклов нагружения. Например, при сравнении крупных поковок из сплавов ПТ-ЗВ и ВТ6 среднее значение предела выносливости у первого оказалось на 20 МПа выше, что находится в пределах разброса данных при построении полных вероятностных диаграмм из этих сплавов выяснилось, что сплав ВТ6 по пределу выносливости с вероятностью неразрушения 99,9 % при Л/= 10 цикл превосходит сплав ПТ-ЗВ более чем на 70 МПа. Статистический анализ позволил определить предел выносливости сплава ВТЗ-1 при если при Л/=10 цикл средние пределы были равны 430, 320, 197 МПа (соответственно для гладких образцов и надрезанных при а. =1,4 и . = 2,36), то при N- °° пределы выносливости оказались равными только 312, 217 и 72 МПа [96].  [c.142]

Поскольку результаты испытания во всем интервале напряжений могут быть описаны единой формулой, при определении долговечности для одного какого-то уровня напряжений можно не ограничиваться результатами испытаний образцов только на этом уровне, а учитывать результаты испытаний всех образцов во всем интервале напряжений. Это позволяет более экономно испытывать образцы и подвергать их совместной статистической обработке методом корреляционного анализа с составлением линейного корреляционного уравнения. Уравнение кривой усталости в координатах Ig iV — Ig а (линия регрессии) с помощью этого метода определяется так  [c.55]

Отмеченное обстоятельство говорит о необходимости определения для каждой рассматриваемой стали или сплава при изучении закономерностей накопления длительных циклических повреждений эффектов знака напряжений при выдержке в исследуемом интервале температур. Такие данные могут быть получены в режимах испытаний типа базовых режимов, показанных на рис. 1.2.1, в—е. При этом оценка повреждений для материалов и режимов нагружений с большим повреждающим эффектом выдержки того или иного знака должна производиться с использованием соответствующей базовой кривой усталости (решим — рис. 1.2.1, б, д), отражающей снижение долговечности при наличии односторонней выдержки. Неучет названных обстоятельств может привести к ошибке порядка до двух и более раз в оценке накопленного усталостного повреждения.  [c.36]

А. Вёлер ввел понятие о физическом пределе выносливости — максимальном циклическом напряжении, при котором нагрузка может быть приложена неограниченное число раз, не вызывая разрушения при выбранной базе (числе циклов до разрушения К). Для металлических материалов, не имеющих физического предела выносливости, предел выноашлости (7ц - значение максимального по абсолютной величине напряжения цикла, соответствующее задаваемой долговечности (числу циклов до разрушения). Для металлов и сплавов, проявляющих физический предел выносливости, принята база испытаний Ю циклов, а для материалов, ординаты кривых усталости которых по всей длине непрерывно уменьшаются с ростом числа циклов, - 10 циклов (рис. 2). Первый тип кривой особенно характерен для ОЦК - металлов и сплавов, хотя может наблюдаться при определенных условиях у всех металлических материалов с любым типом кристаллической решетки, второй тип -преимущесгвеипо у П (К - металлов и сплавов (алюминиевые сплавы, медные сплавы и др.). N(11 и N( 2 на рис.2 обозначают базовые числа циклов нагружения. На рис. 3 представлены основные параметры цикла при несимметричном нагружении и возможные варианты циклов при испытаниях на усталость.  [c.7]


При испытании на усталость лопатку считают разр /шенной, если частота собственных колебаний ее снижается на определенное значение, например на 5 Гц [1101. При этом длина трещины в лопатках, конструкция которых описана в работе 1155], составляет 1,2—4,5 мм. Если предположить, что вся долговечность лопатки состоит из процесса развития усталостной трещины, то ее значение при постоянной амплитуде напряжений и симметричном нагружении можно рассчитать по формуле  [c.227]

Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]

Обработка результатов испытаний по методу Кордонского образцов и болтов И дополнительные исследования, проведенные с целью определения значений коэффициента 1(сГн,сГк), показали, что предположение о равенстве этих коэффициентов в двух уравнениях при рекомендованных значениях и не подтверждается. Это обстоятельство не позволяет исключать ц(ан, сгк) путем деления одного уравнения на другое и, по-видимому, является причиной больших погрешностей при определении усталостной долговечности этим методом. В настоящее время ведется обработка экспериментальных данных с целью нахождения эмпирической формулы для коэффициента р,(сгн, Ок). Такая формула позволила бы определить искомую долговечность по результатам только одного эксперимента. Кроме указанных трех методов ускоренных испытаний на усталость, на болтах М20 оценивали точность метода, основанного на использовании уравнения Одинга— Вейбулла  [c.79]

Статистическая обработка по долговечности мо кет иметь первичный характер при последующем построении кривых усталости равной вероятности и определении соответствующих значений предела выносливости. Однако при испытании на одном-двух уровнях напря кения для обоснования расчетных и нормативных характеристик по ресурсу, для оценки влияния технологических и других факторов обработка по долговечности носит окончательный характер.  [c.137]

Методика статистической обработки и определение объема испытаний. Результаты испытаний серии из п образцов при уровне амплитуды напряжения Од располагаются в вариационный ряд в порядке возрастания долговечности. Подобные ряды для образцов из алюминиевого сплава В95, испытанных на усталость при шести уровнях напря кения, приведены в табл. 6.1.  [c.139]

В практике лабораторных испытаний наиболее распространенным методом испытаний на усталость является метод Велера [133—137], связанный с испытанием большого числа образцов при различных напряжениях и определением предела выносливости. Как правило, число образцов, необходимых для получения кривой Велера, составляет не менее 10. Кривые усталости, построенные по методу Велфа, определяют предел выносливости в зоне ограниченной долговечности, число циклРв которое выдерживает образец до разрушения при данном номиналы ом напряжении. Они совсем не учитывают влияния трещин (нарушений салонности), образующихся и развивающихся в процессе испытаний, на общее сопротивление усталости. Однако в условиях эксплуатации в нагруженных узлах и деталях это номинальное напряжение (предел выносливости) может быть значительно превышено в местах образования трещин или в местах расположения концентраторов напряжений. Очевидно, что, используя результаты испытаний на усталость, полученные по методике Велера, можно существенно превысить безопасное допустимое напряжение при расчете нагруженных узлов деталей.  [c.136]

Интерес к проблеме усталостного разрушения металлических материалов, на наш взгляд, связан со следующими причинами. Во-первых, с важностью проблемы усталостного разрушения ответственных металлических конструкций. Например, ресурс планера и двигателей современных самолетов связан с усталостной долговечностью и т.д. Второй причиной является то, что хрупкому разрушению металлических конструкций на практике часто предшествует подрастание усталостной трещины, что существенно снижает несущую способность. В-третьих, использование подходов механики разрушения позволило в последнее время достигнуть значительных успехов в оценке и прогнозировании трещиностойкости и долговечности металлических материалов и конструкций. В том случае, когда в конструкции или в детали наличие трещин недопустимо, определение порогового коэффициента интенсивности напряжений позволяет оценить размер допустимого металлургического или технологического дефекта для случая циклического деформирования. В-четверть1х, методы испытаний на усталость и циклическую трещиностойкость, так же как и методы определения ударной вязкости, оказались чувствительными к структурному состоянию материала- Кроме того, при проведении усталостных испытаний методически легче проследить кинетику накопления повреждений.  [c.3]


Для определения работоспособности титановых сплавов при многоцикловом нагружении необходимо знать их усталостную прочность. При этом следует иметь в виду, что в литературе по усталостным свойствм титановых сплавов имеется много противоречивых сведений. Это, по-видимому, является результатом не только недостаточной изученности этих свойств, но и их своеобразием. Так, уже сейчас ясно, что точные данные по усталостному поведению титановых сплавов во многих случаях можно выяснить лишь на основании статистической обработки первичных данных, так как при усталостных испытаниях наблюдается повышенный разброс данных. Очень важен статистический подход при определении надежной работы крупных деталей машин при многоцикловом нагружении. Уникальное явление усталости титана —его чувствительность к состоянию поверхности. В частности, в последнее время выяснили, что при числе циклов до 10 трещины зарождаются в самом поверхностном слое, состояние которого полностью определяет уровень предела выносливости. При числе нагружений более 10 разрушение носит подповерхностный (подкорковый) характер, хотя типичное усталостное разрушение наблюдается при числе циклов нагружения по крайней мере до 10 ° [91]. Пренебрежение к финишным поверхностным обработкам титановых деталей, работающих на усталость, явилось причиной снижения их долговечности на начальном этапе внедрения титана в технике.  [c.137]

Существенного сокращения длительности испытания можно достичь, используя симметрир(1ваиие закона распределения логарифмов долговечности на соответствующих уровнях [179], При таком подходе весь испытуемый материал (имеются в виду испытания последовательно-параллельным методом арматуры в многообразцовой установке), заправленный в установку, рассматривается как единый пруток, мысленно разделенный на образцы определенной длины. Испытания ведут до тех пор, пока не произойдут разрушения на участках прутка, число которых больше чем половина выделенных. Последнее наибольшее значение (или среднее из двух последних) принимается за медианное на данном уровне напряжений. Поскольку для симметричного распределения медиана совпадает с математическим ожиданием, вторая, верхняя, половина кривой распределения долговечностей строится путем симметричного переноса значений, полученных для первой, нижней, половины. Массив всех значений долговечности (экспериментальных и симметрированных) статистически обрабатывается, в результате чего определяется значение ограниченного предела усталости с заданной степенью вероятности.  [c.117]

Средняя квадратическая ошибка в определении предела ограниченной выносливости непостоянн.т для разных базовых долговечностей. Она будет наименьшей при среднем из достигнутых при испытании значений чисел циклов для разрушения и увеличивается по мере перемещения влево или вправо вдоль кривой усталости. 13 формуле (6.40) эту зависимость определяет величина (о . — S i) , входящая в подкоренное выражение. Относительная погрешность определения предела ограниченной выносливости максимальна на правой границе кривой усталости.  [c.157]

Нижний уровень амплитуды цикла напряжений для объектов испытаний, имеющих горизонтальный 5щасток на кривой усталости, выбирают равным расчетному значению предельной амплитуды ио формуле (6.52). Для элементов из магниевых, алюминиевых, титановых и других сп.чавов, у которых отсутствует горизонтальный участок на кривой усталости, нижний уровень амплитуды цикла напряжений выбирают из диапазона 1,0—1,2 от оценки предельной амплитуды для принятой базы испытания ио формуле (6.46). В случае выбора левой границы указанного диапазона отпадет необходимость экстраполяции кривой усталости в область базовой долговечности, что нри принятом уровне ошибки определения предела выносливости приводит к снижению общего числа испытуемых объектов и к увеличению машинного времени испытаний на нижнем уровне напряжений. И наоборот, выбор правой границы диапазона для нижнего уровня амплитуды цикла вызовет потребность экстраполяции кривой, что при заданном уровне ошибки приведет к увеличению числа объектов испытаний и снижению машинного времени, которое в основном определяется временем испытания на нижнем уровне напряжения.  [c.160]

Оценка малоцнкловой усталости образцов разной конструктивной формы (с разными концентраторами напряжений) может приводить к ошибочным выводам, если выбранная величина базы испытаний не соответствует имеющейся при эксплуатации. Концентрация напряжений существенно влияет на положение кривой усталости возможна более высокая прочность надрезанных образцов по сравнению с гладкими. Такое повышение характерно только для определенной начальной области долговечности (до пересечения кривых).  [c.237]


Смотреть страницы где упоминается термин Долговечность — Определение при испытаниях на усталость : [c.112]    [c.17]    [c.100]    [c.11]    [c.152]    [c.193]    [c.54]    [c.180]    [c.36]    [c.169]    [c.160]    [c.10]   
Статистические методы обработки результатов механических испытаний (1985) -- [ c.3 , c.14 , c.136 ]



ПОИСК



Долговечность

Долговечность — Определение

Испытание усталость

Испытания на долговечность

Определение Испытания -

Усталость

Усталость — Испытания усталости



© 2025 Mash-xxl.info Реклама на сайте