Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы Предел выносливости

Отношения предела выносливости к временному сопротивлению и предела выносливости к истинному сопротивлению разрыву для ста. не являются стабильными и растут с повышением температуры. Применительно к алюминиевым сплавам предел выносливости наиболее тесно связан с временным сопротивлением разрыву i[82].  [c.100]

Литейные сплавы — Предел выносливости — Влияние поверхностных покрытий 466, 467  [c.547]


Сведения по каждой марке стали и сплава располагаются на одной, двух или трех страницах. На них представлены следующие данные обозначение марки стали или сплава вид поставки, т.е. стандарт или технические условия химический состав температура критических точек механические свойства при 20°С в зависимости от поперечного сечения обрабатываемой поковки (отливки) и режима термической обработки основное назначение марки стали или сплава предел выносливости при изгибе и кручении.  [c.13]

Точки на рис. 3.17 и 3.18 обозначаются различно, чтобы отличить сплавы типа А1—2п—Mg от сплавов типа А1—Си. У обоих типов сплавов пределы выносливости, по-видимому, характеризуются их пределами прочности и на эту зависимость не влияет состав сплава.  [c.83]

Автор здесь допускает неточность. Имеются целые классы материалов, у которых предел выносливости ниже предела текучести. Например, у алюминиевых сплавов предел выносливости редко бывает выше 160—180 МН/м , т. е. в 2—3 раза ниже предела текучести. У титановых сплавов предел выносливости ниже предела текучести. (Прим. ред.)  [c.221]

ЭТИХ исследований показывают, что для сталей, никелевых и титановых сплавов предел выносливости с повышением частоты нагружения увеличивается или остается неизменным. Повышенно предела выносливости зависит как от материала и его состояния, так и от условий высокочастотного нагружения.  [c.45]

В.Т. Трощенко с соавтор. [48 52] предложил использовать кривые циклического деформирования для ускоренного определения предела выносливости. Было показано, что в качестве критерия сопротивления усталости металлов и сплавов независимо от напряженного состояния (однородное или неоднородное) может быть использован циклический предел упругости с У. Последний находят по кривой циклического деформирования поверхностных слоев материала, которую строят для периода нагружения, соответствующего стадии стабилизации размеров петли гистерезиса. Методика построения кривой циклического деформирования подробно изложена в работе [39]. Было установлено, что для многих металлов и сплавов предел выносливости сГу - Погрешность корреляции между этими величинами зависит от допуска на неупругую деформацию, по которой определяют Оу. Поэтому предложено конструкционные  [c.34]

Сплав Предел выносливости a , кГ/мм  [c.422]

В меньшей степени соблюдается точная количественная зависимость между числами твердости НВ и пределом выносливости. Сравнительно простая зависимость существует лишь для сплавов в равновесном (отожженном) состоянии. Для этих сплавов предел выносливости, определяемый в условиях повторно-переменного изгиба вращающегося образца (при отсутствии резких переходов) по сечению, надрезов, царапин на поверхности и обезуглероживания), характеризуется следующими данными  [c.174]


Сплав Предел выносливости (база 40-Ю циклов), кГ/мм, при температуре, С  [c.1305]

При проектировании сварных узлов из алюминиевых сплавов, работающих при переменных нагрузках, учет концентрации напряжений особенно важен. Экспериментально установлено, что для большинства алюминиевых сплавов предел выносливости составляет (0,25 0 0) Од. Эффективные коэффициенты концентрации напряжений при переменных нагрузках для различных видов сварных соединений приведены в табл. 2.  [c.262]

Наклеп сплавов А1 и Mg повышает их предел выносливости незначительно (на 15 — 30%).  [c.320]

Шероховатое г ь. Значения коэффициента влияния шероховатости поверхности приведены в табл. 16.7. С повышением прочности стали растут требования к микрогеометрии поверхности. При грубой обработке поверхности предел выносливости высокопрочных сталей оказывается не выше, чем у обычных среднеуглеродистых сталей. Особенно чувствительны к качеству поверхности титановые сплавы.  [c.327]

Фундаментальной особенностью поведения металлических материалов, подвергающихся разрушению, является непременное наличие перед разрушением микро - или макродеформации. В зависимости от структурного состояния, вида нагружения и асимметрии цикла предел выносливости ОЦК - металлов и сплавов может быть по своему значению выше и ниже физического предела текучести. В том случае, когда он ниже физического предела текуче-  [c.21]

В.Ф. Терентьевым была предложена гипотеза о природе физического предела выносливости ОЦК - металлов и сплавов, основанная на идее барьерного действия более прочного приповерхностного слоя глубиной порядка размера зерна, формирующегося с опережением (по сравнению с внутренними объемами металла) на ранних стадиях циклического нагружения при На-  [c.70]

Снижение температуры испытания ниже комнатной у гладких образцов приводит к повышению прочностных характеристик механических свойств (но к снижению характеристик пластичности) и пределов выносливости гладких образцов (рис. 50). При определении влияния температуры испытаний необходимо помнить о возможности фазовых превращений в сплавах и явлениях динамического возврата. Следует также нс путать влияние температуры при усталости с термической усталостью, которая имеет другую природу.  [c.82]

Таблица 3.48. Пределы выносливости алюминиевых сплавов при знакопеременном изгибе на базе 2 10 циклов [3, 5, 20] Таблица 3.48. <a href="/info/75337">Пределы выносливости алюминиевых сплавов</a> при знакопеременном изгибе на базе 2 10 циклов [3, 5, 20]
Большая часть данных по многоцикловой усталости получена при испытаниях на изгиб симметричным циклом с определением о ,. Для ориентировочной оценки пределов выносливости при других видах напряженного состояния можно использовать следуюш,ие соотношения для конструкционных сталей предел выносливости при растяжении — сжатии а- = (0,84-0,9)О-,. при кручении T-i = (0,5H-0,6)a i для алюминиевых сплавов эти коэффициенты составляют 0,85—0,95 и 0,55—0,65 соответственно.  [c.78]

Для некоторых групп материалов установлены зависимости между пределами выносливости и прочности. Отношение а /ав для сталей составляет 0,35—0,55 при базе испытания 2-10 циклов, для титановых сплавов 0,45—0,55 при Л =2-10 циклов при этом более высокопрочным материалам отвечают меньшие значения a-i/aa. Для неметаллических материалов (текстолиты, органические стекла и др.) a-j = (0,2- -0,3) Ста (N=10 циклов).  [c.78]

Таблица 3.50. Влияние температуры на пределы выносливости жаропрочных сталей и никелевых сплавов при знакопеременном изгибе на базе 2 10 циклов [3] Таблица 3.50. <a href="/info/222925">Влияние температуры</a> на <a href="/info/59241">пределы выносливости жаропрочных</a> сталей и <a href="/info/48390">никелевых сплавов</a> при знакопеременном изгибе на базе 2 10 циклов [3]

Рис. 3.22. Влияние низких температур на предел выносливости (база 10 циклов) некоторых сплавов [3] Рис. 3.22. <a href="/info/436852">Влияние низких температур</a> на <a href="/info/1473">предел выносливости</a> (база 10 циклов) некоторых сплавов [3]
Рис. 3.24. Влияние высоких температур на предел выносливости сталей (а) [3, 31], титановых сплавов (б) [3, 10, 24], алюминиевых сплавов (а)[31, 5, 3] - ---а н Рис. 3.24. <a href="/info/264816">Влияние высоких температур</a> на <a href="/info/75650">предел выносливости сталей</a> (а) [3, 31], <a href="/info/29902">титановых сплавов</a> (б) [3, 10, 24], алюминиевых сплавов (а)[31, 5, 3] - ---а н
Для случаев, когда кривая усталости не имеет горизонтального участка ( в частности, некоторые легированные стали, сплавы цветных металлов), вводят понятие предела ограниченной выносливости. Это наибольшее значение максимального (по абсолютной величине) напряжения цикла, при действии которого образец еще не разрущается при определенном (задаваемом) числе циклов. Для указанных материалов, согласно ГОСТ 2860—76, принимают Ао=10 циклов. Безусловно, указанные сведения должны быть сообщены учащимся. Особенно обращаем внимание преподавателей на строгое разграничение понятий предел выносливости и предел ограниченной выносли-  [c.175]

Чувствительность металла к концентрации напряжений у крупнозернистых сталей меньше, чем у мелкозернистых. Металлы и сплавы с неоднородной структурой, такие как, например, серый чугун, имеют пониженную чувствительность к концентрации напряжений вследствие того, что структурная неоднородность является внутренним источником концентрации напряжений и снижает предел выносливости гладких образцов, поэтому внешние концентраторы уже мало снижают предел выносливости.  [c.667]

Для проверки уравнения (7.20) и определения значений были использованы экспериментальные данные, полученные на материале одной марки и плавки. По этим данным находились пределы выносливости элементов различных размеров и уровней концентрации напряжений при различных видах нагружения и строились зависимости lg( —1) от g L/G). Для трех сталей и двух легких сплавов экспериментальные и расчетные результаты приведены на рис. 7.13.  [c.145]

На сопротивление усталости существенно влияет среда не только в смысле коррозии, но также в смысле температурных условий работы конструкций. Понижение температуры затрудняет пластическую деформацию и приводит к повышению выносливости, особенно для полированных образцов из малоуглеродистых пластичных и хладноломких сталей. В области закритической температуры для хрупкого состояния пределы выносливости приближаются к критическим напряжениям, достаточным для хрупкого разрушения и значительно (в 1,5—2 раза) превышающим значения o i для комнатной температуры при отсутствии концентрации напряжений. При наличии концентрации напряжений повышение (а 1)к также имеет место, но в меньшей степени (в 1,3—1,5 раза). Наименее выражено повышение пределов выносливости с понижением температуры у вязких хромоникелевых сталей и легких сплавов, не обладающих выраженной хладноломкостью. Однако  [c.160]

Сплав АМг обладает высоким пределом выносливости сравнительно с другими промышленными алюминиевыми сплавами.  [c.22]

Для алюминиевь1х сплавов, предел выносливости которых зависит от базы испытания, трещины могут расти практически при любом напряжении, эффект тренировки недогрузками отсутствует. В сталях недогрузки не повышают усталостной прочности, если амплитуда низкого напряжения такова, что нераспространяющиеся трещины не возникают. Аналогичные результаты дает включение этапов недогрузки при двух и многоступенчатых испытаниях. Следовательно, эффект влияния низкого напряжения зависит от того, возможно ли при данном уровне напряжений возникновение в материале нераспростра-няющихся трещин. Кроме того, следует отметить, что при низких циклических напряжениях условия испытаний более близки к условиям плоской деформации.  [c.228]

Многие металлы (обычно цветные и их сплавы) не имеют горизонтального участка на кривой усталости. В этом случае определяют ограниченный предел выносливости — иаибольн1ее напряжение, которое выдерживает металла (силав) в течение заданного числа циклов иа1 ружения.  [c.72]

Предел выносливости большинства конструкционных сталей определяют при 10 —10 циклов. Эти цифры берут за основу как базовое число циклов. Для цветных сплавов, например алюминиевых, число перемен нагрузок гораздо выше (10 — 10 циклов). Дажв-после этого часто наблюдается дальнейшее мед.ленное падение разрушающего напряжения (рис. 159, г), откуда можно заключить, что предела в указанном выше смысле для этих металлов не существует. В таких случаях определяют условный предел выносливости, как напряжение, не вызывающее разрушения образца при определенном числе циклов (обычно 5 10 циклов).  [c.276]

При длительном режиме работы с постоянной или мало-меняющейся нагрузкой определение допускаемых изгибных напряжений при симметричном цикле производится по формуле [а/г]=а ]/ц при отнулевом цикле [з/ ] = 1,5а 1//г, где п = = 1,3. .. 2—коэффициент запаса прочности. Предел выносливости можно определять по формулам а ] = 0,430 — для углеродистых сталей а 1 = 0,350 + (70... 120) МПа — для легированных сталей а 1 = 85. . . 105 МПа — для бронз и латуней а [ = (0,2. . . 0,4) — для деформируемых алюминиевых сплавов для пласт-  [c.217]


А. Вёлер ввел понятие о физическом пределе выносливости — максимальном циклическом напряжении, при котором нагрузка может быть приложена неограниченное число раз, не вызывая разрушения при выбранной базе (числе циклов до разрушения К). Для металлических материалов, не имеющих физического предела выносливости, предел выноашлости (7ц - значение максимального по абсолютной величине напряжения цикла, соответствующее задаваемой долговечности (числу циклов до разрушения). Для металлов и сплавов, проявляющих физический предел выносливости, принята база испытаний Ю циклов, а для материалов, ординаты кривых усталости которых по всей длине непрерывно уменьшаются с ростом числа циклов, - 10 циклов (рис. 2). Первый тип кривой особенно характерен для ОЦК - металлов и сплавов, хотя может наблюдаться при определенных условиях у всех металлических материалов с любым типом кристаллической решетки, второй тип -преимущесгвеипо у П (К - металлов и сплавов (алюминиевые сплавы, медные сплавы и др.). N(11 и N( 2 на рис.2 обозначают базовые числа циклов нагружения. На рис. 3 представлены основные параметры цикла при несимметричном нагружении и возможные варианты циклов при испытаниях на усталость.  [c.7]

Рис. 49. Температурная зависимость предела выносливости 1 - сплав А1 - Си 2 - высокопрочный чугун 3 - сталь с 0,17С 4 - легированная сталь гNiMo Рис. 49. <a href="/info/191882">Температурная зависимость</a> <a href="/info/1473">предела выносливости</a> 1 - сплав А1 - Си 2 - <a href="/info/1842">высокопрочный чугун</a> 3 - сталь с 0,17С 4 - <a href="/info/294756">легированная сталь</a> гNiMo
Для большинства цветных металлов, а также для некоторых других материалов, как правило, не удается установить предела выносливости, поскольку при последовательном уменьшении максимального напряжения цикла и достаточном увеличении числа циклов удается доводить образец до усталостной поломки. В связи с этим для цветных металлов и многих сплавов вводится понятие уел о в ного предела выносливости, под которым понимается наибольшее напряжение цикла, выдерживаемое образцом из данного материала при базовом числе циклов Л/б = 10 10.  [c.195]


Смотреть страницы где упоминается термин Сплавы Предел выносливости : [c.29]    [c.148]    [c.128]    [c.383]    [c.329]    [c.330]    [c.69]    [c.70]    [c.71]    [c.71]    [c.86]    [c.404]    [c.112]    [c.195]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.462 , c.466 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.462 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.462 , c.466 ]



ПОИСК



60 — Расчет 53, 56 — Усилия расчетные конструкций из алюминиевых сплавов — Конструирование и расчет 63 66 — Пределы выносливости 64 Типы основные

Выносливости предел

Выносливость

Литейные сплавы — Предел выносливости — Влияние поверхностных покрытий

Магниевые сплавы — Коэфициент изменения пределов выносливости

Оси из магниевых сплавов — Предел, выносливости — Влияние обката роликом

Предел выносливости алюминиевых легких сплавов

Предел выносливости алюминиевых магниевых сплавов

Предел выносливости алюминиевых сплавов

Предел выносливости деталей из легких сплавов — Формулы

Предел выносливости стали — Зависимость от закалки сплава АМгб

Сплавы Оксидирование — Влияние на предел выносливости

Сплавы Предел выносливости — Влияние

Сплавы Предел выносливости — Влияние поверхностного наклепа

Сплавы Предел выносливости — Влияние поверхностных покрытий

Сплавы алюминиевомедномагниевые Коэфициент алюминиевые — Коэфициент изменения пределов выносливости 369 Механическая прочность — Характеристика

Сплавы алюминиевомедномагниевые Коэфициент изменения пределов выносливости

Сплавы алюминиевые — Свойства цветные — Пределы выносливости (усталости)

Сплавы антифрикционные легкие — Коэффициент концентрации эффективный 3 — 462, 463 Коэффициент чувствительности 3 462, 463 — Предел выносливости



© 2025 Mash-xxl.info Реклама на сайте