Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электродинамический метод

Электродинамические методы возбуждения получают все большее распространение там, где требуется повышение частотного диапазона (до 10 ООО гц). Изменение сил соответствует питаемому току, однако величина их, определяемая из / = 10 ВЦ кГ, невелика. Чтобы увеличить силы, необходимо повышать тепловой режим вибратора со специаль-  [c.428]

Электродинамические методы нагружения и определения крутящих моментов представлены на рис. 17, кил. Динамическое сопротивление ротора электродвигателя, жестко связанного с измерительной поверхностью, определяет величину крутящего момента.  [c.45]


Электродинамический метод измерения напряженности поля основан иа пондеромоторном взаимодействии  [c.97]

Электродинамический метод использован в измерителе магнитной индукции ИМИ-1, предназначенном для определения напряженности поля (индукции) в воздушных зазорах постоянных магнитов и электромагнитов.  [c.98]

Рис. 4-16. Вставка для измерении напряженности поля электродинамическим методом. Рис. 4-16. Вставка для <a href="/info/123435">измерении напряженности</a> поля электродинамическим методом.
Таким образом, измерительные катушки индукции по существу оцределяют намагниченность образца. Намагниченность определяется баллистическим методом, а напряженность намагничивающего поля, как описано выше, электродинамическим методом с помощью специального осветителя н шкалы. Устройство намагничивающей катушки и вид вставки к ней показаны на рис. 4-17,а и б.  [c.168]

Прибор Германа (электродинамический метод)  [c.232]

Прибор для измерения магнитных характеристик электродинамическим методом описан в гл. 4. Этот прибор дает возможность определять также потери на единичных полосах листовой электротехнической стали.  [c.232]

Электродинамический метод измерений магнитных характеристик материалов для постоянных магнитов является более быстрым и сразу дает значения измеряе.мых величин (без предварительных расчетов), а потому он более удобен в случаях, когда йе требуется очень высокая точность измерений.  [c.312]

При отбраковке постоянных магнитов для магнитоэлектрических приборов широко применяется электродинамический метод.  [c.334]

Устройство для ориентирования в плоскости асимметричных пластинчатых заготовок с активным электродинамическим методом служит основой для автоматических загрузочных и контрольно-сортировочных установок. Для разделения заготовок используется разность электродинамических усилий по плоскостям, образующимся в результате взаимодействия электромагнитного поля с различной эквивалентной электрической проводимостью плоскостей. Преимуществом устройства является ориентирование заготовок в процессе свободного падения в зоне электромагнита с выраженным градиентом электромагнитного поля.  [c.681]

Индукционные печи имеют преимущества перед дуговыми в них отсутствует электрическая дуга, что позволяет выплавлять сталь с низким содержанием углерода, газов и малым угаром элементов при плавке в металле возникают электродинамические силы, которые перемешивают металл в печи и способствуют выравниванию химического состава, всплыванию неметаллических включений небольшие размеры печей позволяют помещать их в камеры, где можно создавать любую атмосферу или вакуум. Однако эти печи имеют малую стойкость футеровки, и температура шлака в них недостаточна для протекания металлургических процессов между металлом и шлаком. Эти преимущества и недостатки печей обусловливают возможности плавки в них в индукционных печах выплавляют сталь и сплавы из легированных отходов методом переплава или из чистого шихтового железа и скрапа с добавкой ферросплавов методом сплавления.  [c.40]


Для получения основных соотношений между свойствами, диссипацией и необратимостью, а также асимптотическими или равновесными состояниями используются методы термодинамики [724]. Другими сопутствующими проблемами являются свойства твердых частиц, электронные состояния и проводимость [510]. Явления, обусловленные присутствием электрических зарядов, и электродинамические процессы [378] наблюдаются во многих системах с накоплением заряда, эмиссией и при взаимодействии с поверхностью.  [c.17]

В середине XIX в. были также накоплены сведения об электро динамической постоянной, фигурирующей при переходе от электрических к магнитным единицам. Она имеет размерность скорости и по значению очень близка к скорости света в вакууме. Наилучшие измерения, проведенные электромагнитными методами, приводили к значению (299 770 30) 10 см/с. Имеются данные, что столь хорошее совпадение этих констант, казавшееся в те времена случайным, стимулировало исследования Максвелла по созданию единой теории распространения электромагнитных волн. После появления этой фундаментальной теории уже не могло быть сомнений в том, что скорость света в вакууме и электродинамическая постоянная — это одна и та же константа, а совпадение результатов измерений ее значения, выполненных различными методами, является доказательством универсальности теории Максвелла, справедливой для любых электромагнитных волн. Ниже будет охарактеризован современный способ прецизионного определения скорости света в вакууме.  [c.46]

Метод ЭГДА (метод электродинамических аналогий) разработан Н. Н, Павловским в 1918 г. Он наиболее широко применяется при изучении фильтрационных задач. Аналогия между движением электрического тока в однородном поле и потенциальным движением несжимаемой жидкости характеризуется данными, приведены в табл. 28.1.  [c.293]

Результаты и методы теории упругости не всегда достаточны для оценки прочности конструкций и для разрешения многих важных практических вопросов. На практике часто требуется уметь учитывать механические и тепловые свойства твердых тел, связанные с нелинейной упругостью, электродинамическими эффектами и с термодинамической необратимостью процессов деформирования, требуется рассматривать пластичность, ползучесть и релаксацию, усталость и т. д. Для учета и описания подобных явлений необходимо вводить другие теоретические модели сплошных сред.  [c.410]

Метод встречных пучков 155 центрифугирования 163 электродинамических аналогий 64 Метрополитен 131, 132, 134—136, 141 Механизация  [c.463]

Проблема усталости металлов может быть решена только в том случае, если будут разработаны достаточно надежные методы, позволяющие прогнозировать зарождение усталостной трещины, описать процесс ее развития и предсказать момент окончательного разрушения с учетом влияния основных конструктивных, технологических и эксплуатационных факторов. В большинстве выполненных исследований многоцикловой усталости металлов в качестве критерия разрушения принималось полное разрушение образца, что характерно для установок с прямым механическим нагружением, пли возникновение трещины определенных размеров, что характерно для электромагнитных и электродинамических и других установок, когда испытания проводятся в резонансном режиме.  [c.3]

Усталостные испытания лопаток ротора компрессора после различных методов и режимов деформационного упрочнения производили на электродинамическом вибростенде.  [c.207]

В начале 50-х годов было проведено рассмотрение обш,их положений, определяющих функциональное назначение и физические принципы построения различных элементов автоматики и телемеханики. С этими работами тесно связаны вопросы классификации элементов и устройств. Первой из групп электрических элементов, по которым был проведен широкий круг исследований, являются электромеханические элементы реле, муфты, преобразователи и т. п. Широкое применение получили в 40—50-х годах методы расчета и проектирования магнитных систем постоянного и переменного тока, электромагнитных нейтральных и поляризованных реле и преобразователей, электродинамических, индукционных и электромагнитных порошковых муфт, элементов для управления потоками газа или жидкости, индуктивных датчиков ИТ. п.  [c.246]


Во второй половине 40-х годов в Советском Союзе начинаются широкие теоретические и экспериментальные работы по развитию методов моделирования в автоматике. В конце 40-х годов были проведены работы по применению и развитию методов физического и математического моделирования. Для моделирования процессов в крупных объединенных энергосистемах и их основных элементах (генераторах, первичных двигателях, линиях электропередач и др.) была разработана теория и принципы построения специальных электродинамических моделей.  [c.251]

В Институте машиноведения АН СССР разработана система экспериментальных средств для определения характеристик сопротивления деформированию и разрушению конструкционных материалов. Здесь были созданы [16] получившие широкое распространение испытательные машины и стенды с механическим, электромагнитным и электродинамическим возбуждением, применение которых способствовало развитию вероятностных методов расчетов деталей машин на усталость с распространением их на области больших долговечностей и высоких температур.  [c.130]

Электродинамический метод [32]. В основу метода положен эффект взаимодействия магнитного поля и рамки с током. Если катушку с W витками и площадью S подвесить в однородном магнитном поле, то при пропускании тока I катушка повернется на некоторый угол 0. В момент равновесия К (в—ф) miipoTAS sin ф, где К — константа упругости нити ф — угол между нормалью к плоскости катушки и направлением поля (9—ф) — угол закручивания нити.  [c.308]

Электродинамический метод не получил широкого распространения в Советском Союзе, так как пермеаметры электродикамического типа у нас пока не выпускаются.  [c.297]

Электродинамическим методом можно определить основную кривую индукции и петлю гистерезиса. Измеряется угол поворота рамки с током, находящейся в поле намагаи-ченного образца.  [c.47]

Иногда для измерения хар-к магн. поля, в частности в пром. условиях, применяется электродинамический метод, при к-ром измеряется угол поворота рамки с током, находящейся в магн. поле намагниченного образца. Преимущество метода — возможность градупрования шкалы прибора непосредственно в ед. измеряемой величины — в теслах (для В) или в А/м (для Я).  [c.373]

Испытательное оборудование и аппаратура. Усталостные испытания жаропрочных материалов и исследование влияния качества поверхностного слоя на выносливость деталей в условиях, приближающихся к эксплуатационным, проводили в лаборатории вибропрочности МАИ на машинах с электрическими методами возбуждения переменных нагрузок. Эти машины по типу преобразователя электрической энергии в энергию механических колебаний подразделяются на машины с электродинамической и магнйто-стрикционной системой возбуждения.  [c.173]

Для суждения о возможных погрешностях данного метода он был использован при расчете экспериментальной модели, выточенной из стальной заготовки, состоящей из цилиндрической обечайки (Д = 150 мм, /1=2,1, / = 159 мм), к которой приварено дно в виде кольцевой пластины (Ь =2 мм), зажатой на плите по радиусу Го=60 мм. Свободный край оболочки возбуждался с помощью электродинамического вибратора радиальной нагрузкой. На противоположном конце этого диаметра был установлен пьезоакселерометр, измеряющий радиальные колебания оболочки. Результаты измерений фиксировались самописцем. На рис. 4 против резонансных пиков указано число волн по окружности, определенное с помощью пьезоакселерометров, которыми измеряли радиальную составляющую ускорения вдоль окружности. Форма резонансных колебаний определялась также датчиками, расположенными вдоль образующей цилиндра.  [c.130]

Механические испытания в указанных направлениях были осуществлены с широким использованием средств измерения местных упругих и упругопластических деформаций (малобазной тензометрии, муара, сетки, оптически активных покрытий, голографии, интерферометрии) автоматизированных установок с управлением от ЭВМ и от программных регуляторов, имеющих электрогидравлический, электромеханический и электродинамический приводы систем измерения процессов повреждения и развития трещин (оптической микроскопии, метода электропотенциалов и электросопротивлений, датчиков последовательного разрыва, датчиков накопления повреждений, акустической эмиссии, анализа жесткости объекта нагружения) комбинированных (расчетно-эксперименталь-ных) методов и средств изучения напряженно-деформированных состояний и прочности для обоснования программ испытаний и анализа их результатов систем для проведения стендовых испытаний моделей и реальных конструкций, включающих указанные выше средства измерения и регистрации деформаций, накопленных повреждений и длин трещин (сосудов давления, трубопроводов, дисков и лопаток турбин, валов, элементов энергетических и транспортных установок, сварных конструкций).  [c.19]

Больших А. С. Электродинамический возбудитель колебаний. — В кн. Методы и средства испытаний изделий. Метрологическое обеспечение испытаний. МДНТП, 1980, с. 1S —24.  [c.277]

Пьезоэлектрические, электродинамические и индукционные про-филометры градуироваться этим методом не могут, ни по критерию Нср, ни по критериям Нс или Нса-  [c.238]

В этом эксперименте кольцевая изгибная жесткость определялась динамическим методом, суть которого состоит в определении собственной частоты колебаний исследуемой системы и пересчете найденной частоты в жесткость. Оболочка устанавливалась в горизонтальном положении на столе электродинамического вибратора ВЭДС-400, оболочка закреплялась между двумя призмами (рис. 2). Собственная частота колебаний такой системы определялась как частота резонанса, соответствующего эллиптической деформации поперечного сечения оболочки. Расчет низших собственных частот производился по формуле  [c.215]


Во всех этих аппаратах и конструкциях используются способы возбуждения колебаний самой различной физической природы. Наиболее распространенными являются механические способы, электромагнитные и электродинамические, которые здесь вкратце будут охарактеризованы. Кроме них, используются также методы асинхронных возвратно-поступательных и колеблющихся поворотных двигателей, методы вращающихся магнитных полей, фотоэлектрические, электростатические, пьезоэлектрические, маг-нитострикционные эффекты, гидравлические, пневматические пульсаторы и даже испарение твердой углекислоты. Все эти методы освещены в специальной 21, [41, [5], [111, 46], [47].  [c.425]

Колебат. механич. системами Э. п. могут быть стержни, пластинки, оболочки разл. формы (полые цилиндры, сферы, совершающие разл. вида колебания), механич. системы более сложной конфигурации. Колебат. скорости и деформации, возникающие в системе под воздействием сил, распределённых по её объёму, могут, в свою очередь, иметь достаточно сложное распределение. В ряде случаев, однако, в механич. систем можно указать элементы, колебания к-рых с достаточным приближением характеризуются только кинетич, и потенц. энергиями и энергией механич. потерь. Эти элементы имеют характер соответственно массы М, упругости I / С и активного механич. сопротивления г (т.н. системы с сосредоточенными параметрами). Часто реальную систему удаётся искусственно свести к эквивалентной ей (в смысле баланса энергий) системе с сосредоточенными пара.меграми, определив т. н. эквивалентные массу Л/, , упругость 1 / С , и сопротивление трению / . Расчёт механич. систем с сосредоточенными параметрами может быть произведён методом электромеханич. аналогий. В большинстве случаев при электромеханич. преобразовании преобладает преобразование в механич, энергию энергии либо электрического, либо магн. полей (и обратно), соответственно чему обратимые Э.п. могут быть разбиты на след, группы электродинамические преобразователи, действие к-рых основано на электродинамич. эффекте (излучатели) и эл.-магн. индукции (приёмники), напр, громкоговоритель, микрофон электростатические преобразователи, действие к-рых основано на изменении силы притяжения обкладок конденсатора при изменении напряжения на нём и на изменении заряда или напряжения при относит, перемещении обкладок конденсатора (громкоговорители, микрофоны) пьезоэлектрические преобразователи, основанные на прямом и обратном пьезоэффекте (см. Пьезоэлектрики) электромагнитные преобразователи, основанные на колебаниях ферромагн. сердечника в перем. магн. поле и изменении магн. потока при движении сердечника  [c.516]

На рис. ] изображена одна из типичных схем вибрационных испытательных установок с применением электродинамического вибросгенда. Установка предназначена для испытаний изделий на гармоническую вибрацию. При этом в состав задающего генератора 1 входят блок качания частоты и автоматический регулятор уровня амплитуды ускорения или перемещения. Метод качающейся частоты широко применяют для испытаний изделий на виброустойчивость, а также для определения резонансных частот изделий.  [c.432]


Смотреть страницы где упоминается термин Электродинамический метод : [c.379]    [c.166]    [c.168]    [c.520]    [c.171]    [c.197]    [c.443]    [c.372]    [c.334]    [c.236]   
Смотреть главы в:

Испытания ферромагнитных материалов Издание 3  -> Электродинамический метод



ПОИСК



Метод «встречных пучков электродинамических аналогий

Напряженность магнитного поля, методы измерения электродинамический

Установка с измерением напряженности намагничивающего поля электродинамическим методом (аппарат Германа)



© 2025 Mash-xxl.info Реклама на сайте