Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шлифовальные Точность

В процессе шлифования режущие свойства кругов изменяются абразивные зерна изнашиваются, затупляются, частично раскалываются, поры между зернами заполняются шлифовальными отходами. Возрастает сила резания. Поверхность круга вследствие неравномерного износа теряет свою первоначальную форму, и точность обработки снижается.  [c.364]

При этом способе трудно обеспечить высокую точность детали, поэтому он применяется в основном для предварительного шлифования. Бесцентрово-шлифовальные станки обладают рядом преимуществ перед обыкновенными круглошлифовальными станками  [c.196]


Тарельчатые круги шлифуют зубья узкой полоской в 2—3 мм, поэтому давление и нагрев незначительны, что повышает точность шлифования. Для предотвращения погрешностей, связанных с изнашиванием шлифовальных кругов, станки снабжаются специальными приспособлениями для автоматической регулировки их.  [c.329]

При скоростях шлифовального круга о = 35 м/с рекомендуется выбирать подачи в зависимости от требований, предъявляемых к точности и шероховатости поверхности при шлифовании, я учитывать механические свойства обрабатываемого материала, конфигурацию детали и характеристику применяемого круга.  [c.165]

Шлифование валов производят на круглошлифовальных и бесцентрово-шлифовальных станках соответственно 6-му квалитету. Шлифуют в две операции (два перехода). При обработке валов на круглошлифовальных станках технологической базой являются центровые отверстия на торцах заготовки. От качества центровых отверстий зависит точность обработки, поэ-  [c.174]

В тех случаях, когда необходимо достигнуть точности размеров, соответствующей 5-му или 6-му квалитетам и шероховатости поверхности Ra = 0,1 мкм и меньше, после чистовой шлифовальной операции шейки вала притирают.  [c.175]

Валы можно обрабатывать и измерять универсальным инструментом — резцами, Шлифовальными кругами, микрометрами и т. д. Для обработки и измерения точных отверстий применяют специальный дорогостоящий инструмент (зенкеры, развертки, протяжки, калибры-пробки). Число комплектов такого инструмента, необходимого для обработки отверстий и имеющего одинаковые номинальные размеры, зависит от разнообразия предельных отклонений, которые могут быть назначены. Допустим, требуется изготовить три комплекта деталей одинаковых номинальных размеров и одинаковой точности для получения посадок с зазором, с натягом и переходной. В системе отверстии предельные размеры отверстия будут одинаковы для всех трех посадок (см. рис. 4.10, б), и потребуется только один комплект специального инструмента. В системе вала предельные размеры отверстий для каждой посадки различны (см. рис. 4.10, в), и для обработки отверстий потребуется три комплекта специального инструмента.  [c.51]

Беговые дорожки на деталях выполняют по 1-му классу точности. Твердость рабочих поверхностей > НКС 58, параметры шероховатости обработанных поверхностей Ка = 0,02 -ь 0,08 мкм. На углубленных беговых дорожках следует предусматривать канавки для выхода шлифовального круга.  [c.501]


Точность бесцентрового шлифования (погрешность диаметра и конусообразность) зависит от относительных положений опорного ножа, ведущего и шлифовального кругов. В процессе эксплуатации их положение меняется из-за температурных и упругих деформаций и износа. Кроме того, засаливание кругов вызывает увеличение вибраций и дестабилизирует положение детали в зоне обработки. Информация о состоянии рабочих органов, регистрируемая соответствующими датчиками, через аналого-цифровой преобразователь передается в вычислительное устройство. Например, для измерения линейных размеров используется дифференциальный индуктивный датчик, который обеспечивает измерение с точностью до I мкм. Вычислительное устройство производит анализ поступившей информации, рассчитывает параметры точности обработки, сравнивает их с заданным полем допуска, оценивает возможность проведения подналадки, выбирает необходимый механизм подналадки и рассчитывает для него величину подналадочного импульса и его направление.  [c.465]

Средних размеров повышенной точности, в том числе шлифовальные 9  [c.95]

III-IV Непараллельность Основные поверхности токарных автоматов и фрезерных станков высокой точности, токарных, шлифовальных и расточных станков повышенной точности. Особо точные направляющие приборов управления и регулирования Доводка, шлифование, шабрение  [c.124]

Интерес представляет и обратная проектная задача — определение возможности путем совершенствования токарной обработки и повышения точности формообразования (использование оборудования с повышенной жесткостью и геометрической точностью, занижение технологических режимов и др.) сокращение числа шлифовальных станков, ограничиваясь, топ например, только двукратным  [c.181]

Как видно, даже если токарная обработка обеспечит идеальную стабильность размеров колец (соо = 0), погрешности вследствие термообработки в сочетании с погрешностями собственно шлифовальных операций таковы, что после двукратного шлифования рассеяние размеров не может быть менее 21,2 мкм. Это значительно больше допуска на размеры готовых изделий. Следовательно, независимо от характеристик токарной обработки, двукратного шлифования для получения заданной точности недостаточно оптимальным является трехкратное шлифование.  [c.182]

Чистовое шлифование по внешнему диаметру производится в приспособлении, в котором одновременно крепятся два сегмента. Базой для крепления сегментов служат шлифованные под углом 120° концы сегментов. С торца сегменты поджимаются планкой, качество обработки сегментов в большой степени зависит от того, с какой точностью выполнены базовые углы и насколько точно совпадают их вершины в приспособлении. Сегменты желательно шлифовать на координатно-расточном станке. Однако, если нет координатно-расточного станка,, обработку сегментов можно вести на шлифовальном или токарном станке.  [c.113]

Цельный Колебательное (вращающийся вал или случай комбинированного вращения) Наружное кольцо не перемещается в осевом направлении Нагрузки переменные по величине и направлению, высокая точность хода (Р < 0,15С) Кб Н6 К5 М5 J,6 J,5 Роликоподшипники цилиндрические для шпинделей станков Шарикоподшипники для шлифовальных шпинделей и малых электромоторов  [c.238]

На срок службы машины большое влияние оказывает точность и чистота механической обработки ее деталей их повышение снижает динамические нагрузки, приближает условия работы деталей к оптимальным. Повышения точности механической обработки, расширения шлифовальных операций потребовало и широкое применение термической обработки.  [c.237]

Расчленение заготовки станины шлифовального станка, изготовляемого на одном из отечественных заводов (фиг. 430, а), на две заготовки согласно фиг. 430, б дало возможность перевести расчлененные заготовки на машинную формовку и привело к повышению точности обработки и снижению себестоимости изготовления.  [c.492]

Деталь, изображенная на схеме в фиг. 598, может служить иллюстрацией этого здесь размеры до поверхностей, изготовляемых токарной обработкой, заданы от шлифовальных торцов Л и В зубчатого колеса. Но поскольку шлифование поверхностей производится, как правило, после токарной обработки всей детали, то и здесь заданные на чертеже размеры не могут быть непосредственно выдержаны. Так как к деталям подобного типа предъявляют более строгие требования, чем это имело место в предыдущих примерах, то здесь технолог, стремясь выдержать заданные на чертеже допуски, вынужден был установить на токарную обработку специальные технологические размеры, точность которых превышает первоначальные допуски размеров в 2—3 раза.  [c.588]


Большое влияние на качество сварных соединений и экономичность процесса сварки оказывают чистота кромок и прилегающей к ним поверхности основного металла, точность подготовки кромок и сборки под сварку. Заготовки для свариваемых деталей следует изготовлять из предварительно выправленного и зачищенного металла. Вырезку деталей и подготовку кромок осуществляют механической обработкой (на пресс-ножницах, кромкострогаль-пых и фрезерных станках), газокислородной и плазменной резкой и др. После применения тепловых способов резки кромки зачищают от грата, окалины и т. и. (шлифовальными кругами, металлическими щетками и др.).  [c.15]

Подачами являются перемеш,ения заготовки или инструмента вдоль или вокруг координатных осей. Выражения и размерности подач определяются схемами шлифования. Глубина резания t (мм) определяется толщиной слоя материала, срезаемого за один проход. Оптимальные режимы резания выбирают по справочным данным. Для расчета элементов ишифовальных станков, конструирования приспособлений для работы на них и оценки точности обработки необходимо знать силы резания. Силу резания Р, возникающую при шлифовании в зоне контакта круга и заготовки, для удобства расчетов разлагают по координатным осям на три составляющие (рис. 6.92) тангенциальную Р , радиальную Ру и осевую Р . Составляющую Ру используют в расчетах точности обработки, Р — необходима для проектирования механизмов подач шлифовальных станков, Р используют для определения мощности электродвигателя шлифовального круга.  [c.361]

Внутреннее шлифование применяют для получения ВЫСОКО точности отверстий )га заготовках, как правило, прошедших термическую обработку. Возможно шлифование сквозных, несквозных (глухих), конических и фасонных отверстий. Диаметр шлифовального круга составляет 0,7—0,9 диаметра о1лифуемого отверстия. Кругу сообнгают высокую частоту вращения она тем выше, чем меньше диаметр круга.  [c.367]

Степеней точности 5-й и 6-й зубча-Т1ЛХ венцов достигают шлифованием. Для выхода шлифовального круга требуется широкая канавка и, следовательно, большие осевые размеры блоков зубчатых колес. Чтобы уменьшить эти размеры, блоки изготовляют составными с применением шпоночного соединения (рис. 5.9, а).  [c.48]

При шлифовании зубьев по методу копирования в случае зубчатых колес с большим числом зубьев имеет местй значительный износ шлифовального круга если зубья шлифуются последовательно, то между первым и последним зубьями будет получаться наибольшая ошибка для предотвращения этого рекомендуется повертывать зубчатое колесо не на один зуб, а на несколько тогда влияние изнашивания шлифовального круга не будет давать большой ошибки между соседними зубьями. Достигаемая этим методом точность 0,010—0,015 мм.  [c.328]

Отклонение геометрической формы опорных шеек по овальности и конусности для станков нормальной точности обычно не должно превышать 50% допуска на диаметральные размеры шеек. Для станков повышенной точности эта величина не превьшаает 25%, а для прецизионных лежит в пределах 5—10% от допуска на диаметр шеек. Шпиндели современных прецизионных шлифовальных станков имеют овальность не выше 0,3—0,5 мкм, конусность не выше 0,25—0,5 мкм на длине 300 мм при допуске на диаметр шейки 1,5—3 мкм.  [c.369]

Исследования показали, что работоспособность червячной передачи повышается с уменьшением шероховатости поверхности и повышением твердости резьбы червяка (см. ниже). В последнее время все шире стали применять шлифованные высокотвердые червяки при HR 45. Для шлифования архимедовых червяков требуются специальные шлифовальные круги фасонного профиля, что затрудняет обработку и снижает точность изготовления. Поэтому архимедовы червяки изготовляют в основном с нешлифованными витками при НВ ЗбО. Для высокотвердых шлифуемых витков применяют эвольвентные червяки.  [c.173]

Схема бесцентрового шлифования показана на рис. 12.4, в. Заготовка располагается выше осевой линии шлифовальных кругов на размер Л. Подача 5 заготовки 2 вдоль оси осуществляется путем поворота ведущего круга 4 на угол а, который составляет 1—4,5 . Благодаря этому наклону ведущий круг сооб1цает заготовке посредством силы трения движение подачи. Бесцентровое шлифование выполняют с продольной подачей, как показано на рис. 12.4, в, и с поперечной подачей (врезанием) Нели вал гладкий, то применяют ишифование с продольной подачей на проход если же ступенчатый — шлифуют с продольной подачей до упора. Врезным бесцентровым шлифованием обрабатывают короткие буртики. Бесцентровое шлифование применяют при обработке небольших валов, при этом обеспечивается точность по 6—8-му квалитетам. Этот метод по точности несколько уступает шлифованию на круглошлифовальных станках.  [c.175]

Канавку для выхода шлифовального круга, которая существенно повышает концентрацию напряже1ий, следует заменить галтелью, по возможности увеличивая радиус сопряжения. Шлицевое соединение, особенно эвольвентное, меньше снижает выносливость вала, чем шпоночное. Упрочнение носа ,очной поверхности вала обкаткой роликами или шариками може повысить предел выносливости вала на 80... 100 %. Существует рзд других конструктивных и технологических приемов по повышенрю выносливости валов. Выходные концы валов редукторов выполняют цилиндрическими и коническими. Посадка на конус обеспечивает легкость сборки и разборки, точность базирования, надежность крепления.  [c.62]

Если размер ролика отличается от размеров инструмента фрезы или шлифовального круга, то рассчитывают координаты т е X и о л о г и ч е с к о г о профиля, определяющего положение оси инструмента, необходимое для настройки станка, например с числовым программным управлением. Для контроля точности профиля рассчитывают координаты измерительного профиля, соответствующего размерам индентора измерительной MaujHHbi.  [c.463]


Запас точности (работоспособности) целесообразно характеризовать коэффициентом запаса точности К-,-, равным отношению допускаемой погрешности детали, соединения или машины в конце срока их эксплуатации к погрешности новой детали, составных частей или машииы. Так, если радиальное биение шпинделя нового шлифовального станка равно 0,005 мм, а допускаемое биение в конце срока эксплуатации (до ремонта) станка данного класса точности составляет 0,01 мм, то = 0,01/0,005 = 2.  [c.27]

Нарезание червяков и червячных колес. Архимедовы червяки подобны ходовым винтам с трапецеидальной резьбой. Их нарезают на токарно-винторезных пли резьбофрезерных станках. Шероховатость поверхности витков червяка оказывает существенное влияние на работоспособность передачи. Поэтому червяки после нарезания и термообработки шлифуют, а иногда полируют. Однако для шлифования архимедовых червяков требуются специальные шлифовальные круги фасонного профиля, что затрудняет обработку и снижает точность изготовления, поэтому их применяют и без шлифовки витков. Эвольвентные червяки можно шлифовать на специальных червячно-шлифовальных станках, что повышает точность изготовления, обеспечивает более полный контакт витков червяка с зубьями колеса, более высокую нагрузочную способность передачи, поэтому эвольвентные червяки более перспективны.  [c.379]

Чтобы получить высокую точность и малую шероховатость поверхностей, зубья после нарезания подвергаются доводочным операциям — шлифованию, и шевингованию. Шлифование применяется для обработки закаленных зубьев н выполняется шлифовальными кругами, расположенными под таким же углом, как и профиль рейки. Шевингование применяют для тонкой обработки незакаленных колес. Его произ10дят специальным инструментом — шеьером, имеющим форму зубчатого колеса с узкими канавками на поверхности зубьев. Вращаясь в зацеплении с обрабатываемым колесом, шевер режущими кромками канавок снимает тонкие стружки. В обоих случаях поверхность зубьев обрабатывается методом обкатки.  [c.190]

Подача s и глубина резания А определяются аналогично точению, только при строгании подача s имеет размерность мм/дв. ход (дн. ход - двойной ход резца или заготовки), а при сверлении (зен-керовании, развертывании) и фрезеровании также рассматривается подача на режущую кромку (зуб) режущего инструмента s , которая определяется уравнением = s/г, где г — количество режущих кромок (зубьев) инструмента. При фрезеровании рассматривается также минутная подача s, которая численно оценивается значением перемещения фрезы относительно заготовки за минуту и имеет размерность мм/мин. При шлифовании подача s (мм/об) определяется в долях ширины [илифовальиого круга В s кВ, где В — ширина шлифовального круга, мм, а ft — коэффициент, принимаемый в зависимости от точности обработки 0,2—0,8.  [c.68]

Типичным Примером машин, эксплуатируемых по данной схеме, могут служить шлифовальные станки-автоматы, применяемые в массовом и крупносерийном производстве, например бесцентровые внутришлифовальные станки-автоматы, предназначенные для окончательной обработки колец конических роликоподшипников (рис. 52) [193]. Основными выходными параметрами, характе-ризуюш ими их точность, являются погрешности обработки внутреннего диаметра Xi = Ad шлифуемого на станке кольца, половины угла конуса Xg = Аа, неперпендикулярности оси шлифуемого отверстия к базовому торцу Хд = АН и шероховатость поверхности, которая может оцениваться средним арифметическим отклонением профиля Х4 = Работа станка продолжается до тех пор, пока любой из указанных параметров не выйдет за границы установленного для него поля допуска.  [c.162]

В зависимости от способа нарезания по форме профиля в торцовом сечении можно получить эвольвентные (ZI) и архимедовы ZA) червяки. Архимедов червяк подобен ходовому винту с трапецеидальной резьбой, его можно нарезать на обычных токарных или резьбофрезерных станках. Однако шлифование его витков затруднено, что снижает точность изготовления и нагрузочную способность червячной передачи. Эвольвентные червяки можно шлифовать, что повышает точность изготовления, обеспечивает более полный контакт витков червяка с зубьями колеса, более высокую нагрузочную способность передачи. Но для изготовления эвольвентных червяков требуются специальные шлифовальные станки.  [c.304]

III-IV Неперпендикулярность, торцовое биение Основные поверхности токарных и шлифовальных станков нормальной и повышенной точности, токарных автоматов и полуавтоматов, фрезерных станков высокой точности. Заплечики валов под подшипники качения класса С Доводка, шлнфова-нпе, шабрение повышенной точности  [c.125]

Работами ЭНИМСа, Укроргстанкинпрома, Вильнюсского завода шлифовальных станков и Минского станкозавода им. Кирова определена возможность изготовления из стеклопластиков крупногабаритных деталей металлорежущих станков. Четырехлетняя эксплуатация в цеховых условиях завода Станкоконструкция двух токарно-винторезных станков модели IK62, у которых методом контактного формования из стеклопластиков были изготовлены передняя и задняя ножки, крышки коробок скоростей и подач и другие крупногабаритные детали, показала, что замена металла пластмассой не нарушила точности станка.  [c.220]

Однако сопоставлять эту величину с некоторой максимально допустимой для данной операции Мдои, рассчитанной однажды (например, в предыдущем случае бток == ток max = 310 мкм), неправомерно. В процессе эксплуатации изменяются выходные характеристики оборудования по всему технологическому маршруту, в,,том числе оборудования для завершающих операций (растачивание, шлифование и т. д.). Чем более изношено шлифовальное оборудование, тем меньше должен быть (для сохранения заданной точности) диапазон рассеяния размеров заготовок на предшествующих операциях. Поэтому оценка и прогнозирование технологической надежности автоматизированных систем машин — задача многофакторная, требующая комплексной оценки характеристик оборудования и технологических процессов по всему технологическому машруту.  [c.180]

Характеристики шлифовальных станков, работающих на проход , одинаковы и составляют o i = W 2 = = 15 мкм, = Лз = = 0,08. Требуемая точность готовых колец б = сОдоп = 17,5 мкм. Необходимо определить, сколько поставить единиц шлифовального оборудования, чтобы получить заданную точность готовых колец.  [c.181]

Этап I — выбор объектов наблюдений. В сложных многопоточных и многоучастковых автоматических линиях охват исследованиями всего комплекса нецелесообразен исследуются, как правило, лишь выпускные или лимитирующие по производительности и надежности участки. В линиях из агрегатных станков, где производительность участков-секций, как правило, идентична, в качестве объектов для наблюдений выбирают выпускные участки. На данном этапе можно использовать следующую методику. Для каждого из станков или участков наблюдения производят измерения только фактической длительности рабочего цикла Tj и размеров обрабатываемых деталей при ограниченной выборке (не более 100 шт.). На основе обработки результатов рассчитывают укрупненные характеристики собственной производительности Qy, = (pilTt) г]тех и точности обработки, которые и сравнивают с допустимыми значениями. При этом величины 1Г)тех можно принимать априорно для токарного оборудования 0,80—0,85, для шлифовального 0,85—0,90. Участки, где соотношения между Q и Qtp, Sj и бдод являются наименьшими, выбирают объектами наблюдения.  [c.195]


Посадки типа H/js применяются в легкоразъемных неподвижных центрирующих соединениях, подвергающихся частой разборке. Как правило, они применяются в сочетаниях полей допусков, в которых точность вала на один квалитет выше, чем отверстия H8/js7, H7/js6, H6/js5, H5/js4. Последние две посадки трудно достижимы технологически и применяются для особо точных центрирующих соединений в ответственных узлах точных приборов и машин. Указанные посадки имеют вероятность зазора в пределах 92—99 % [37]. Посадка H7/js6 — предпочтительная. Она используется в сменных зубчатых колесах на валах, в съемных шкивах и муфтах на концах валов малых электромашин, в шпиндельных головках шлифовальных станков и т. д. Посадка H8/js7 применяется при снижении требований к точности центрирования.  [c.75]


Смотреть страницы где упоминается термин Шлифовальные Точность : [c.564]    [c.15]    [c.222]    [c.154]    [c.390]    [c.168]    [c.232]    [c.90]    [c.242]    [c.182]   
Справочник металлиста Том 3 Изд.2 (1966) -- [ c.640 , c.641 ]



ПОИСК



В продольно-шлифовальных станков класса точности

Приспособления для контрольные, сверлильные, строгальные, токарные и шлифовальные Точность при сборке УСП

Шлифовально-притирочно-заточныр станки — Нормы точности — ГОСТы

Шлифовальные круги - Классы неуравновешенности 582 Классы точности 582 - Правка рабочей поверхности 236 Рабочая скорость 583 - Режимы затачивания лезвийного

Шлифовальные круги - Классы неуравновешенности 582 Классы точности 582 - Правка рабочей поверхности 236 Рабочая скорость 583 - Режимы затачивания лезвийного инструмента

Шлифовальные станки — Нормы жесткости и точности — ГОСТы 7, 8 — Технические характеристики

Шлифовальные станки — Нормы точности — Стандарты

Шлифовальные станки — Нормы точности — Стандарты шлифования

Электроэрозионная обработка - Для плавки шлифовальных кругов 568 - Инструмент 274 - Качество поверхности 270 Оборудование и инструмент 271 - Точность 267 - Этапы



© 2025 Mash-xxl.info Реклама на сайте