Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения в элементах конструкций при динамических нагрузках

НАПРЯЖЕНИЯ В ЭЛЕМЕНТАХ КОНСТРУКЦИЙ ПРИ ДИНАМИЧЕСКИХ НАГРУЗКАХ  [c.92]

Допускаемый коэффициент неравномерности движения. В задании на проект коэффициенты 8 неравномерности движения механизма заданы с учетом особенностей рабочего процесса машины. Диапазон изменения угловой скорости ротора двигателя определяется его механической характеристикой. Двигатель при работе не должен переходить в генераторный режим, так как при этом он будет оказывать тормозящее воздействие на механизм, что сопровождается изменением направления сил в кинематических парах. При наличии зазоров между элементами кинематических пар это сопровождается ударами, повышенным износом деталей, динамическим напряжением в элементах конструкции. При номинальной нагрузке условие работы асинхронного электродвигателя в двигательном режиме определяется соотношением где  [c.170]


ЭШ-50/125. В процессе исследования выявлялись сложность монтажа и настройки напряжения в элементах конструкции вертикальные прогибы отклонения угла подъемных канатов распределение динамических нагрузок по элементам стрелы напряжения и усилия при растяжке и мгновенном снятии нагрузки скорости двигателей подъема и поворота токи в задающих обмотках двигателей подъема и поворота усилия в канатах подъема и тяги отклонение ковша в плоскости симметрии стрелы при поворотах прогибы головы стрелы в вертикальной плоскости при подъеме груза.  [c.153]

С инженерной точки зрения при расчете и конструировании элементов конструкций с несколькими отверстиями необходимо иметь в виду, что при динамических нагрузках концентрация напряжений не изменяется монотонно при сближении отверстий, как это имеет место в статике, а определяется более сложной зависимостью. Концентрация напряжений может даже уменьшаться при сближении отверстий. Поэтому при таких расчетах необходимо заранее учитывать возможные диапазоны частот, в которых будет работать конструкция.  [c.155]

Наполнитель служит для поглощения ударов, толчков и вибрации. Конструкции из таких материалов (например, транспортные емкости и емкости, снабженные перемешивающими устройствами) способны выдерживать высокие динамические нагрузки. Слой вспененного материала обладает хорошими изолирующими свойствами, что позволяет изготовлять изотермические емкости. Благодаря значительному повышению жесткости формы можно, например, значительно увеличить емкость резервуаров, выполненных из слоистых материалов с наполнителем. Если жидкость создает высокое давление на слои покрытия (например, в данных элементах крупных резервуаров и цистернах), то в качестве наполнителя используют ячеистый картон, пропитанный фенольными смолами. Если при этом требуется также изолирующий эффект, то пустоты этого картона заполняют жестким вспененным полиуретаном. Иэ экономических соображений слоистый материал с наполнителем применяют лишь в элементах конструкции, подверженных высоким нагрузкам. В прочих случаях пригодные простые слоистые конструкции. Для устранения концентраторов напряжения следует добиваться плавных переходов в местах изменения формы. Для работы с такими слоистыми материалами рабочий должен пройти испытания на класс Ш на допуск к работе с клеевыми и литьевыми смолами и связующими слоистых пластиков по TGL N 2847/06.  [c.115]

Как уже известно, статической называется нагрузка, которая весьма медленно возрастает от пуля до своего конечного значения. Ускорения частиц элементов конструкции от такой нагрузки невелики, а потому можно пренебречь возникающими при этом силами инерции. При быстро возрастающей нагрузке необходимо учитывать силы инерции, появляющиеся в результате деформации системы силы инерции необходимо учитывать также при действии нагрузки, вызывающей движение тела с некоторым ускорением. Такие нагрузки, а также вызванные ими напряжения и деформации называются динамическими. К динамическим также относятся ударные нагрузки, хотя при расчете на удар в ряде случаев пренебрегают силами инерции, возникающими в конструкции.  [c.507]


Динамические нагрузки и вызываемые ими напряжения, действующие в элементах конструкций, которые работают в потоках жидкости, имеют различную природу. В нормальных условиях эксплуатации на поверхность элементов конструкций действуют случайные пульсации давления, порождаемые турбулентным потоком и срывными явлениями. В частотном спектре пульсаций давления могут присутствовать и ярко выраженные дискретные составляющие, обусловленные работой насосов [4] и акустическими эффектами в движущемся теплоносителе. Известную опасность могут представлять и температурные пульсации. Для ряда конструктивных элементов при некотором сочетании определяющих параметров могут возникать автоколебательные режимы и параметрические резонансы. Имеют место также ударные взаимодействия элементов между собой.  [c.149]

Автор работы, [119] расширил анализ простых ударных испытаний, выявив влияние предварительных напряжений в композиционных материалах на их работу разрушения. Он показал, что при таких динамических условиях локальный удар вызывает образование бегущей трещины, которая затем развивается под действием предварительно приложенного напряжения и многие композиционные материалы на основе углеродных волокон при этом обладают значительно меньшей энергией разрушения по сравнению с испытаниями при нормальном ударе. Эти факты имеют очень большое значение при конструировании изделий из композиционных материалов, так как в большинстве случаев ударные нагрузки приходятся на элементы конструкций, подвергнутые предварительной нагрузке, как, например, в случае лопастей турбовентиляторных двигателей.  [c.126]

В процессе учебы и дальнейшего приобретения опыта инженер знакомится с определенными фактами и так называемыми эмпирическими правилами , которые он применяет в процессе проектирования автоматически. И хотя эти общие принципы иногда применяются неосознанно, они являются общепринятым методом оптимизации. Например, чем больше поршней в двигателе, тем легче достигается динамическое равновесие элементы фермы или конструкции геометрически располагаются таким образом, чтобы нагрузка распределялась равномерно следует устранять острые УГ.ЛЫ, выемки и закругления малого радиуса на напряженных деталях, поскольку они приводят к концентрации напряжения нельзя запускать электродвигатель при полной нагрузке изгибающие напряжения можно уменьшить, увеличив момент инерции сечения, и т. д.  [c.76]

В предыдущих главах учебника были рассмотрены расчеты элементов конструкций при действии статической нагрузки, а также при возникновении в них переменных во времени напряжений. В этой, последней, главе курса даются краткие сведения о некоторых динамических задачах сопротивления материалов. К задачам динамики в сопротивлении материалов относятся  [c.469]

Во всех случаях, где приложена динамическая нагрузка, возникают дополнительные силы, действующие на элемент конструкции,— силы инерции, которые могут быть очень велики так, например, при подъеме груза с ускорением сила инерции может значительно превосходить вес самого груза. Силы инерции вызывают в элементе конструкции дополнительные напряжения, которые при расчете должны быть учтены. Для упрощения расчетов эти дополнительные напряжения условно считают статическими, но вызванными силами  [c.220]

J, Т К, J, Т — соответственно коэффициент интенсивности напряжений, /-интеграл, 7 -интеграл), посредством которых однозначно может быть определено НДС у вершины трещиноподобных дефектов как при маломасштабной текучести (размер пластической зоны мал по сравнению с линейными размерами трещины и элемента конструкции), так и при развитом пластическом течении элемента конструкции с трещиной (пластическая деформация охватывает большие объемы материала). Иными словами, при одном и том же значении параметра механики разрушения независимо от длины трещины, геометрии тела и системы приложения нагрузки НДС у вершины трещины будет одно и то же. В данном случае критическое аначение параметров, полученных при разрушении образцов с трещинами при том или ином виде нагружения, можно использовать при анализе развития разрушения в конструкции. Для этого в общем случае условие развития разрушения в конструкции (см, рис. В.1) может быть сформулировано в виде K = Kf или 1 = = Jf или т = Т, где Kf, Jf, Т — критические значения параметров механики разрушения при нагружении образца с трещиной, идентичном нагружению конструкции (статическое нагружение, циклическое, динамическое и т. д.).  [c.8]


Сопоставляя поведение реальной трещины в конструкции с деформированием надреза, полученного с помощью предлагаемой модели, можно отметить следующее. Если на некоторых участках по длине трещины возникают нормальные растягивающие напряжения, то трещина в этих местах раскрывается, практически не сопротивляясь прикладываемым нагрузкам уровень, напряжений в прилегающих областях материала невелик. В предлагаемой модели это условие обеспечивается за счет назначения в соответствующих элементах трещины модуля упругости Е, вызывающего разгрузку элементов и значительное увеличение податливости на рассматриваемом участке, В том случае, когда на некотором участке реальной трещины действуют напряжения сжатия, приводящие к контактированию (схлопыванию) берегов трещины, тело с точки зрения передачи силового потока, нормального к трещине, работает как монолит, и модуль упругости в принятой модели для соответствующих элементов трещины назначается равным обычному модулю упругости материала конструкции. При соприкосновении берегов трещины возможны два варианта берега могут проскальзывать относительно друг друга и не проскальзывать. Второй вариант автоматически реализуется при условии Етр = Е. Для реализации первого варианта необходимо обеспечить отсутствие сопротивления полости трещины на сдвиг. Процедура необходимых для этого преобразований для более общего случая — динамического нагружения конструкций — будет изложена в разделе 4.3.1.  [c.202]

Выше были рассмотрены условия старта макротрещины, обусловленного хрупким или вязким зарождением разрушения в ее вершине. Сам факт такого старта в общем случае не является гарантом глобального разрушения элемента конструкции. Так, для развития трещины по вязкому механизму требуется непрерывное увеличение нагрузки до момента, когда трещина подрастает до такой длины, при которой дальнейший ее рост может быть нестабильным [33, 253, 339, 395]. При хрупком разрушении нестабильное развитие трещины начинается сразу после ее старта, но тем не менее трещина может остановиться, не разрушив конструкции, что может быть связано с малой энергоемкостью конструкции (не хватает энергии на обеспечение динамического роста трещины) или определенной системой остаточных напряжений (попадание трещины в область сжатия).  [c.239]

Существенно сложнее обстоит дело, когда надо рассчитать стержень при случайных нагрузках. Случайные силы (статические или динамические), так же как и детерминистские, нагружают стержень, что приводит к случайному напряженно-деформированному состоянию, когда однозначно определить, например, напряжения нельзя. Однако ясно, что случайные напряжения, так же как и детерминистские, влияют на работоспособность стержневых элементов конструкций и это влияние необходимо уметь оценивать. В ряде случаев работоспособность конструкции может очень сильно зависеть от случайного напряженно-деформированного состояния. Например, неоднородность грунта при подъеме его со дна водоема (см. рис. 6.4) всегда будет вызывать случайные колебания трубопровода. Динамические напряжения, возникающие в трубопроводе, будут случайными (при отсутствии волнения поверхности водоема), что требует оценки долговечности трубопровода с учетом случайной составляющей напряжений.  [c.149]

При длительной эксплуатации могут разрушиться прежде всего те элементы конструкции, на которые действуют значительные статические, динамические, вибрационные, температурные и акустические нагрузки. Как правило, разрушения начинаются с образования треш,ин. Треш,ины обычно образуются в местах концентрации напряжений (отверстия, резкие переходы сечений, риски, забоины, места грубой обработки материала и т. д.).  [c.104]

В предыдущих разделах был рассмотрен расчет стержней и стержневых систем на действие статических нагрузок, то есть постоянных во времени или таких, которые в процессе нагружения конструкции изменяются настолько медленно, что возникающие при этом силы инерции незначительны и ими можно пренебречь. Быстро изменяющаяся нагрузка вызывает перемещения элементов конструкции с ускорениями, в результате чего возникают инерционные силы, которые необходимо учитывать в расчете. Такие нагрузки, а также вызываемые ими перемещения, деформации и напряжения, называются динамически. 1и. К динамическим относятся вибрационные и ударные нагрузки, создаваемые различными двигателями, станками, механизмами, а также нагрузки, возникающие при движении тела с ускорением.  [c.312]

Обстоятельства, определяющие форму какого-нибудь элемента конструкции или машины, обычно очень сложны и не всегда поддаются учету. Проектировщику приходится обращать должное внимание на различные факторы, чтобы добиться таких результатов, которые удовлетворяли бы всем могущим возникнуть случайностям, поскольку их можно предвидеть, хотя они иногда бывают и очень неопределенны. При проектировании машин трудно заранее учесть влияние сил инерции в быстро движущихся частях, трение и случайные нагрузки. В инженерных конструкциях, например мостах, задача определения напряжений тоже оказывается несколько неопределенной, благодаря динамическому действию неуравновешенных сил инерции локомотивов, торможению, давлению ветра и возможным комбинациям тех и других воздействий. Во всяком случае, каковы бы ни были затруднения, инженер обязан проектировать и конструировать машины и постройки с расчетом на безопасность и экономичность при всевозможных колебаниях нагрузок помочь ему могут в этом отношении только научные исследования.  [c.560]

При летных испытаниях проверяются все летные данные, характеристики устойчивости и управляемости вертолета, а также статическая и динамическая прочности. Здесь же замеряются напряжения и динамические нагрузки в силовых элементах основных частей агрегатов вертолета (лопастей несущего и рулевого винтов, их втулок, автоматов перекоса, проводки управления, узлов крепления двигателей, редукторов и т. д.). Одновременно измеряются параметры колебаний конструкции вертолета.  [c.119]


Поэтому для пластичных материалов концентрация напряжений менее опасна, чем для хрупких, а при статическом нагружении элемента конструкции она совсем не влияет на его прочность. Вот почему при расчете на осевое растяжение и сжатие стержней из пластичных материалов при статической нагрузке не учитывают влияние концентрации напр яжений в ослабленных отверстиями сечениях, а лишь определяют величину средних напряжений по площади (см. пример 6). Если же на элемент конструкции с ослабленным сечением действует динамическая или повторно-переменная нагрузка, вызывающая в сечениях напряжения разных знаков, то в этих случаях, несмотря на пластичность материала, концентрация напряжений оказывает существенное влияние на его прочность.  [c.56]

По характеру действия нагрузки делятся на статические и динамические. Статические нагрузки передаются на конструкцию спокойно, плавно, возрастая от нуля до конечного своего значения. Характерным примером статической нагрузки может служить нагрузка от собственной массы элементов, не подвергающихся сотрясению машин усилия, возникающие в конструкциях вследствие предварительных внутренних напряжений, и т. д. Динамическим нагрузкам свойственно резко изменяющаяся во времени их величина, часто со столь же быстрым изменением их направления. К ним относятся инерционные нагрузки, возникающие при разгоне или замедлении перемещающихся масс машин при прямолинейном или вращательном движении (в том числе вызванные и неоднородностью рабочей среды), а также центробежные силы, возникающие при вращении. Динамические нагрузки могут быть пульсирующими, знакопеременными или носить характер единичного импульса, в результате действия которого в конструкции возникают свободные колебания.  [c.84]

Динамическая нагрузка столь заметно меняется со временем, что при этом совершенно необходимо вводить в расчет силы инерции элементов конструкции и их ускорения, а также закон изменения величины нагрузки со временем и скорость перемещения ее. Возникающие при этом динамические напряжения в деталях машин и конструкциях могут в несколько раз быть больше статических напряжений. Отношение дина-  [c.327]

Расчет строительных металлических конструкций ведется, как правило, по первому предельному состоянию, обусловленному несущей способностью конструкции — ее прочностью, устойчивостью, выносливостью при динамических и знакопеременных нагрузках. В редких случаях размеры элементов определяются по предельно допустимым деформациям, т. е. по второму предельному состоянию. Третье предельное состояние характеризуется максимально допустимыми местными повреждениями. При оценке качества пригодности материала вообще основным критерием являются допускаемые напряжения, установленные в зависимости от следующих причин  [c.353]

Однако, как отмечалось выше, механические свойства материалов при тех динамических нагрузках, которые вызывают быстро изменяющиеся напряжения и деформации (например, при ударе), существенно отличаются от свойств при статическом нагружении. Поэтому допускаемые напряжения и допускаемые деформации при расчете элементов конструкций, подверженных действию динамических нагрузок, в общем случае будут отличаться от допускаемых напряжений и деформаций при статических нагрузках. Это обстоятельство необходимо учитывать при проектировании деталей конструкций, испытывающих быстро нарастающие динамические напряжения и дефор.мации. Например, при линейном напряженном состоянии условия прочности и жесткости имеют вид  [c.483]

Особенно значительны его труды по проблемам устойчивости элементов машиностроительных конструкций при статических и динамических нагрузках, а также работы, посвященные исследованию напряженного состояния и определению перемещений в местах силового контакта деталей.  [c.4]

Контроль результатов измерения усилий в фермах и рамах производится уравновешиванием экспериментально полученных усилий по сумме проекций и по сумме моментов усилий, приходящихся на каждый узел конструкции. Контроль измерения по напряжениям изгибающих моментов М при динамических нагрузках изгибаемых элементов может производиться виброизмерениями. Порядок обработки экспериментальных данных для  [c.568]

Решение проблемы обеспечения прочностной надежности элементов конструкций на стадии их проектирования и расчета в значительной степени зависит от достоверности информации о возникающих в эксплуатации воздействиях (нагрузках). Информация эта может быть представлена в различной формами иметь различную степень детализации. Она может быть использована либо непосредственно для анализа нагрузок и напряжений и оценок прочностной надежности, либо быть исходной (входом) при динамическом анализе механических систем. Разнообразие режимов работы и особенностей функционирования различных элементов конструкций обусловливает многообразие возникающих воздействий. В качестве примера рассмотрим осциллограммы реальных нагрузок, возникающих в подрессоренных и неподрес-соренных элементах конструкций транспортных и землеройных машин при движении их по дорогам случайного профиля и при выполнении некоторых технологических операций (рис. 1.1 и 1.21. Качественные и количественные различия в возникающих нагрузках обусловлены различием в условиях нагружения и особенностями выполняемой, технологической операции. Неупорядоченные нагрузки возникают также в элементах строительных конструкций (мачтах, антеннах) при случайных порывах ветра, в самолетах в полете при пульсации давления в пограничном турбулентном слое воздуха и при посадке и движении самолета по взлетной полосе и т. д. Нерегулярные морские волнения приводят к аналогичной картине изменения усилий и напряжений в элементах конструкций судов и береговых гидротехнических сооружений. Вопрос о том, какая по величине нагрузка возникнет в некоторый конкретный момент времени, не имеет определенного (детерминированного) ответа, так как в этот момент времени она может быть, вообще говоря, любой из всего диапазона возможных нагрузок. Введение понятия случайности, мерой которой является вероятность, снимает эту логическую трудность и позволяет ввести количественные оценки в область качественных представлений  [c.7]

В монографии рассмотрены особенности конструкций и условий работы водо-водяных энергетических реакторов (ВВЭР), анализируются основные типы пределы1ых состояний и запасы прочности. Изложены методы расчетного определения напряжений в корпусных конструкциях, разъемных элементах, патрубках и трубопроводах при механических, тепловых, динамических и сейсмических нагрузках. Приведены новые результаты по напряженно-деформированным состояниям ВВЭР.  [c.4]

Как показали теоретические исследования и натурные испытания [1,3—5,8, 9,13—16, 18, 19 и др.], для многих крановых конструкций уровень напряженности их металлоконструкций в значительной степени определяется динамическими нагрузками, которые возникают в периоды яеустановившегося движения механизмов в завиоимости от упругости элементов металлоконструкций и механизмов. При этом эксплуатационные нагрузки и вызываемые ими циклические напряжения носят случайный характер не только по амплитуде, но и по коэффициенту асимметрии.  [c.377]


На поверхности объекта устанавливают тензомет )ы или их первичные измерительные элементы. Измерение полей деформаций является одной из задач тензометрии и выполняется на натурных деталях и конструкциях или их моделях при статических, динамических и тепловых нагрузках. В результате измерений определяют компоненты напряжений в различных точках детали и конструкции и по ним устанавливают места и значения наибольших напряжений, по которым проводят расчетную оценку прочности и ресурса конструкции. Этот результат используют также при натурной тензометрии конструктивных элементов аппарата.  [c.340]

Усталостная прочность трубопроводов и их соединений. Трубопроводы многих машин подвергаются одновременно статическим и динамическим нагрузкам. К первым относятся рассмотренные статические нагрузки, обусловленные внутренним давлением жидкости, а также нагрузки, развивающиеся при монтаже трубопровода и возникающие в результате температурных деформаций трубопроводов и элементов конструкции машины. Ко вторым нагрузкам относятся нагрузки, возникающие при частотных деформациях (колебаниях) трубы, обусловленных пульсацией давления жидкости и гидравлическилш ударами, а также колебаниях (вибрациях) самих трубопроводов, вызываемых внутренними и внешними возмущениями. Следовательно, напряжения, возникающие в материале трубопровода, создаются суммой перечисленных составляющих, причем основное место в этой сумме занимают составляющие, обусловленные динамическими факторами и в особенности при их повторяемости.  [c.573]

Образование хрупких трещин после предварительного циклического нагружения наблюдалось в сварных конструкциях подвижного состава, причем возникавшие при эксплуатации динамические нагрузки способствовали более раннему переходу трещин циклического нагружения в хрупкие. Аналогичными оказываются причины хрупкого разрушения элементов металлургического оборудования (станины прессов, свариваемые электрошлаковым способом, с толщиной S стенок до 160 м.м, валки мощных прокатных станов диаметром 200-500 мм и более, цилин-дрь[ мощных ковочных молотов с толщинами S стенок 200-350 мм). В результате влияния абсолютных размеров при хрупком разрушении температуры Г стенок при разрушениях были -1-10 - -Н40 С и выше. Номинальные напряжения от внешних нагрузок при этом состав тяли (0,] -0,3)сТт , а теоретические коэф-  [c.73]

Томас Юнг первый показал (см. стр. 116), насколько значительным может быть динамический эффект нагрузки. Понселе, побуждаемый к тому современной ему практикой проектирования висячих мостов, входит в более подробное изучение динамического действия. Пользуясь диаграммами своих испытаний, он показывает, что до предела упругости железный брус способен поглотить лишь малую долю кинетической энергии и что в условиях удара легко могут быть вызваны остаточные деформацип. Для элементов конструкций, подвергающихся ударам, он рекомендует применять сварочное железо, дающее при испытаниях на растяжение сравнительно большое удлинение и способное поглотить, не разрушаясь, большее количество кинетической энергии. Понселе доказывает аналитически, что внезапно приложенная нагрузка вызывает вдвое большее напряжение, чем та же самая нагрузка, приложенная статически (с постепенным возрастанием до полной величины). Он исследует влияние продольного удара на брус и вызываемые таким ударом продольные колебания. Он показывает также, что если пульсирующая сила действует на нагруженный брус, то амплитуда возникающих при этом вынужденных колебаний может значительно возрастать в условиях резонанса, п этим объясняет, почему маршировка солдат по висячему мосту может оказаться опасной. Мы находим у него любопытное истолкование экспериментов Савара по продольным колебаниям стержней и обоснование того факта, что большие амплитуды и большие напряжения могут быть вызваны малыми силами трений, действующими по поверхности.  [c.110]

В 1971 году в издательстве Наука вышел в свет сборник оригинальных работ Степана Прокофьевича Тимошенко Устойчивость стержней, пластин и оболочек , который был полностью просмотрен и одобрен автором. В этом сборнике дан был очерк жизни и научного творчества С. П. Тимошенко. Предлагаемый вниманию читателей сборник также был просмотрен автором и составлен согласно его желанию, хотя и выходит он уже после смерти С. П. Тимошенко, произошедшей 29 мая 1972 года в городе Вуппертале (Федеративная Республика Германия) на девяносто четвертом году жизни. Здесь содержатся двадцать шесть оригинальных работ С. П. Тимсшечко по проблемам прочности и колебаний элементов конструкции. Эти исследования посвящены изучению резонансов валов, несуш,их диски, эффективному анализу продольных, крутильных и изгибных колебаний прямых стержней посредством использования энергетического метода и применению общей теории к расчету мостов при воздействии подвижной нагрузки, вычислению напряжений в валах, лопатках и дисках турбомашин, расчету напряжений в рельсе железнодорожной колеи как стержня, лежащего на упругом сплошном основании, при статических и динамических нагружениях. Детально рассмотрены важные вопросы допускаемых напряжений в металлических мостах.  [c.11]

Запасы по разрушающим нагрузкам (при изготовлении, монтаже и эксплуатации конструкций) назначаются в пределах 1,5—2, а запасы по коэффициентам интенсивности напряжений и деформаций — в пределах 1,7—2,2. Большие из указанных запасов выбирают для циклически нагружаемых элементов конструкции, изготовляемых из хладноломких малоуглеродистых сталей или сталей повышенной прочности и низкой пластичности, чувствительных к концентрации наг яжений, скорости деформирования и обладающих повышенным разбросом характерисгик сопротивления разрушению. Повышенные запасы прочности принимают для элементов конструкций, определение эксплуатационной нагруженности которых затруднено в силу сложности конструктивных форм, наличия высоких остаточных напряжений (например, от сварки и монтажа), возникновения нерасчетных статических и динамических перегрузок. Для таких элементов конструкций обычно затруднено проведение надлежащего дефектоскопи ческого контроля при их изготовлении и эксплуатации. В этом случае запасы по нагрузкам должны быть более высокими — до 2,5.  [c.77]

Анализ напряжений, возникающих в клеевом нахлесточном соединении (см. формулу 7.6), приводит к выводу о том, что в конструкциях следует применять толстую и нежесткую клеевую прослойку. Однако известно, что прочность толстой клеевой прослойки обычно ниже прочности более тонкой, а клеи чрезмерно большой эластичности отличаются высокой ползучестью под нагрузкой и не могут быть использованы для клеевых соединений в силовых конструкциях из ПМ. Вместе с тем жесткие клеевые прослойки (преимущественно из отвержденных реактопластов) в большинстве случаев хрупки из-за перенапряженности структуры. В связи с этим правильный выбор клея, учитывающий конструкционные особенности соединяемых деталей, является одним из способов создания работоспособного соединения. Например, для соединения внахлестку тонких нежестких листов необходимо применять возможно более эластичные клеи, образующие относительно толстую прослойку. Соединяя внахлестку толстые, жесткие детали, целесообразно применять более жесткие, прочные клеевые прослойки, так как распределение напряжений в большей степени определяется жесткостью соединяемых элементов. Клеевые прослойки, характеризующиеся высокой энергией разрушения, способствуют сохранению целостности клеевого шва при статических и динамических нагрузках.  [c.517]

Наиболее опасным деградационным процессом является охрупчивание материала, приводящее к существенному изменению характеристик трещиностойкости и смещению хрупкого разрущения в область положительных температур. Переходу металла в хрупкое состояние способствует наличие концентратора напряжений резкое изменение формы или сечения элемента конструкции, поверхностные риски, микротрещины и другие дефекты. Особенно это актуально для емкостного оборудования и трубопроводов, имеющих больщие линейные размеры, так как в таком оборудовании возможно накопление под нагрузкой огромной упругой энергии, которая, стремясь разрядиться, разрывает конструкцию по дефекту (концентратору напряжений). Разрушение происходит с большой скоростью (одномоментно), при этом на магистральных трубопроводах отмечались разрывы, достигающие 1000 м и более. Поэтому характеристики трещиностойкости определяют на образцах с надрезом или начальной трещиной, или концентратором соответствующей формы в результате динамических или статистических испытаний. Из всех механических свойств наиболее чувствительными к охрупчиванию оказались ударная вязкость и статическая вязкость разрушения.  [c.195]

Задачи изучения действия динамических нагрузок и напряжений. В предыдущем изложении рассматривалось по преимуществу действие статических нагрузок и статических напряжений, т. е. таких нагрузок и напряжений, которые длительно действуют на элементы конструкций и изменяются в процессе приложения или снятия с малой скоростью. К такого рода нагрузкам можно относить собственный вес, центробежные силы установившегося вращения, постоянные нагрузки и временные, медленно прикладываемые нагрузки. При действии этих нагрузок часто приходится принимать, что и напряжения имеют статический характер. Однако в некоторых случаях статические нагрузки могут вызвать напряжения, меняющиеся во времени с большой скоростью,— динамические напряжения. Так, например, собственный вес и постоянная поперечн-ая нагрузка на вал машины при вращении вала обусловливают периодически меняющиеся во времени, и притом с большой скоростью, напряжения.  [c.426]


Кроме того, поскольку давление пара перед турбиной меняется (скользит) плавно, а температура пара поддерживается постоянной (номинальной), то при полностью открытых регулирующих клапанах температура большинства ответственных элементов турбины сохраняется неизменной. Благодаря этому при изменении нагрузки отсутствует неравномерность температурных полей в поперечных сечениях корпуса турбины, вызывающая термические напряжения, специфические для частичной нагрузки турбин с сопловым парораспределением не появляются относительные тепловые расширения (или укорочения) ротора снижаются напряжения изгиба, особенно динамические, в лопатках первой ступени. Перечисленные обстоятельства заметно улучшают надежность и маневренность турбины, не говоря уже о возможности упрощения ее конструкции (путем отказа от соплового парораспределе-  [c.191]

Установлено [14, 36], что трубопроводы и их конструктивные элементы испытывают воздействие переменных во времени растягивающих или изгибающих эксплуатационных нагрузок. Вследствие колебания температуры и давления рабочей среды на статическую нагрузку накладывается динамическая составляющая, которая оказь1вает существенное влияние на работоспособность конструкции. Так, отклонение давления в трубопроводе только на 5 % от нормального, если оно имеет место три раза в сутки, снижает порог напряжений, при которых происходит коррозионное растрескивание, на 30%. Коррозионное разрушение в этих случаях локализовано на участках, имеющих концентраторы напряжений и обладающих наибольшим комплексом физико-химических неоднородностей. Для приближения условий лабораторных испытаний к эксплуатационным разработаны многопозиционные установки [52], позволяющие растягивать или изгибать испытуемые образцы с одновременным наложением на статическую нагрузку динамической составляющей.  [c.100]


Смотреть страницы где упоминается термин Напряжения в элементах конструкций при динамических нагрузках : [c.378]    [c.299]    [c.402]    [c.63]    [c.14]    [c.232]    [c.25]    [c.338]   
Смотреть главы в:

Прикладная механика  -> Напряжения в элементах конструкций при динамических нагрузках



ПОИСК



114 —Напряжения при нагрузке

Динамические нагрузки и динамические напряжения

Конструкция напряжений

Нагрузка динамическая

Нагрузка на элементы

Напряжение динамическое

Напряжение для динамических нагрузок

Элемент конструкции



© 2025 Mash-xxl.info Реклама на сайте