Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения состояния нелинейно упругого материала

УРАВНЕНИЯ СОСТОЯНИЯ НЕЛИНЕЙНО УПРУГОГО МАТЕРИАЛА  [c.150]

Приходим к нелинейному дифференциальному уравнению второго порядка для функции R(p) , краевые условия ее, формулируемые соотношениями (3.8.3), (3.8.12), также нелинейны. Задача громоздка даже для наиболее простых формулировок закона состояния сжимаемого упругого материала.  [c.716]

Упругий участок обобщенной диаграммы циклического деформирования включает участки разгрузки. Известно, что разгрузка обычно нелинейна, а модуль разгрузки, измеренный как тангенс угла наклона прямой, соединяющей точки начала и конца разгрузки, уменьшается при первой разгрузке и может несколько изменяться в процессе циклического деформирования [62]. В уравнении (2.1.6) эти особенности не учитывались, и модуль упругости материала принимается равным характеристике в исходном состоянии независимо от степени деформирования и числа нагружений.  [c.74]


Приведенные выше соотношения явились основой вычислительных программ численного решения задач о напряженных, деформированных и предельных состояниях оболочечных конструкций, подверженных длительным статическим и малоцикловым воздействиям в условиях повышенных температур [8, 3, 15]. Разработанная в [15] программа исследования прочности сильфонов основана на линеаризованных уравнениях теории оболочек и уравнениях состояния (8.17). Для учета физической нелинейности материала оболочки используется метод переменных параметров упругости [10].  [c.160]

В предыдущей главе рассматривались стержни, материал которых подчинялся линейному закону упругости. Отметим, что за исключением реактивно нагруженного стержня получаемые в этих условиях результаты достаточно хорошо согласуются с данными большого числа и давно ведущихся экспериментов. Для нелинейно-упругого тела все уравнения, полученные во второй главе, остаются справедливыми, если модуль Е в них заменить на модуль Е и учесть, что при неоднородном докритическом состоянии этот модуль становится вдоль стержня переменным. Это усложняет задачу получения точного решения, в то время как трудности при использовании приближенных методов увеличиваются ненамного.  [c.71]

Общая постановка плоских контактных задач для полупространства и слоя, подверженных одновременному воздействию сил тяжести и однородных, ориентированных вдоль границы, начальных напряжений дана в работе В. М. Александрова и Н. X. Арутюняна [1]. Предполагалось, что материал среды является несжимаемым и описывается либо уравнениями физически нелинейной (геометрически линейной) теории установившейся ползучести, либо уравнениями геометрически нелинейной (физически линейной) теории упругости. В предположении, что силы трения в области контакта отсутствуют, изучена проблема эллиптичности линеаризованных уравнений (внутренней устойчивости среды), исследованы явления поверхностной неустойчивости среды. В качестве иллюстрации проведен анализ влияния механических свойств и начального напряженного состояния среды на контактную жесткость. Для потенциала Муни обнаружены значения начальных напряжений, при которых упругий континуум начинает работать как основание Винклера.  [c.236]

Плоские и осесимметричные контактные задачи для физически нелинейного (линейного геометрически) и геометрически нелинейного (гармонического типа) материала исследовались И. В. Воротынцевой [13] совместно с В. М. Александровым [3] и с Е. В. Коваленко [14]. С помощью соответствующих интегральных преобразований задачи сведены к решению интегральных уравнений с нерегулярными разностными ядрами. Структура этих уравнений совпадает со структурой соответствующих уравнений классической теории упругости, а свойства символов их ядер позволяют использовать для решения асимптотические методы больших и малых Л , развитые в работах В. М. Александрова. Влияние нелинейных свойств среды и начальных напряжений на контактную жесткость, функцию распределения контактных напряжений и величину вдавливающей силы в плоском случае исследовано в [13], в осесимметричном случае — в [3,14]. В работах установлено, что начальные напряжения не влияют на порядок особенности на краях штампа, но влияют на проникающую составляющую решения как в области контакта, так и вне ее. Исследованы условия потери внутренней устойчивости среды в зависимости от начальных напряжений. Для ряда конкретных нелинейно-упругих сред построены области эллиптичности линеаризованных уравнений, при переходе через границу которых происходит либо потеря поверхностной устойчивости, либо потеря поверхностной деформируемости, связанные с потерей эллиптичности. В работе установлено, что при стыковке решений, полученных методами больших и малых Л , значение относительной толщины Л, на которой стыкуются эти методы, существенно зависит от параметров начального напряженного состояния среды.  [c.237]


Функционал, стационарность которого рассматривается, должен быть выражен через тензор напряжений или его инварианты, если среда изотропна геометрические величины не должны в него входить. В линейной теории упругости это не сопряжено с трудностями, так как выражение линейного тензора деформации через тензор напряжений Т известно и это позволяет сразу же получить представление удельной потенциальной энергии через напряжения. В нелинейной теории эта процедура требует обращения уравнения состояния материала о практической неосуществимости такой операции в общем случае (для любого материала) говорилось в 14 и II, 8. Но ход вывода принципа стационарности дополнительной работы требует предположения, что обращение осуществлено принимается, что соотношение  [c.141]

Анализ конкретных задач о трещинах в реальном нелинейно-упругом теле, напряженное состояние которого зависит лишь от его деформации (не зависит от поворотов), провести аналитическими средствами довольно трудно. (Решена плоская задача при условии сильного начального растяжения тела [119].) Однако выводы о концентрации деформаций (см. 3.3), о связи между раскрытием трещины и напряжениями на ее продолжении, а также о потоке энергии (см. 3.4) можно сделать, основываясь на геометрически точных соотношениях и не привлекая конкретных уравнений состояния. Достаточным является введение довольно естественных предположений общего характера, например об устойчивости материала. Оказывается, что неограниченность деформаций у края трещины не является следствием линеаризации. Она сохраняется и при точной постановке задачи. Характер особенности может измениться, но поток энергии сохраняется - линейная теория определяет его правильно.  [c.69]

Первая серия экспериментов была выполнена ), чтобы установить, можно ли было обнаружить нелинейность при простом нагружении на этой аппаратуре и если будут появляться дискретные изменения в значениях угла наклона касательной к графику зависимости между напряжением и деформацией, то окажутся ли эти изменения такими, какими они предсказываются (см. там же) последовательностью квантованных значений. Квантованная последовательность была обнаружена в моих более ранних работах по сравнению упругих постоянных 59 элементов (см. ниже главу И1, раздел 3.44). Я предсказал переходы второго порядка в значениях модуля упругости на основе результатов опытов, проводившихся при больших деформациях, из которых получены определяющие уравнения на основе сравнения конечных амплитуд одномерных волн со значениями соответствующих параметров в квазистатических экспериментах, выполненных при одноосном напряженно-деформированном состоянии с образцами, изготовленными из того же материала.  [c.204]

Допуш,ения о характере деформаций. Пере.че-ш,ения, возникающие в конструкции вследствие упругих деформаций, невелики. Поэтому при составлении уравнений статики исходят из размеров недеформированной конструкции — принцип начальных размеров. Перемещения отдельных точек и сечений элементов конструкции прямо пропорциональны нагрузкам, вызвавшим эти перемещения. Конструкции (системы), обладающие указанным свойством, называют линейно деформируемыми. Необходимым условием линейной деформируемости системы является справедливость закона Гука (линейной зависимости между компонентами напряжений и дефор.маций) для ее материала. В некоторых случаях, несмотря на то, что материал конструкции при деформировании следует закону Гука, зависимость между нагрузками и перемещениями нелинейна (например, при продольно-поперечном изгибе бруса, при контактных деформациях). Линейно деформируемые системы подчиняются принципу независимости действия сил и принципу сложения (принципу суперпозиции). Согласно этим принципам, внутренние силовые факторы, напряжения, деформации и перемещения не зависят от последовательности нагружения и определяются только конечным состоянием нагрузок. Результат действия (перемещение и т. п.) группы сил равен сумме результатов действия каждой из сил в отдельности. При рассмотрении раздельного действия на конструкцию каждой из нагрузок необходимо учитывать соответствующие этой нагрузке опорные реакции. Для бруса в большинстве случаев справедлива гипотеза плоских сечений — сечения бруса, плоские и перпендикулярные к его оси до деформации, остаются плоскими и перпендикулярными к оси и после деформации. Эта гипотеза не справедлива, в частности, при кручении брусьев некруглого поперечного сечения. Для тонких пластин и оболочек принимают гипо-  [c.170]


Модели физически нелинейной среды при циклическом упруго-пластическом деформировании. При анализе кинетики НДС в наиболее нагруженных зонах элементов конструкций необходимо использовать модели физически нелинейной среды, достаточно полно отражающие основные особенности поведения материала в условиях, близких к эксплуатационным. В общем случае такие модели устанавливают нелинейную связь между циклическими напряжениями и деформациями, либо между их производными, причем указанные зависимости (уравнения состояния, или определяющие уравнения) должны учитывать характерные режимы деформирования и нагрева, а также влияние истории нагружения (поцикловой и временной).  [c.78]

Это уравнение аналогично соотношению (3.13). Замечательно, что оно является некоторым конечным интегралом решения (весьма сложной) внутренней задачи и строго справедливо для произвольного контура L и любого нелинейно-упругого вблизи контактной площадки материала. Теория Г-вычетов позволяет аналогично ш>1водить подобные соотношения для любых сингулярньхх задач указанного типа. Эти соотношения дают возможность получать простые оценки работоспособности сингулярных связей в критическом и докритическом состоянии.  [c.160]

Естественное развитие линейной механики разрушения состоит в приложении основных ее -концепций к задачам кинетики роста трещин во времени или в зависимости от числа циклов, если речь идет об усталостном разрушении. Важно при этом, что кинетика, линейная или нелинейная, предполагается чисто локальной, все процессы разрушения любой природы предполагаются происходящими в концевой области весьма малых размеров, вне этой области материал упруг. Тогда в любых кинетических уравнениях единственным представителем напряженного состояния будет коэффициент интенсивности. Разделы книг, носвященные усталостному разрушению, например, строятся именно таким способом.  [c.12]

Связанная система уравнений (50) и (51) по своей структуре аналогична системе, описывающей большие прогибы однородных пластин (см. работу Тимошенко и Войновского-Кригера [163] с. 418), включающей в отличие от системы (50), (51) нелинейные операторы, а также основным уравнениям линейной теории пологих оболочек ([163 ], с. 559). В нелинейной теории пластин й в теории пологих оболочек связь между уравнениями осуществляется через коэффициенты, зависящие от кривизны, а в рассматриваемом здесь случае слоистых анизотропных пластин эта связь вызвана неоднородностью материала (она осуществляется с помощью оператора включающего элементы матрицы 5 /, которые зависят, в свою очередь, от элементов матрицы Ац и матрицы Вц, входящих в исходные соотношения упругости). Это означает, что при постановке граничных условий на краях слоистой анизотропной пластины необходимо одновременно рассматривать силовые факторы и перемещения, соответствующие как плоскому, так и изгибному состояниям. При этом на каждом краю следует сформулировать по четыре граничных условия.  [c.178]

Задачу решали в квазистационарной несвязанной постановке путем численного интегрирования на ЭВМ системы нелинейных дифференциальных уравнений, определяющих напряженно-дефор-мированное состояние неупругих осесимметрично нагруженных оболочек вращения. Линейную краевую задачу решали на основе метода ортогональной прогонки. Рассматривали только физическую нелинейность, обусловленную работой материала за пределами упругости (пластичность, ползучесть), Физически нелинейную задачу для каждого полуцикла нагружения сводили к ряду линейных на основе последовательных приближений fl91.  [c.220]

В монографии изложены результаты исследования напряженно-деформированного состояния контактирующих элементов конструкций, полученные с помощью метода конечных элементов и метода граничных интегральных уравнений, известного также под названием метод граничных элементов. Эти перспективные современные численные методы удобны для решения на ЭВМ широкого класса контактных задач механики деформируемого тела и в рамках одной программной реализации позволяют учесть большое число практически важных факторов, таких, как сложная геометрия и произвольный характер внешних воздействий, различные условия контактного взаимодействия. Метод конечных элементов представляется более универсальным, так как позволяег легко учесть физическую и геометрическую нелинейность, объемные силы, зависимость свойств материала от температуры. В методе граничных элементов учет этих факторов настолько увеличивает рудоемкость решения задачи, что сводит на нет основные преимущества метода, такие, как дискретизация только границы области и малый объем входной информации. Поэтому в книге метод граничных элементов использован только для решения контактных задач теории упругости, где наряду с простотой задания исходной информации он может дать и выигрыш машинного времени за счет понижения размерности задачи на единицу, особенно для бесконечных и полубесконечных областей. Метод граничных элементов позволяет построить также более совершенный алгоритм для учета трений в зоне контактных взаимодействий. По-виднмому, еще большего выигрыша следует ожидать в некогорых задачах при совместном использовании обоих методов.  [c.3]



Смотреть страницы где упоминается термин Уравнения состояния нелинейно упругого материала : [c.333]    [c.68]   
Смотреть главы в:

Нелинейная теория упругости  -> Уравнения состояния нелинейно упругого материала



ПОИСК



Материалы нелинейные

Материалы упругие

Нелинейно-упругие материалы

Нелинейность уравнений

Состояние материала

Состояние материала упругое

Состояние упругое

Упругие нелинейные материалы

Упругость нелинейная

Уравнение нелинейное

Уравнение состояния

Уравнения Уравнения упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте