Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Построение функций граничных параметров

Построение функций граничных параметров  [c.66]

Функция ф у, z) — решение уравнения (1) 5 — должна удовлетворять граничным условиям (2) и (3) 5. Для построения функции ф у, z), удовлетворяющей этим условиям, возьмем частное решение / у, z Q уравнения (1) 5, содержащее произвольный комплексный параметр и некоторую функцию А ( ), зависящую от этого параметра  [c.410]

Построение ПД с учетом динамики робота сводится к решению двухточечной краевой задачи с граничными условиями (2.43) и ограничениями (2.44)—(2.46). Многие известные методы решения краевых задач здесь малоэффективны или даже непригодны. Трудности усугубляются высокой размерностью и нелинейностью уравнений динамики (2.2), а также сложным характером ограничений (2.44)—(2.46). Эффективным методом динамического синтеза ПД является метод параметризации ПД с учетом граничных условий (2.43), накладываемых на начальное и конечное состояния робота [107, ИЗ], В этом методе воплощена идея априорного выполнения граничных условий (2.43) и учета структурного ограничения (2.46). Это достигается за счет специального выбора базисных функций. В таком подходе заложен глубокий смысл при отыскании приемлемых параметров ПД уже не нужно за-  [c.52]


Достоинством описанного параметрического метода построения ПД является простота и экономность представления ПД (2.47), а также гибкость, т. е. возможность быстрой перестройки ПД при изменении граничных условий или ограничений. Последнее обеспечивается тем, что структура блока синтезируемого ПД (2.47) задается с точностью до начального и конечного состояний х , Xi и X. При этом изменение граничных условий влечет изменение базисных функций, а изменение ограничений порождает коррекцию параметров ПД без изменения его структуры.  [c.56]

Построение математической модели таких теплотехнических объектов, как теплообменники с однофазным или двухфазным теплоносителем, может быть осуществлено с учетом распределенности параметров [42, 43]. Исходные уравнения в частных производных (уравнения сохранения энергии, сплошности, движения) решаются с учетом уравнений состояния, граничных условий и некоторых упрощающих допущений. Решение в области изображений по Лапласу позволяет получить выражения передаточных функций распределенной системы. Коэффициенты этих передаточных функций определяются с использованием теплофизических характеристик теплообменника.  [c.466]

Отличительная черта нового направления в теории подобия (разрабатываемого А. А. Гухманом) заключается в том, что она последовательно развивается как учение о методах построения характерных переменных. В основе такого понимания теории подобия лежит идея, что любой процесс должен рассматриваться в специфических для него переменных. Эти переменные объединяют в себе величины, играющие роль параметров исследуемой задачи (т. е. заданные по условию величины, определяющие размеры системы, ее физические свойства, длительности циклов, начальные и граничные значения переменных), и, следовательно, представляют собой параметры комплексного типа. Множественность факторов, влияющих на процесс, в сильнейшей степени осложняет его исследование, так как представляющие их величины (геометрические, физические и режимные параметры) должны входить в качестве аргументов в уравнения, определяющие искомые величины в функции независимых переменных. Возможность объединения всего множества этих величин в параметры комплексного типа обусловлена тем, что влияние их на развитие процесса проявляется не разрозненно, а в виде эффектов сложной физической природы, являющихся результатом взаимодействия определенных совокупностей различных факторов. Реальный ход процесса определяется относительной интенсивностью этих эффектов. Поэтому целесообразно исследовать процесс в переменных, представляющих собой количественную меру отношения интенсивностей эффектов и построенных в виде комплексов величин, существенных для процесса. Законы построения комплексов определяются непосредственно из рассмотрения основных уравнений задачи, в структуре которых отражен физический механизм процесса.  [c.17]


Для построения решений линейных неоднородных систем (2.10) обычно используются отрезки рядов Фурье по подходящим системам функций, удовлетворяющих заданным граничным условиям. Такая схема малого параметра широко используется при исследовании конвекции в замкнутых полостях различной формы с условиями прилипания на границах (тогда интегрирование в (2.12) ведется по объему полости G). Однако, при изучении конвекции в горизонтальном слое обычно используется другой вариант метода малого параметра. Для представления основных функций также применяются формулы (2.8), но число е уже не определяется из (2.9), а для числа Релея Ra вводится представление [7  [c.374]

В этом параграфе будут рассмотрены однородные задачи, содержащие собственное значение в граничном условии. Подобная ситуация встречалась уже в конце предыдущего параграфа. Однако там собственное значение входило как в граничное условие, так и в уравнение. Это уравнение вместе с граничным условием получалось предельным переходом из более общего уравнения, когда спектральный параметр не содержался в граничном условии. Последнее обстоятельство было решающим при построении функционалов — при этом использовался тот же предельный переход. По существу все это было необходимо для получения такого исходного функционала к-метода, у которого класс допустимых функций не был бы ограничен условиями, содержащими параметр — собственное значение обобщенного метода. Другими словами, граничное условие с параметром должно быть естественным для функционала / -метода. Только в этом случае возможны формальные преобразования этого функционала.  [c.159]

К положительным элементам одномерного варианта МГЭ (простота логики формирования разрешающей системы уравнений, хорошая устойчивость численного процесса, непосредственное определение начальных параметров каждого обобщенного стержня из разрешающей системы и т.д.) добавляются существенно важные для расчета пластинчатых систем факторы. Ядра интегральных уравнений (функции Грина) в МГЭ не содержат сингулярных точек. По этой причине уравнение (6.20) снимает проблему вычисления многомерных сингулярных интегралов. Исключается и проблема построения численного решения в окрестностях угловых точек пластины, что весьма актуально в прямом методе граничных элементов [7]. Как будет показано ниже, этот момент позволяет существенно повысить точность решения задач устойчивости тонких пластин по предложенному алгоритму МГЭ. Использование обобщенных функций для описания нагрузки ц х, у) в (1.20) также приводит к неожиданным результатам. Реальной становится возможность вычисления касательных и нормальных напряжений в точках приложения сосредоточенных нагрузок. В этих точках, в частности, поперечная сила =0,25 (1/Ах) 00 при Ах 00 [3, с. 173]. Здесь можно отметить, что неопределенность в  [c.198]

Во всех слагаемых потенциальной функции Фа параметр т удовлетворяет сильному неравенству т С обеспечивающему разделение корней характеристического уравнения на большие и малые. Это значит, что функции Фа соответствует напряженно-деформированное состояние, составляющееся из обобщенного основного напряженного состояния и простого краевого эффекта. Следовательно, процедура построения Фа (с удовлетворением граничных условий) представляет собой некоторое обобщение метода расчленения, в котором основйоё напряженное состояние заменено обобщенным основным напряженным состоянием ( 11.27).  [c.377]

Исторически одним из первых методов, нашедших ншрокое применение при решении краевых задач для уравнений с частными производными, явился метод разделения переменных или, как его еще называют, метод Фурье, заключающийся в построении набора частных решений, каждое из которых разыскивается в виде произведения функций меньшего числа переменных (как правило, функций одного переменного). В ряде случаев оказывается, что такое представление не вступает в противоречие с исходным дифференциальным уравнением (тогда говорят, что уравнение допускает разделение переменных) и приводит, в зависимости от размерности задачи, к нескольким обыкновенным дифференциальным уравнениям, содержащим один и тот же числовой параметр. В зависимости от характера области, в которой решается краевая задача, граничных и начальных  [c.117]


Из системы уравнений (11.56) определяются параметры оптимизации а,-, после чего зависимости для оптимального закона движения на г-м участке (11.47) приобретают численный вид. Таким образом, динамически оптимальный закон движения на отрезке [О, 1] построен как непрерывная функция, удовлетворяющая однородным граничным условиям и изоперимет-рическому условию (11.31).  [c.44]

В частных случаях задачи, когда тело имеет простую в геометрическом смысле форму, было н йдено, что уравнение, выражающее граничные условия (1.30) или (1.31), имеет бесчисленное множество корней и дает ряд возрастающих значений для чисел т , представляющих дискретную совокупность чисел построенная же при помощи формулы (1.29) функция > является общим интегралом уравнения Фурье. Уравнение (1.28) называют л арал гйрмс 7м<гесл ил, а функции Uj, являющиеся частными решениями уравнения (1.23),— характеристическими или собственными функциями задачи. Они соответствуют совершенно определенным дискретным значениям параметра т.  [c.24]

К положрггельным элементам одномерного варианта МГЭ (простота логики формирования разрешаюш,ей системы уравнений, хорошая устойчивость численного процесса, непосредственное определение начальных параметров каждого обобш,енного стержня из разрешаюш,ей системы и т.д.) добавляются факторы, существенно важные для расчета пластинчатых систем. Ядра интегральных уравнений (функции Грина) в МГЭ не содержат сингулярных точек. По этой причрше уравнение (7.20) снимает проблему вычисления многомерных сингулярных интегралов. Исключается и проблема построения численного решения в окрестностях угловых точек пластины, что весьма актуально в прямом методе граничных элементов [29]. Как будет показано ниже, этот момент позволяет существенно повысить точность  [c.407]

Здесь при рассмотрении тех же задач, что и в гл. 1, предлагается несколько иная аналитическая форма представления решений. А именно искомые функции ии утся в виде рядов по целым степеням малого параметра е. Рассматриваются варианты граничных условий, отличные от условий шарнирного опи-рания, и решается задача о расщеплении граничных условий, т. е. о выделении двух линейных комбинаций граничных условий, которым нужно удовлетворить при построении основного напряженного состояния. Обсуждается также вопрос о зависимости критической нагрузки от граничных условий.  [c.149]

В настоящее время большое внимание уделяется созданию адекватных моделей нелинейных процессов деформирования, связанных с большими деформациями, неупругим поведением материала и нелинейными динамическими волновыми явлениями в слоистых и композиционных материалах. Построение общих сложных моделей, как правило, сочетается с необходимостью разработки достаточно простых, но в то же время эффективных моделей описания процессов с требуемой точностью, выделением главных или ведущих параметров рассматриваемых процессов деформирования и созданием экономичных программ их численной реализации. При решении задач механики сплошных сред и деформирования элементов конструкций достаточно универсальными и широко распространенными являются метод конечных элементов (МКЭ), метод граничных элементов (МГЭ), вариационно-разностные методы (ВРМ), метод конечных разностей (МКР) в различных вариантах и сочетаниях с другими методами. В основу этих методов положено дискретное представление функций непрерывного аргумента и областей их определения, ориентированное на использование современных ЭВМ с дискретным способом обработки информацш, включая вычислительную технику новой архитектуры с векторными и параллельными процессорами. В механике, в частности в строительной, дискретное представление тел или конструкций в виде набора простых элементов имеет глубокие исторические корни, которые в свое время и послужили отправной точкой развития и обобщений МКЭ.  [c.5]

Д. и, Шерман предложил метод эффективного решения этих задач для двусвязных областей определенного вида, заключающийся в следующем ) на одном из контуров, ограничивающих область сечения, вводится вспомогательная функция, для определения которой строится интегральное уравнение типа Фредгольма, которое затем решается при помощи разложения вспомогательной функции в ряд по степеням параметра, характеризующего частично размеры сечения, главным образом сравнительную близость граничных контуров для решения задачи с высокой степенью точности оказалось достаточным найти незначительное число приближений. В работах Д. И. Шермана [40], [41], [44—47], Д. И. Шермана и ]VI. 3. Народецкого [1] этим методом решены задачи кручения и изгиба брусьев, поперечные сечения которых являются двусвязными областями, ограниченными окружностью и эллипсом, окружностью и квадратом с закругленными вершинами, неконфокальными эллипсами и т. п. В работе Р. Д. Степанова и Д. И. Шермана [1] изучено кручение круглого бруса, ослабленного двумя продольными цилиндрическими круговыми полостями. В работе Д. И. Шермана [43] изучены бесконечные системы линейных уравнений, построенные для решения задач, рассмотренных в упомянутых выше работах (Шерман [40], Степанов и Шерман [1]).  [c.629]

К приближенным методам решения краевых задач, теории движения грунтовых вод могут быть отнесены различные приемы получения оценок, основанные на изучении поведения решения при вариации граничных условий. Все эти приемы можно объединить под общим названием метода мажорантных схем поскольку в конечном итоге они сводятся к построению вспомогательных (упрощенных) схем, отличных от рассматриваемой и мажорирующих те или иные.параметры искомого решения ). Опирающиеся на теорию аналитических функций соображения о влиянии вариации области течения на решение были первоначально высказаны М. А. Лаврентьевым (1946). Затем это направление было широко развито, в том числе применительно к разнообразным задачам теории фильтрации, Г. Н. Положим (1952 и сл.), которому принадлежит и ряд относящихся сюда общих теорем (о движении граничных точек отображаемых областей, о сохранении области и соответствии границ для некоторых эллиптических систем и др.). Основные работы по исследованию конкретных задач теории напорного и безнапорного движения грунтовых вод с помощью метода мажорантных схем были выполнены киевской школой (В. Е. Шаманский, И. И. Ляшко, Н. А. Пахарева, В. И. Лаврик, А. А. Глущенко и др.)  [c.614]



Смотреть страницы где упоминается термин Построение функций граничных параметров : [c.48]    [c.131]    [c.55]    [c.284]    [c.223]   
Смотреть главы в:

Расчет гладких и оребренных кольцевых элементов конструкций  -> Построение функций граничных параметров



ПОИСК



Функция граничная

Функция параметрами



© 2025 Mash-xxl.info Реклама на сайте