Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контур МПЦ электродвигателя

Затем подрисовывают тонкими линиями контуры электродвигателя и редуктора. При этом определяют и наносят на чертеж размеры 4 4э электродвигателя и /р, /]р редуктора. Вычерчивают контуры рамы и наносят на чертеж размер Ло — разность высот опорных поверхностей рамы.  [c.334]

Второй контур представляет собой обычный теплосиловой цикл, в котором циркулирует какое-либо низко-кипящее рабочее тело, испаряемое в теплообменнике 3 теплотой Q, поступающей из первого контура. Сконденсированное в конденсаторе 6 при температуре, близкой к То.с, это рабочее тело подается насосом 5 через теплообменник в главную турбину 4, где расширяется, производя работу. Эта работа L при установившемся режиме отдается на привод первого контура (электродвигатель отключается), а оставшаяся часть идет на электрогенератор 7, производящий энергию для внешнего потребления.  [c.192]


В верхней части чертежа в масштабе вычерчивают контур электродвигателя (рис. 17.10).  [c.323]

С целью сокращения графической работы допускается полное изображение заменять изображением, передающим основные формы детали (изделия), или вычерчивать только контур детали (изделия), например электродвигателя, частей электроаппаратуры и т. д.  [c.330]

Конфигурацию и размеры рамы определяют тип и размеры редуктора и электродвигателя. Расстояние между ними зависит от подобранной или сконструированной соединительной муфты. В связи с этим на листе бумаги первоначально вычерчивают тонкими линиями в масштабе 1 2 контуры муфты в разрезе (рис. 21.1). Одну полумуфту соединяют с валом электродвигателя, а другую —с валом редуктора. Таким образом определяют размер а между торцами валов.  [c.334]

Схемы замещения (СЗ) являются удобным и широко распространенным средством анализа установившихся режимов работы ЭМ. Известно большое количество разнообразных СЗ, используемых для решения различных конкретных задач. Достигнутый в теории ЭМ уровень обобщений дает возможность построения для ЭМ разного типа единой универсальной СЗ. Для электродвигателей возможна, в частности, унификация на базе СЗ АД, выделение в которой активных и индуктивных параметров статора (Г1, Х1), намагничивающего контура (/"с о) и ротора хорошо согласуется со структурой схемы замещения магнитной цепи ЭД.  [c.114]

Конструктивная схема насоса с внешним зацеплением показана на рис. 23.12. Насос состоит из двух шестерен — 1 н 4. Одна из них (ведущая 1) снабжена валиком, через который получает движение от электродвигателя. Эта шестерня называется ротором, а другая, приводимая в движение первой, — замыкателем. Обе шестерни помещены с малыми зазорами в корпус 3. При их вращении в направлении, указанном стрелками, во всасывающей полости 2 создается разрежение и происходит всасывание жидкости в корпус насоса. Жидкость заполняет впадины между зубьями и перемещается шестернями по внешнему контуру рабочей камеры насоса к нагнетательной полости 6. Здесь зубья вновь входят в зацепление, и жидкость выдавливается из впадин в напорный трубопровод. Для обеспечения наибольшей компактности шестерни выполняют с одинаковым числом зубьев — от 6 до 12.  [c.323]

Схема стенда с замкнутым силовым контуром показана на рис. 158, в. От электродвигателя 1 приводятся во вращение две одинаковые пары зубчатых колес 2, которые соединены длинными валами. На одном из них помещена фланцевая муфта 5, одна половина которой может поворачиваться относительно другой, в результате чего происходит упругое скручивание обоих валов. В замкнутом контуре создается нагрузка, а электродвигатель преодолевает только потери на трение.  [c.494]


Момент на электродвигателе определяется устройством 4 (система мотор-весы), а окружное усилие на зубчатых колесах измеряется при помощи динамометрического устройства при скручивании валов. Различные варианты стендов с замкнутым контуром отличаются прежде всего способом создания крутящего момента, например, за счет длинного торсионного вала, проходящего внутри пустотелого вала, за счет осевого смещения косозубых колес, специальным нагрузочным устройством с гидро- или пневмоприводом, позволяющим создавать усилия после начала вращения передачи или другими способами.  [c.494]

При рассмотрении переходных и неустановившихся процессов в рабочих машинах, приводимых в движение электродвигателями, имеет место взаимное влияние машины, рассматриваемой как системы масс с упругими связями, двигателя и системы управления. Электрическая система должна быть представлена как определенное сочетание электрических контуров, состоящих из сопротивлений, индуктивностей и емкостей. Переходные процессы в механической и электрических системах связаны друг с другом.  [c.105]

Из всего многообразия электрогидравлических приводов (ЭГП) следует выделить шаговые приводы, в которых задающим устройством служит шаговый электродвигатель. Этот тип привода позволяет иметь разомкнутый контур управления при наличии только местных внутренних обратных связей,что упрощает как конструкцию самого привода, так и электронную часть системы управления. Шаговые приводы хорошо зарекомендовали себя в качестве привода подач металлорежущих станков и широко применяются в роботах. Диапазон регулирования шаговых ЭГП ограничен возможностями шагового электродвигателя.  [c.161]

Планировка АЛ должна содержать контуры всех механизмов с условным обозначением на их фоне электродвигателей, электромагнитных тормозов и муфт, конечных выключателей, электромагнитов, реле давления, реле контроля скорости и других устройств, используемых в качестве исполнительных элементов электропривода и датчиков.  [c.171]

В реакторах ВВЭР-440 применен синхронный двигатель с вращающимся ротором (рис. 11.3). Статор электродвигателя 12 расположен в герметичном кожухе 7, а ротор 6 находится в среде первого контура. Его полый вал через редуктор 11 передает вращение на реечную шестерню 9, связанную с рейкой 8-К рейке жестко прикреплена штанга, сцепленная с головкой регулирующей кассеты 10. Сверху располагается датчик положения 1, состоящий из катушек 2 и магнитного шунта 3, установленного на шариковой гайке 4, линейно перемещающейся при вращении ходового винта 5, связанного с валом электродвигате-  [c.131]

На АЭС с ВВЭР-210 и ВВЭР-365 (I и II блоки Нововоронежской АЭС) ходовые части насосов с приводными электродвигателями размещены в необслуживаемых при работе реактора боксах вместе с трубопроводами и другим оборудованием первого контура. Каким бы не был надежным насосный агрегат, оставлять его без периодического осмотра в течение многих месяцев работы нежелательно, т. е. целесообразно обеспечить хотя бы кратковременный доступ к агрегату.  [c.16]

Отличительной особенностью насосных агрегатов такого типа-является наличие механического уплотнения вращающегося вала, которое в насосах с большой подачей обеспечивает значительные преимущества по сравнению с герметичными. Действительно, уплотнение вала позволяет использовать для привода насосов серийные электродвигатели, турбины, гидроприводы, а также заменять их без разгерметизации первого контура. Все это заметно снижает эксплуатационные расходы и стоимость ГЦН. Кроме того, существенно (на 10—15%) повышается КПД мощных насосов, появляется возможность установить на валу агрегата маховик для обеспечения необходимого выбега при обесточивании приводного электродвигателя. Конструкционная схема таких ГЦН позволяет без особых затруднений применить как жесткое соединение валов насоса и привода, так и связь их через эластичную (гибкую) муфту, торсион, а при необходимости и через редуктор,, электромагнитную или гидравлическую муфту.  [c.29]


Для ГЦН, работающих в контурах высокого давления, имеют место высокие осевые усилия (до 1000 кН), которые в вертикальных насосах могут быть направлены вверх или вниз в зависимости от режима работы. При включении такого насоса возникает большая удельная нагрузка на осевой подшипник, что может привести к его интенсивному нагреву и износу. Кроме того,, отсутствие гидродинамического клина в осевом подшипнике при пуске ГЦН приводит к чрезмерно высоким пусковым моментам, которые уже не могут быть преодолены приводным электродвигателем обычной конструкции. Поэтому с помощью конструкционных мероприятий стараются снизить величину пускового момента. Это достигается, например, с помощью впрыска под высоким давлением масла между несущими колодками и пятой и обеспечения за счет этого необходимой для легкого пуска смазочной пленки. Применяется также гидравлическая или электромагнитная разгрузка.  [c.119]

Рассмотренный метод разгрузки от осевых сил в целях обеспечения запуска электродвигателя ГЦН при полном давлении в основном контуре циркуляции, а также для облегчения работы осевого подшипника скольжения на номинальной нагрузке используется и в насосе с уплотнением вала реактора ВВЭР-440. Электромагнитное устройство, установленное в верхней части корпуса радиально-осевого подшипника, создает на вале насоса направленное вниз осевое усилие до 200 кН.  [c.120]

Вал 3 насоса жестко соединен с ротором электродвигателя муфтой 7 и таким образом образована единая сборка, вращающаяся в трех подшипниках. Критическая частота вращения вала в 1,25—1,3 раза превышает фактическую частоту вращения. В качестве нижней направляющей опоры в насосе применен гидродинамический подшипник скольжения 4, смазываемый и охлаждаемый водой, циркуляция которой осуществляется по автономному контуру посредством специального вспомогательного импеллера. В электродвигателе расположены два подшипника качения с масляной смазкой, один из которых рассчитан на восприятие и осевой нагрузки, передаваемой от насоса через соединительную муфту с помощью кольцевых шпонок. Монтаж и демонтаж муфты осуществляются за счет предусмотренного в ней продольного разъема. В самой муфте между торцами валов предусмотрен зазор 370 мм, позволяющий проводить без демонтажа электродвигателя замену узла уплотнения и подшипника ГЦН.  [c.154]

Промышленное изготовление ГЦН серийной модели с подачей 20 000 м /ч позволило унифицировать и стандартизировать производство ГЦН первого контура для реакторов PWR различной электрической мощности (от 500 до 1000 МВт). Это насос вертикального типа, одноступенчатый, состоит из трех основных частей (рис. 5.17) проточная часть, блок уплотнений, электродвигатель с короткозамкнутым ротором. Теплоноситель поступает в ГЦН снизу, проходит через рабочее колесо 2, диффузор 3 и отводится через нагнетательный патрубок, расположенный на боковой поверхности корпуса 1. Внутри корпуса, несколько ниже радиального подшипника 5, работающего на водяной смазке, предусмотрен кольцевой теплообменник 4, внутри которого циркулирует охлаждающая вода низкого давления. Теплообменник обеспечивает защиту водяного подшипника и уплотнений при авариях, сопровождающихся прекращением подачи запирающей воды. Агрегат имеет три подшипника два из них расположены в электродвигателе, третий — в ГЦН между теплообменником и уплотнением вала. Уплотнение вала 6 — трехступенчатое с регулируемыми протечками. Очищенная запирающая вода подается к валу насоса и обеспечивает охлаждение верхней и нижней частей насоса и узла уплотнений. Очистка необходима для нормальной работы нижнего радиального подшипника и уплотнения. Нижнее уплотнение гидростатического типа работает без механического контакта. Нормальная протечка через него составляет 0,19 м /ч. В этом уплотнении срабатывается почти весь перепад давления — после него давление воды составляет всего 0,35 МПа.  [c.156]

Насосы реактора БР-5. Выемная часть насоса первого контура (рис. 5.22) погружена в бак 17, который одновременно служит и компенсатором объема. Для успокоения натрия в нем предусмотрены специальные ребра. Вал 14 вращается в двух сферических самоустанавливающихся роликоподшипниках 5 и 10, расположенных в корпусе электродвигателя. Смазка подшипников консистентная. Нижний подшипник охлаждается аргоном, который циркулирует внутри насоса. Чтобы уменьшить приток тепла к подшипнику, вал выполнен пустотелым. Циркуляция аргона обеспечивается установленным на валу электродвигателя вентилятором. Верхний подшипник охлаждается встроенным холодильником.  [c.161]

J — система управления станцией 2 — асинхронно-вентильный каскад 3 — электродвигатель 4 — тахогенератор 5 — ГЦН первого контура 6 — обратный клапан 7 — ГЦН второго контура  [c.171]

Для насоса первого и второго контуров были спроектированы и изготовлены регулируемые электроприводы по схеме АВК с электродвигателями на напряжение 6000 В и частоту 50 Гц с фазным ротором. Структурная схема системы управления станцией, АВК и ГЦН приведена на рис. 5.29. Регулируемый электропривод дает возможность  [c.175]

Насосы первого и второго контуров идентичны по конструкции, кроме проточной части. У насоса второго контура рабочее колесо — двухстороннего всасывания. Приводом насоса является электродвигатель с фазным ротором. Частота вращения регулируется жидкостным реостатом.  [c.183]

В них можно выделить контур основного колеса и контур охлаждения электродвигателя (рис. 6.19). Поскольку осевые силы, действующие на рабочее колесо при одной и той же подаче, меняются пропорционально изменению плотности перекачиваемой Среды, то происходит изменение осевой силы, действующей на подшипники насоса при изменении температуры рабочей среды. Осевая сила, действующая на осевой подшипник герметичного насоса, определяется по формуле  [c.212]


Механическое торцовое двухступенчатое уплотнение вала 7, работающее на контурной воде, для удобства монтажа и демонтажа скомпоновано в отдельный блок. Нижняя ступень уплотнения функционирует при перепаде давления между контуром и ионообменным фильтром установки, верхняя ступень — при перепаде примерно 2 МПа и является разгруженной резервной Ступенью. В случае выхода из строя нижней ступени при полном перепаде оказывается верхняя ступень уплотнения. Протечки активной воды после верхней ступени уплотнения и протечки масла из радиально-осевого подшипникового узла сливаются в технологические резервуары установки. Наличие свободного слива после верхней ступени уплотнения и давления масла в полости верхнего подшипникового узла позволяют исключить выход активной воды и аэрозолей в помещение установки. Между проточной частью ГЦН и блоком уплотнения установлен тепловой барьер (холодильник 6), предотвращающий воздействие тепла на уплотнение вала. Передача крутящего момента от электродвигателя к насосу осуществляется торсионной муфтой, состоящей из зубчатой полумуфты 11 и торсиона 10, который выполняет роль гибкого элемента и одновременно является дистанционирующей проставкой, позволяющей проводить замену блоков уплотнения вала и верхнего радиально-осевого подшипника без демонтажа электродвигателя.  [c.281]

Испытание на усталостное изнашивание, в условиях более близких к эксплуатационным, проводится при использовании в качестве образцов самих деталей — например, зубчатых колес или подшипников качения. По способу нагружения машины для испытания зубьев зубчатых колес бывают с открытым силовым контуром и с замкнутым силовым контуром. В первом случае электродвигатель вращает зубчатую передачу, на выходном валу которой имеется тормоз. Такие установки иногда бывают очень крупными, например, включают привод от  [c.249]

Станок работает гибкой стальной лентой, на которой закреплены короткие напильники. Напильники подпираются плоскими пружинами. Концы ленты продеваются сквозь отверстие в детали и соединяются быстродействующей защелкой. Непосредственно у детали лента опирается на направляющие скольжения со смазкой. Для натяжения лепты верхний шкив делается подвижным. Скольжение ленты по шкиву иногда устраняется устройством на ней выступов, входящих в зацепление со шкивом. Привод станка осуществляется от многоскоростного электродвигателя или односкоростного с механическим бесступенчатым вариатором. Стол имеет поворот в двух направлениях, при опиловке средних и больших деталей — подача от груза. Применяется для опиловки внутренних и наружных контуров. Средняя скорость резания при опиловке — от 20 до 50 м,мин. Производительность станка примерно в 3 раза больше, чем станка с возвратнопоступательным движением. Недостаток станка — трудность изготовления напилочной ленты  [c.517]

На главном виде вычертавают контур плиты (рамы) и приступают к конструированию плиты (рамы) на виде сверху. Для этого в контурах электродвигателя и редуктора наносят центры и контуры опорных поверхностей (фундаментных лап). Опорные поверхности под лапы электродвигателя, редуктора и защитного кожуха для муфты (если он необхо-ди.м по технике безопасности) на плите (раме) выделяют в виде приливов (платиков) и подвергают механической обработке. Ширину и длину приливов (платиков) назначают больше ширины Ьр1, и длины /о, /р, 4 опорных (присоединительных) поверхностей соответственно электродвигателя, редуктора и защитного кожуха на величину 2Со - 8 4- 10 мм (рис. 7.10).  [c.323]

На рис. 21,1 вычерчен контур простейшей рамы и нанесены размеры для установки электродвигателя и коническо-цилиндрического редуктора. Под главным видом рамы размещают вид сверху. На этом виде сначала проводят осевые линии вала электродвигателя и соосно расположенного с н им входного вала редуктора. Затем изображают отверстия в лапах электродвигателя 3 и в редукторе йр, координаты их расположения С Ср.  [c.312]

Вычерчивается плоская развернутая схема маханизма с валиками, расположенными в одной плоскости. При этом наносятся наружные контуры зубчатых колес, шарикоподшипников, фланцев или стаканов для подшипников, муфт, шкал электродвигателя, редуктора и других элементов конструкции (см. рис. 28.8, а, в).  [c.402]

Бессальниковый шестеренчатый циркуляционный насос вместе с. асинхронным электродвигателем помещен в стакан 4, на внешнюю поверхность которого действует давление азота, равное давлению спирта в циркуляционном контуре. Таким образом, шестеренчатый насос разгружен от одностороннего давления. Асинхронный электродвигатель насоса обеспечивает достаточно высокую стабильность числа оборотов, что позволяет получить постоянный расход спирта в контуре (колебание расхода около 0,2%).  [c.198]

Всего на ледоколе установлено три водо-водяных реактора тепловой мощностью 90 тыс. кет каждый, работающих на слабо обогащенном уране. Два из них являются постоянно действующими, а третий — фактически резервный —используется лишь в случаях форсирования тяжелых льдов и при ремонте основных реакторов. Как и в силовых атомных установках ранее рассмотренных электростанций, теплоноситель в силовой установке ледокола проходит снизу вверх через реактор 1 (рис. 54), нагревается в его активной зоне 2, затем отводится к теплообменнику 3, отдавая тепло воде вторичного контура, и циркуляционным насосом 4 снова нагнетается в реактор. Пар, образующийся в парогенераторе 5, подается в турбины 6, приводящие в действие электрогенераторы 7. По выходе из турбин пар поступает в конденсатор 8, охлаждается забортной водой, подаваемой в змеевики насосом 9, а конденсат насосом 10 перекачивается обратно в парогенератор. Электрический ток, вырабатываемый электрогенераторами, подводится к электродвигателям 11, вращающим валы гребных винтов 12.  [c.182]

Для обеспечения работы системы в случае значительных односторонних удлинений испытываемого образца (статическое растяжение, сжатие или накопление деформаций в условиях квазиста-тического разрушения) предусматривается дополнительный автономный контур поддержания среднего положения поршня. Система слежения его, получая сигнал от датчика положения поршня, через усилительную аппаратуру, электродвигатель, зубчатую передачу и винтовые колонны осуществляет перемещение подвижной траверсы, сохраняя среднее положение поршня и соответствующие запасы хода его.  [c.229]

В табл. 6.2 приведены основные гидравлические характеристики реакторных контуров. Первоначально для реакторов ВВЭР-440 использовался бессальниковый ГЦН с погруженным электродвигателем для исключения потерь конденсата. Однако такие насосы имели очень малый КПД и, кроме того, их электрическая часть не была доступна, если требовался ремонт. Поэтому от них отказались и стали применять ГЦН с организован-  [c.59]

В АЭС с ВВЭР-440, РБМК и БН электродвигатели совместно с верхней ходовой частью насосов также находятся вне защитных боксов и доступны для недлительного непосредственного наблюдения (рис. 1.6, 1.7). ГЦН juisf ВВЭР-1000 и АСТ-500 (насосы промежуточного контура) располагаются вне биологической бетонной защиты, но их осмотр и прямой контроль предполагают посещение внутреннего объема защитной оболочки (см. рис. 1.2).  [c.16]

Насосные агрегаты с гибкой муфтой. Агрегат имеет два независимых узла насос и электродвигатель, каждый из которых содержит по два радиальных подшипника и по одному осевому. Такая конструкционная схема принята для всех отечественных и для большинства зарубежных ГЦН. Нежесткое соединение валов насоса привода позволяет широко использовать обычные стандартные двигатели, поскольку на их вал осевое усилие от насоса не передается. Насос на собственных опорах предпочтительнее еще и потому, что допускает вести обработку валов насоса и привода независимо друг от друга. Электродвигатель можно заменить или отремонтировать, не извлекая насос из контура и не нарушая герметичности последнего, а также поставлять на объект раздельно с насосом. Насосные агрегаты этой группы могут иметь  [c.31]


В созданных и проектируемых ЯЭУ с жидкометаллическим теплоносителем (натрий, сплав натрий—калий) в основных контурах применяются насосы двух типов механические (рис. 2.12) и электромагнитные (ЭМН). У механических насосов вал выводится к приводу через специальное уплотнение, которое Д0лл<н0 обеспечивать вакуумирование насоса в составе ЯЭУ перед заполнением теплоносителем и надежно удерживать нейтральный газ (азот, аргон) под избыточным давлением 0,01—0,3 МПа при работе. У таких насосов в качестве привода могут использоваться электродвигатели серийного исполнения или турборедукторы. Перед уплотнением вращающегося вала устанавливается стояночное уплотнение, позволяющее герметизировать рабочую полость, при остановленном насосе, когда необходимо заменить уплотнение вращающегося вала. С электроприводом вал насоса соединяется аналогично водяным ГЦН [5, 6].  [c.36]

В качестве привода ГЦН преимущественно используется электродвигатель. В реакторах ВВЭР и РБМК Для привода насосов имеющих постоянную частоту вращения, применяются асинхронные электродвигатели. Насосы первого и второго контуров для реакторов на быстрых нейтронах в силу особенностей теплотехнической схемы установки должны иметь плавное или ступенчатое регулирование частоты вращения.  [c.130]

Насосы реактора Rapsodie (Франция) [20, 21]. Насосы первого контура центробежные, одноступенчатые, заглубленного типа (рис. 5.38), установлены на холодной ветке циркуляционного контура петлевой компоновки. Вал насоса 11 вращается в двух подшипниках нижнем (узел //) — ГСП, верхнем (узел I)—двойном роликовом радиально-осевом. В качестве привода применен асинхронный электродвигатель 15 в герметичном исполнении. Всасывание натрия организовано сверху благодаря перевернутому рабочему колесу 2. Пройдя рабочее колесо, натрий попадает в направляющий аппарат 3 и далее в напорный патрубок 21. В насос первого контура встроен обратный клапан 1, который представляет собой поплавок с запирающим диском. Питание ГСП осуществляется по сверлению в валу с напора рабочего колеса через три отверстия диаметром 12 мм и отверстие в обтекателе рабочего колеса. Чтобы избежать засорения дросселей, в обтекатель встроен сетчатый фильтр. В самом ГСП имеются дроссели диаметром 7 мм. Поверхность подшипника наплавлена колмоноем. Уплотнение вала—двойное торцовое, с масляным гид-розатвором. Охлаждается уплотнение маслом, циркулирующим в замкнутом объеме с помощью лабиринтного насоса, установленного на валу насоса. Масло охлаждается водой в холодильнике, вынесенном из корпуса насоса. Неподвижное кольцо пары трения— стальное со стеллитовой наплавкой, подвижное кольцо — графит. Ремонт верхних узлов осуществляется без разгерметизации контура. Для этой цели служит стояночное уплотнение (узел 1), состоящее из диска, герметично насаженного на вал и запрессованного в него резинового кольца. При отворачивании гайки, крепящей верхний роликовый подшипник, вал насоса скользит вниз и садится резиновым кольцом на бурт в корпусе насоса. Конструкция верхнего подшипникового узла позволяет  [c.183]


Смотреть страницы где упоминается термин Контур МПЦ электродвигателя : [c.259]    [c.223]    [c.34]    [c.140]    [c.180]    [c.183]    [c.228]    [c.272]    [c.264]    [c.454]   
Главные циркуляционные насосы АЭС (1984) -- [ c.212 ]



ПОИСК



ЭЛЕКТРОДВИГАТЕЛИ 357 ЭЛЕКТРОДВИГАТЕЛИ

Электродвигатель



© 2025 Mash-xxl.info Реклама на сайте