Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Схема ГЦН конструкционная

С целью исследования основных закономерностей деформирования материала у вершины трещины при циклическом нагружении были решены МКЭ упругопластические задачи с использованием теории пластического течения в сочетании с моделью трансляционного упрочнения [72, 83]. Объектом численного исследования служила пластина высотой 60, длиной 480 мм с трещиной длиной L = 20 мм и притуплением б = 0,04 мм (рис. 4.2). Минимальный размер КЭ составлял 0,02 мм, что примерно соответствует размеру зерна конструкционных сталей. Нагружение осуществлялось по двум схемам, представленным на рис. 4.2, а. В первой схеме моделировалось деформирование материала у вершины трещины только по I моде нагружения (Pi =5 0, Рг = 0), во второй —по I и П модам одновременно.  [c.204]


В литературе опубликовано большое количество диаграмм рекристаллизации для наиболее широко используемых металлов и сплавов. Для некоторых важных сплавов и сталей, в основном конструкционного назначения, построено по несколько диаграмм для разных условий деформации и нагрева, разного исходного, структурного и фазового состояния и т. д. Связано это с тем, что указанные факторы существенно влияют на характер структуры после рекристаллизации и потому при построении диаграмм рекристаллизации все факторы (кроме степени деформации и температуры отжига), влияющие на величину зерна, должны во всех образцах, по которым строится диаграмма, сохраняться постоянными и сведения о них должны быть приложены к диаграмме. К этим сведениям относятся химический состав и фазовое состояние сплава, для высоко чистых металлов — степень чистоты и содержание примесей, исходная величина зерна и текстура, схема и скорость деформации скорость нагрева и охлаждения, продолжительность изотермической выдержки и т. д.  [c.357]

В силу особенностей влияния на свойства стали, а также по технологическим соображениям наиболее перспективным промышленным способом использования ТМО для улучшения качества массовых конструкционных и строительных сталей, а также сталей и сплавов, работающих в условиях больших и сложных по схеме нагрузок, является ВТМО.  [c.536]

Естественно, что может рассматриваться несколько расчетных схем. Их выбор обусловливается требуемой точностью и существом решаемой задачи. Выбор расчетной схемы является важным этапом решения задачи. Приведенное выше условное деление элементов на стержни, пластины и оболочки фактически является схематизацией их формы. Применяется также и схематизация свойств конструкционных материалов.  [c.147]

Конструкционная схема осевой ступени, включая в себя рабочее колесо и спрямляющий аппарат, является для осевых машин основной (см. рис. 24.10,а).  [c.236]

Под схемой наддува понимают конструкционный способ обб спе-чения двигателя воздухом в нужном количестве и определенного давления. Различают две основные схемы наддува газотурбинный и комбинированный. Газотурбинный наддув осуществляется при помощи одного или нескольких газотурбонагнетателей, кинематически не связанных с двигателем (рис. 6.19, а). Комбинированный наддув осуществляется посредством совместной работы ГТН и устройств, использующих дополнительный источник энергии.  [c.212]


Справочник обобщает опыт, накопленный при создании и исследовании пространственно-армированных композиционных материалов на основе полимерной матрицы. Главная цель книги — оценить конструкционные возможности существующих и перспективных схем пространственного армирования, знание которых должно способствовать более, широкому и рациональному применению этих перспективных материалов в ответственных конструкциях.  [c.3]

О термодинамической вероятности протекания рассмотренных процессов можно судить по величинам изобарных потенциалов соответствующих реакций, рассчитанных по методике, развитой в работе [3]. Согласно расчетам [3], в интервале температур 1000—1350° С (близких к реальной температуре в зоне контакта) взаимодействие по схеме 1) теоретически возможно в основном с термодинамически активными металлами, такими как Т1 и 2г. Взаимодействие керамических покрытий с термодинамически малоактивными металлами, к которым относится большинство конструкционных материалов, энергетически выгодно вести по схеме 2) (см. таблицу).  [c.93]

Для такого рода покрытий можно составить типовой баланс тепла и массы в виде схемы или системы уравнений баланса тепла и массы. Баланс тепла (рис. 1) целесообразно рассматривать не просто в сечении покрытия, а в некоторой окрестности от поверхности — начиная от внешней границы пограничного слоя (е) и кончая внутренней поверхностью защищаемого конструкционного материала (и>) (в рассматриваемом случае — металла).  [c.90]

Рис. 30. Схема установки УВД-500 для исследования высокотемпературной циклической прочности конструкционных материалов. Рис. 30. Схема установки УВД-500 для исследования высокотемпературной <a href="/info/66829">циклической прочности</a> конструкционных материалов.
В ходе ее проектирования и строительства возникало множество трудностей. Известные в то время ядерные реакторы действовали при низких температурах теплоносителя (50—100°С) и были непригодны для энергетических целей. Для осуществления приемлемого термодинамического цикла необходимо было повысить нагрев тепловыделяющих элементов (твэлов) и теплоносителя до 250—300° С. Это вызвало в свою очередь коренные изменения в реакторной технологии, необходимость конструирования специальных энергетических реакторов, разработку технически целесообразных и экономически перспективных схем использования тепла, получаемого в активной зоне реакторных установок, выбор и испытание новых конструкционных материалов. Помимо этого многообразного комплекса впервые ставившихся и решавшихся проблем серьезное внимание ученых и проектировщиков привлекла проблема обеспечения радиационной безопасности  [c.173]

За основу была принята схема свободнонесущего, хорошо обтекаемого скоростного самолета-моноплана с увеличенной нагрузкой на крыло, с гладкой обшивкой и потайной клепкой, закрытой кабиной летчика и с убирающимся в полете шасси, определившая значительное снижение лобового сопротивления (примерно на 45% у самолетов-истребителей и на 30—33% у тяжелых самолетов). Кроме того, были применены так называемые средства механизации крыльев (щитки, закрылки, предкрылки и выдвижные подкрылки с воздушными, гидравлическими и электромеханическими системами привода) для увеличения подъемной силы при посадочных углах атаки. Тогда же началось освоение авиационных двигательных установок большой мощности с хорошо обтекаемыми капотами и радиаторами, с воздушными винтами изменяемого шага и с приводными нагнетателями, намного увеличившими высотность двигателей (свойство сохранения постоянства мощности до расчетных высот полета). К тому же времени относилось использование новых конструкционных материалов — различных марок высокопрочной стали и легких сплавов.  [c.343]

Таким образом, для расчета сильфонного компенсатора на малоцикловую усталость необходимо, с одной стороны, располагать кривой разрушающих деформаций при жестком нагружении, полученной на образцах из конструкционного материала, и, с другой стороны, зависимостью (расчетной или экспериментальной) деформации в наиболее напряженной точке гофра от перемещения его концов. При этом для заданных из условий работы конструкции перемещений определяются упругопластические деформации конструкции, и по кривой усталости материала находится разрушающее число циклов нагружения компенсатора в соответствии со схемой, представленной на рис. 4.1.5, в.  [c.186]


Схема 17. ОСНОВНЫЕ ЭТАПЫ РАЗРАБОТКИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ  [c.214]

В схеме 17 представлены основные этапы жизненного цикла конструкционного материала, разрабатываемого для конкретной конструкции. Каждый этап, в свою очередь, состоит из целой серии подразделов и т. д., т. е. схема представляет собой развернутое дерево целей, достижение которых необходимо для выполнения генеральной цели — создания конструкции с новыми характеристиками.  [c.215]

Ввиду большой трудоемкости работ по созданию информационной базы и пополнению математического обеспечения в результате появления задач, характерных для отдельных подсистем, систему научно-технического прогнозирования конструкционных материалов необходимо разрабатывать последовательно, при этом для каждой подсистемы создается своя информационная база (см. схему 17).  [c.236]

Однако большинство характеристик конструкцион-шх материалов являются количественными конкрет-зое содержание легирующих элементов, значения фи-шческих, механических и коррозионных свойств и пр. Математический аппарат, который целесообразно применять для анализа этих параметров, требует их точного фиксирования. Кроме того, в соответствии с деревом целей (см. схему 17),информация о сталях и сплавах, содержащаяся в патентной и других видах научно-технической литературы, имеет иерархический характер, т. е. отражает последовательность процесса получения материала с заданным уровнем свойств. Поэтому для кодирования подобного рода информации наиболее целесообразно использование иерархического функционального классификатора (ИФК), предложенного в работе [10] и отражающего последовательность окончательных и промежуточных решений в анализируемой области, находящихся в соподчинении между собой.  [c.237]

Повышение характеристик механической прочности Оц, сг-г и ЫВ сопровождается увеличением чувствительности конструкционных материалов к фреттинг-усталости [1, 2]. Применение поверхностных обработок, сопровождающихся образованием в слое сжимающих остаточных напряжений, способствует повышению сопротивления фреттинг-усталости конструкций [1, 4] Под коэффициентом К подразумевается влияние конструктивного фактора па сопротивление усталости — особенности конструкции сопряжения контактирующих деталей, силовая схема передачи циклических нагрузок и др.  [c.383]

Впервые систематизированы сведения по организации антикоррозионных служб предприятий, отраслей и республик. Приводятся положения о работе антикоррозионных служб, рассматриваются вопросы выбора оптимальных схем и методов защиты объектов от коррозии. Особое внимание уделено техническому и экономическому анализу потерь от коррозии. Содержатся сведения о металлических и неметаллических конструкционных химически стойких материалах и защитных покрытиях, по технологии проведения противокоррозионных работ как при изготовлении нового оборудования и конструкций, так и при ремонтных работах.  [c.2]

Схема ввода коррозионной среды — солей морской воды — в газовый поток приведена на рис. 65. Выбор указанной коррозионной среды обусловлен тем, что разрушение многих конструкционных элементов, в первую очередь лопаточного аппарата проточной части газотурбинных двигателей, используемых в морском флоте и морской авиации в качестве основных силовых установок, происходит значительно интенсивнее, чем в обычных условиях.  [c.193]

Для изучения изменения дислокационной структуры в никеле в процессе ИП проведены измерения ФМР поликристаллического никеля при трении с конструкционной бронзой в поверхностноактивной среде (глицерин) и инактивной (масло индустриальное И-20А). Исследования ФМР проводили на спектрометре, который представлял собой волноводную мостовую схему, построенную на ферритовом циркуляторе с отражательным прямоугольным резонатором. Образцы в форме дисков с хвостовиками со сформированной предварительно поверхностью отжигали в вакууме 2,66 х X 10 Па (2-10 мм рт. ст.) при 800° С в течение 2 ч. После отжига образцы испытывали на машине трения АЕ-5.  [c.30]

Конструктивная и динамическая схемы испытательных машин в основном предопределяются применяемым способом сило-возбуждения. Обоснованный выбор способа возбуждения нагрузок может быть произведен при конкретизации характеристик прочности и жесткости объектов испытаний и параметров режима нагружения. При испытаниях стандартных образцов из конструкционных металлов на усталость осевая деформация образца не превышает 0,1—0,5 мм. С учетом жесткости динамометра и элементов силового замыкания машины максимальное реализуемое перемещение активного захвата может быть ограничено  [c.147]

Это требование обусловлено несколькими причинами. Укажем на две важнейшие. Во-первых, всякая машина или сооружение проектируется на долговременную нагрузку, которая определяется техническим заданием на новую конструкцию в рамках принятых норм. Такую нагрузку иногда назь1вают номинальной. В упомянутых нормах имеются указания о предельных значениях кратковременных перегрузок в типовых эксплуатационных ситуациях. Однако известно, что в работе отдельных экземпляров машин или сооружений изредка наблюдаются нагрузки, превышающ ие нормативные. Во-вторых, любой конструкционный материал поставляется на рынок с некоторым разбросом по характеристикам прочности. Для каждого материала суш ествуют нормы минимальных значений этих характеристик, ниже которых приемка осугцествляп ься не должна. Однако пробы производятся выборочно, из-за чего за ворота завода-изго-товителя иногда (хотя и нечасто) уходят партии материала с пониженными характеристиками прочности. Сказанное можно проиллюстрировать схемой на рис. 2.13.  [c.69]

Тантал обладает способностью поглощать газы в диапазоне температуры 600.. 1200 С, он пластичен, нехрупок, легко сваривается с вольфрамом и молибденом, что делает тантал весьма ценным для изготовления деталей электровакуумных приборов, так как он является не только конструкционным материалом, но и поглотителем газов, которые выделяются другими деталями приборов. Однако из-за высокой стоимости тантал используется ггреимущественно для ответственных изделий, работающих в напряжённом тепловом режиме, или в тех случаях, когда к качеству вакуума предъявляются очень высокие требования. Кроме того, из тантала изготавливают тигли для плавки в высокотемпературных печах, тонкоплёночные резисторы в интегральных схемах, электроды танталовьтх конденсаторов  [c.30]


Типичным представителем слоистых фасонных изделий являются текстолитовые стержни. Это цилиндрические изделия сплошного сечения, получаемые из ткани, пропитанной фенолформальдегидным связуюш,им и наматываемой в цилиндрическую заготовку с последующей опрессовкой в стальной обогреваемой пресс-форме. Получаемые по этой технологической схеме стержни имеют хорошие механические параметры и благодаря опрессовке хорошо поддаются обработке резанием, включая нарезку резьбы, благодаря чему применяется как конструкционно-изоляционный материал, предназначенный для работы в масле или на воздухе при температуре от —65 до +105° С и Мормальной влажности. Часто используются для изготовления различных тяг, штанг и шпилек.  [c.190]

Приведены результаты исследований процессов структурообра зования й формирования свойств горячедеформированных конструкционных сталей. Показаны возможности использования совместного воздействия пластической деформации и термической обработки для повышения качества металлопродукции и получения стали с заданными свойствами непосредственно в потоке прокатного стана. Проанализированы возможные технологические схемы новых процессов механохимикотермической обработки, контролируемой прокатки с регулируемым охлаждением, сфероидизирующей обработки, получения композиционных материалов.  [c.62]

В итоге работ исследовательских институтов и ОКБ были улучшены аэродинамика самолетов и конструкции авиационных двигателей, максимальная скорость полета к 1925 г. достигла 150—180 км1час (в 1909 г. — 80 км/час). К 1928 г. по мере развития авиационного двигателестроения величина скорости возросла до 250—280 км/час. Но все перечисленные успехи еш е не были связаны ни с существенным изменением аэродинамических схем самолетов, ни с существенным изменением конструкции двигательных установок. Основные же особенности нового периода, рассматриваемого в этой главе,— периода, в течение которого скорость полета увеличилась до 400—450 км/час (1934—1935 гг.), а затем (в 40-х годах) до 600—700 км/час,— составили именно кардинальные отличия в выборе аэродинамических схем, в конструировании двигателей и выборе конструкционных материалов.  [c.342]

Летные испытания первых реактивных истребителей, при которых скорость полета достигала 910—950 клг/час, подтвердили результаты ранее выпол ненных теоретических и эксперимента.льных работ. Они показали, что отработанная и широко использовавшаяся аэродинамическая схема свободноне-сущего моноплана с трапециевидным крылом утолщенного профиля допускает увеличение скорости лишь в пределах до 0,8 от скорости звука на соответствующих высотах, что превышение этого предела приводит к тяжелым нарушениям устойчивости и управляемости самолета, что увеличение скорости сопряжено со значительным возрастанием воздушных нагрузок, испытываемых летящим самолетом. Следовательно, для практического освоения околозвуковых и звуковых скоростей обязательны переход к новым аэродинамическим схемам, отказ от применения дерева как конструкционного материала и разработка новых принципов проектирования цельнометаллических самолетов с крыльями и оперением высокой прочности и жесткости.  [c.373]

Свойства этих материалов зависят от вида используемых волокон, их относительного объема, ориентацгш в слоях, материала х трицы и схемы нагружения. По существу, проще обеспечить свойства слоистых материалов в соответствии с конструкцией, нежели создавать конструкцию, исходя из свойств материалов, как бывает при использовании стандартных конструкционных металлов.  [c.79]

Следует учесть также некоторые конструкционные соображения. Чтобы замкнуть внешнюю цепь солнечного элемента, он должен иметь две контактные поверхности — фронтальную и тыльную. При этом фронтальная поверхность должна быть прозрачной За неимением других способов в большинстве элементов фронтальный контакт выполняют в виде гребенки (рис. 5.18). Гладкая кремниевая поверхность отражает до 40 % падающего излучения. Использование многослойных покрытий и текстурированне поверхности обеспечивают снижение отражения до 5 % и менее. В существующих конструкциях часть тока теряется из-за чрезмерной толщины элемента. Носители заряда, образующиеся вблизи внешних поверхностей, могут рекомбинировать на дефектах структуры поверхности, не успевая пересечь потенциальный барьер. При расположении перехода очень близко к поверхности этот эффект должен уменьшиться. Были предложены схемы батарей, позволяющие увеличить КПД за счет более полного использования фотонов во всем спектральном диапазоне. Две из таких схем показаны на рис. 5.19. В настоящее время они не нашли еще широкого применения, поскольку возрастающая себестоимость не компенсируется ростом КПД.  [c.101]

Поэтому методика PATTERN не может рассматриваться в качестве универсального средства как при решении задач научно-технического прогнозирования вообще, так и задач, возникающих при прогнозировании развития конструкционных материалов. Кроме того, затраты на создание подобной методики, постановку ее на ЭВМ и поддержание в рабочем состоянии весьма велики. Так, стоимость первой подготовки схемы PATTERN для решения задач в военно-космической области, осуществленной фирмой Honewell, составила 250—300 тыс. долларов.  [c.139]

Следует заметить, что методика МВО-прогноз обес печивает надежную основу для принятия перспективны решений на период не более 5—10 лет. В ней преду смотрена корректировка полученных данных. Это по зволяет вводить новые данные и уточнять элементь структуры уровней и их оценок. Методика може успешно применяться при прогнозировании развити5 конструкционных материалов (схема 12).  [c.156]

При разработке прогноза конструкционных материалов, расссматриваемых как система (схема 17), необходимо проводить анализ и оценку всех стадий их жизненного цикла, начиная от формирования замысла и кончая снятием устар -вшей конструкции с эксплуатации, Это соответствует том) моменту, когда прини-  [c.215]

Можно наметить общую схему разработки прогно-ов конструкционных материалов.  [c.229]

На основании приведенных данных можно определить оптимальные режимы как линейного, так и плоскостного контурнолучевого упрочнения деталей из различных конструкционных материалов, однако режимы плоскостного упрочнения имеют характерные особенности. Изучение этих особенностей проводилось на стали ШХ15 стандартного химического состава в состоянии поставки со структурой зернистого перлита и твердостью около 250 кгс/мм [22]. Обработка образцов выполнялась на импульсной лазерной установке при следующем режиме = 10 Дж, т = 4 мс, q — = 20 10 Вт/см . Плоскостное упрочнение производилось по схемам, показанным на рис. 38, а, б, в, г. При данных схемах обработки материал в узловых точках, общих для всех зон лазерного воздействия, подвергался многократному температурному воздействию.  [c.73]

Рис. 4. Общая схема методики исследования циклической трещиностойкостп конструкционных материалов при постоянных элоктрохимпческих условиях в вершине трещины. Рис. 4. <a href="/info/4759">Общая схема</a> <a href="/info/498622">методики исследования</a> циклической трещиностойкостп конструкционных материалов при постоянных элоктрохимпческих условиях в вершине трещины.
Возбуждение циклических напряжений в испытуемом элементе на обычных и низких частотах в большинстве случаев осуществляется в нерезонансыом режиме. При высокочастотных испытаниях, наоборот, используется, как правило, резонансный режим возбуждения. На схеме полосой с горизонтальными линиями отмечено то, что данный способ возбуждения используется в перезонансном, а полосой с вертикальными черточками — в резонансном режиме возбуждения циклических нагрузок. Описание рассматриваемых способов возбуждения высокочастотных циклических нагрузок, а также литература по их использованию в конкретных усталостных установках наряду с обзором результатов усталостных испытаний на высоких частотах приведены в [2]. Новые работы по данной проблеме обсуждались на периодически созываемом в Институте проблем прочности АН УССР Всесоюзном семинаре на тему Прочность конструкционных материалов и элементов конструкций при звуковых и ультразвуковых частотах нагружения и отражены в работах [3—5).  [c.331]


Система нагружения. На рис. 1 изображена схема нового криостата. Все силовые детали изготовлены из сплава Ti—6А1—4V. Титан и его сплавы по сравнению с другими традиционными конструкционными материалами при низких температурах имеют значительно больший предел текучести и меньшую теплопроводность. Верхнее и нижнее основания соединены тремя полыми титановыми штангами диаметром 13, длиной 457, толщиной стенки 0,25 мм. Верхнее основание крепится болтами к криостату. В средней части штанги дополнительно фиксируются пластиной. Основания и промежуточная пластина, создавая достаточную жесткость конструкции, обеспечивают течение гелия вдоль стенок сосуда Дьюра. Дополнительными элементами жесткости служат цилиндры (толщина стенки 1.6 мм), концентрично расположенные между нижним основанием и промежуточной пластиной, изготовленные из нержавеющей стали. Цилиндры находятся в жидком гелии и не являются дополнительным теплопроводом. В цилиндрах размещаются электрические провода и трубки для подачи гелия. Диаметр титановой тяги составляет 3.2 (нижняя часть) и 6.3 мм (верхняя часть). Такая тяга выдерживает нагрузку до 4,5 кН (при комнатной температуре). При низких температурах несущая способность удваивается (Э,0 кН при 4 К). Соосность образца относительно оси растяжения обеспечивается жесткими допусками на обработку ( 0,013 мм) и посадочным местом между нижним основанием и гайкой на конце тяги, имеющем сферическую поверхность.  [c.385]


Смотреть страницы где упоминается термин Схема ГЦН конструкционная : [c.289]    [c.69]    [c.61]    [c.168]    [c.233]    [c.144]    [c.192]    [c.213]    [c.45]    [c.370]    [c.4]    [c.164]   
Главные циркуляционные насосы АЭС (1984) -- [ c.9 , c.13 , c.25 , c.29 , c.31 , c.33 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте