Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Насосы Схемы конструктивные

Рис. 205. Диагонально-поршневой насос а — конструктивная схема б — к выводу закона движения Рис. 205. Диагонально-<a href="/info/31324">поршневой насос</a> а — <a href="/info/441835">конструктивная схема</a> б — к выводу закона движения

Наиболее простая компоновка у агрегатов раздельной подачи. К ним прежде всего относятся бустерные насосные агрегаты с газовой или гидравлической турбиной. Последняя широко применяется в ДУ с криогенными компонентами топлива. Конструктивно такие агрегаты просты, так как рабочим телом турбины служит компонент, подаваемый самим бустерным насосом. Схемы с раздельными ТНА применяются в двигателях с дожиганием по схеме газ — газ , когда рабочее тело в камеру двигателя поступает газообразным. При этом одна из турбин работает на газе с избытком горючего, другая — с избытком окислителя. Наличие отдельного привода обеспечивает каждому насосу высокие энергетические параметры и наилуч-  [c.195]

Для иллюстрации методики компонования рассмотрим проектирование центробежного водяного насоса. Избранный в качестве примера объект обладает специфическими особенностями, влияющими на методику и последовательность компонования. В рассматриваемом случае имеется довольно устойчивая исходная база в виде поступающего из расчетного отдела эскиза гидравлической части насоса. Конструктору остается облечь его в металл. Во многих случаях бывает задана только схема проектируемого объекта, без определенного размерного скелета. Иногда конструктор приступает к проектированию, зная лишь технические требования к нему и не представляя даже будущей конструкции. Тогда приходится начинать с разработки идеи конструкции и поисков конструктивной схемы, после чего следует компонование в собственном смысле слова.  [c.85]

Конструктивная схема насоса с внешним зацеплением показана на рис. 23.12. Насос состоит из двух шестерен — 1 н 4. Одна из них (ведущая 1) снабжена валиком, через который получает движение от электродвигателя. Эта шестерня называется ротором, а другая, приводимая в движение первой, — замыкателем. Обе шестерни помещены с малыми зазорами в корпус 3. При их вращении в направлении, указанном стрелками, во всасывающей полости 2 создается разрежение и происходит всасывание жидкости в корпус насоса. Жидкость заполняет впадины между зубьями и перемещается шестернями по внешнему контуру рабочей камеры насоса к нагнетательной полости 6. Здесь зубья вновь входят в зацепление, и жидкость выдавливается из впадин в напорный трубопровод. Для обеспечения наибольшей компактности шестерни выполняют с одинаковым числом зубьев — от 6 до 12.  [c.323]

Из схемы радиально-поршневых гидромашин видно, что подача радиально-поршневого насоса зависит от величины эксцентриситета е. В регулируемых насосах эксцентриситет можно изменять по величине смещением статора в направляющих корпуса. На рис. 216 показана конструктивная схема регулируемого радиально-поршневого насоса с девятью цилиндрами. В корпусе / установлен статор 2, в котором эксцентрично расположен ротор <3, вращающийся на неподвижной распределительной цапфе 4. В этой цапфе вырезаны распределительные пазы и каналы, через которые подводится и отводится жидкость. Статор установлен на раме 5. Поршни 6 своими роликами 7 связаны со статором, в котором сделаны для этого соответствующие канавки. Рама 5 может перемещаться, изменяя эксцентриситет е с помощью механизма 8. Вал ротора 9 соединяется с двигателем. В распределительной цапфе полость всасывания обозначена цифрой 11, а нагнетания — 10. Отверстия 12 и 13 соединены с полостью распределительных пазов осевыми сверлениями в цапфе 4 и служат для присоединения всасывающего и напорного трубопровода. Статор установлен на раме на шарикоподшипниках 14. Вал двигателя 16 соединяется с валом 9 ротора с помощью кулачковой муфты 15. При регулировании насоса рама 5 перемещается в направляющих 17.  [c.335]


Принципиальная схема аксиально-поршневых гидромашин ( 93) показывает, что подача аксиально-поршневого насоса зависит от угла 1 наклонного диска (шайбы). В регулируемых насосах угол 7 можно изменить поворотом диска относительно оси, перпендикулярной к оси вращения блока. На рис. 2 7 показана конструктивная схема регулируемого аксиально-поршневого насоса. Насос состоит из блока цилиндров /, имеющего обычно 7 или 9 параллельно расположенных цилиндров. В каждом цилиндре перемещается поршень 2, опирающийся на наклонный диск 3, закрепленный с помощью упорного подшипника на обойме 7, которая соединяется с корпусом насоса. Обойма вместе с диском наклонена к плоскости, перпендикулярной к оси блока.  [c.338]

Сетевые насосы. Сетевые насосы сетевой подогревательной установки предназначены для питания теплофикационных сетей и обслуживания сетевой подогревательной (бойлерной) установки. Они монтируются либо непосредствен-но на электростанции, либо на промежуточных перекачивающих насосных станциях. В зависимости от теплового режима сети насосы должны надежно работать при значительных колебаниях температуры перекачиваемой воды в широком диапазоне подач. Параметры выпускаемых сетевых насосов определены ГОСТ 22465-77. Основные технические характе ристики насосов приведены в табл. 9.7, а ха рактеристики — в приложении 9. Сетевые насосы центробежные, горизонтальные, с приводом от электродвигателя. В зависимости от размера они могут поставляться как на общей, так и на раздельной фундаментных плитах. В зависимости от создаваемого напора могут быть одно- и двухступенчатые насосы, с синхронными частотами вращения 1500 и 3000 об/мин. По конструктивному исполнению насосы можно разбить на три группы, внутри которых имеют место общность конструктивной схемы и высокая степень унификации. Количество ступеней является основным отличительным признаком, по которому все сетевые насосы делятся на одно- и двухступенчатые.  [c.261]

Насосы типа КМ по конструктивной схеме аналогичны насосам типа МКВ. Отличительными особенностями являются установка рабочего колеса на консольной части вала входной воронкой вверх применение бокового подвода, что дало возможность выполнить корпус цельным с противоположно направленными входным и напорным патрубками.  [c.287]

Поток рабочей жидкости из бака 1 насосом 2 подается к распределителю 3. Золотник А управляет гидроцилиндром 4 или 5 подъема и опускания ковша. В зависимости от конструктивной схемы скрепера применяют четвертую или пятую пару гидроцилиндров, отличие которых в том, что подъем ковша происходит при подаче жидкости в  [c.96]

На рис. 1.5 представлены кинематическая (а) и конструктивная (б) схемы механизма кислородного насоса с указанием величин, необходимых для кинематического исследования.  [c.23]

Для обеспечения безопасной работы установки периодически осуществляется слив кубовой жидкости через испаритель 24 и отогрев адсорберов 22 и 4 (в реальной схеме предусматриваются резервные адсорберы). Кроме того, для выработки холода в пусковой период в жидкостном режиме и для обеспечения длительной безостановочной работы установки имеются резервные турбодетандер 5 и запасной насос. 23 кубовой жидкости. Большое количество азотных регенераторов объясняется исключительно конструктивными соображениями диаметр каждого регенератора равен 3,2 м, а высота составляет примерно 7 м.  [c.327]

В состав пневматических систем входят следующие основные устройства компрессор, вакуум-насос или другой преобразователь механической работы в потенциальную энергию воздуха трубопроводы, по которым транспортируется сжатый или разреженный воздух распределительные, контролирующие, регулирующие и вспомогательные устройства преобразователь энергии сжатого или разреженного воздуха в механическую работу. В зависимости от назначения пневматической системы те или иные из перечисленных устройств в ней могут отсутствовать или принимать самую разнообразную конструктивную форму. Например, на схеме рис. Х.1, б отсутствуют трубопроводы, распределительные, контрольные и регулирующие устройства, а оба преобразователя энергии совмещены.  [c.169]


Приводная часть этих насосов представлена различными схемами, показанными на фиг. 80, где сопоставлены индивидуальные конструкции насосов и унифицированные в качестве базовой конструкции для двух конструктивно нормализованных рядов насосов. К числу индивидуальных относятся  [c.128]

Пневматические и гидравлические съемники по конструктивным схемам не отличаются от ручных в первом (рис. 217, б) сила распрессовки создается пневмоцилиндром, во втором (рис. 217,в) — давлением масла, нагнетаемого насосом.  [c.269]

На люльку аксиально-поршневого насоса с регулируемой подачей действует система сил, обусловленная конструктивной схемой. Часть сил и моментов воспринимается подшипниками люльки. Другая часть силовых воздействий нагружает штоки сервоцилиндров, при помощи которых осуществляется силовое управление люлькой насоса (рис. 1), Здесь — давление нагнетания Рве — давление всасывания ф — угол поворота ротора насоса. Люлька удерживается в заданном положении,или движется по определенному закону, задаваемому извне в результате работы следящей системы с позиционной обратной связью.  [c.150]

Основная частота колебаний усилий на штоках сервоцилиндров в нестационарных режимах работы насоса равна частоте осцилляции золотниковой втулки (25 гц), которую можно приближенно считать синусоидальной. Следует заметить, что максимальные усилия на штоках в не- стационарных режимах в 2—3 раза превышают усилия при фиксированном положении люльки. Это объясняется конструктивными особенностями золотникового распределителя сервопривода люльки. Его схема представлена на рис. 2.  [c.151]

Конструктивные схемы насосов  [c.338]

Каждый из этих органов в идеальном случае представляет собой отдельную деталь, хотя конструктивные соображения или схема машины могут привести к созданию этих органов в виде нескольких деталей. Таким образом, обращение одной из деталей в узел нескольких присуще механизму, составляющему роторный насос. Ротор вращается от ведущего вала. Статор — неподвижный орган, обладающий приёмной и напорной камерами. Если по конструктивным соображениям статор снабжён вращающейся частью, то ось вращения последней должна быть повёрнута или смещена относительно оси вращения ротора.  [c.396]

Экономичной, простой и достаточно надежной в эксплуатации схемой регенеративного подогрева конденсата до расчетной температуры является его последовательный подогрев в поверхностном п. н. д., в деаэраторе и в поверхностном п. в. д. Эта схема (рис. 7-19) на электростанциях получила большое применение. Температура конденсата при полной нагрузке турбины после п. п. д. обычно составляет 65—85° С, после деаэратора 101 —103° С н после п. в. д. 140—180° С. При этом следует учесть, что термический деаэратор предназначен в первую очередь для деаэрации питательной воды и используется в качестве регенеративного подогревателя смешивающего типа только в силу его подходящих конструктивных особенностей. Этим, в частности, и ограничена небольшая степень нагрева питательной воды в деаэраторе. Из приведенной схемы видно, что поверхностный п. п. д. включается между конденсатором и деаэратором, а п. в. д. — между питательным насосом  [c.301]

В монографии изложены основы математического моделирования установившихся режимов работы центробежных насосов при помощи скалярных и комплексных схем замещения, полученных путем использования электрогидравлической аналогии. Предложена методика расчета параметров схем замещения на основании конструктивных данных насосов и характеристик рабочей жидкости. Приведен каталог расчетных параметров для серии насосов магистральных нефтепроводов.  [c.2]

Лопатки, как уже было сказано, охлаждаются водой. Конструктивная схема водяного охлаждения- приведена на рис. 5-12. На рисунке показана часть турбинного диска, в котором укреплены две лопатки, охлаждаемые водой. Охлаждающая вода (дистиллированная) подается циркуляционным насосом в водяную камеру 1. Из камеры U7 вода по радиальным каналам 2 поступает в каналы чашевидного диска, образуя кольцо жидкости 3. По 24 каналам 4 охлаждающая вода идет в кольцевую полость 5, откуда через сверления 10 направляется в каналы, высверленные в диске ротора, и таким образом доходит до хвостов лопаток. Каналы для прохода воды в лопатках сделаны путем вварки внутрь лопаток вогнутых стальных трубок. Из первой лопатки вода проходит по трубке 12 в соседнюю лопатку, откуда по трубке 13 возвращается в диск. Трубки 11, 12 и 13 приварены к диску и к хвостам лопаток. При номинальном числе оборотов давление в местах перехода воды из дисков в лопатки достигает 60 ama. Пройдя через две соседние лопатки, охлаждающая вода поступает в канал 9 и в полость 6, откуда выходит через сверление 7 вместе с паром с температурой около 100°С и далее по трубопроводу  [c.163]

Подогреватели высокого давления для первых энергетических паротурбинных установках на нормальные параметры пара конструктивно не отличались от аналогичных аппаратов низкого давления. С учетом того, что трубная система подогревателя высокого давления работает под полным давлением питательного насоса, они изготовлялись с применением стальных литых водяных камер (основная и плавающая ) и стальных трубок, т. е. более прочными в сравнении с теплообменниками низкого давления. Для комплектации турбоустановок этой серии, выпускавшихся после 1932 г., в схемах регенерации турбин ЛМЗ применялись подогреватели высокого давления с одной водяной камерой и трубной системой, набранной из U-образных стальных и латунных трубок.  [c.50]

На рис. П.6 дана конструктивная схема регулируемого эксцентрикового насоса, где регулирование осуществляется изменением эксцентриситета.  [c.84]

Рис. II.6. Конструктивная схема регулируемого эксцентрикового насоса Рис. II.6. <a href="/info/441835">Конструктивная схема</a> регулируемого эксцентрикового насоса

Рис. 11.37. Конструктивная схема винтового насоса Рис. 11.37. <a href="/info/441835">Конструктивная схема</a> винтового насоса
В конструкциях насосов и гидромоторов применяется обычно не одинарный, а сдвоенный кардан, конструктивная схема которого приведена на рис. 2.31. Обозначив угол поворота карданного вала через т, а углы, образованные его осью с осями приводной шайбы и ротора, соответственно 01 и 02, можем написать  [c.159]

На рис. 62 показана конструктивная схема подъемного устройства весоизмерительной машины до ее модернизации. В основном ее механизм состоит из силового цилиндра 6, который подключается к насосу по обычной схеме, обеспечивающей возвратно-поступательное движение. Согласованное (или синхронное) перемещение всех точек платформы 1 с изделием, которое, как правило, располагается  [c.106]

На рис. 97 показана конструктивная схема аккумулятора, у которого разделение сред обеспечивается плунжером. Полость 3 заполняется сжатым воздухом (или газом). Зарядка маслом полости 2 производится от насоса через полый шток 1.  [c.150]

Как уже отмечалось, при двухступенчатой схеме насосы I ступени должны обеспечивать примерно двукратный расход мазута. Насосы И ступени выбираются по расходу и напору мазута, требуемому котельной. Двухступенчатая схема конструктивно значительно сложнее одноступенчатой и менее гибка в эксплуатации, так как оба рециркуляционных контура взаимосвязаны. Для мазутохозяйства крупных электростанций Теплоэлектропроект применяет двухступенчатую схему рециркуляционного разогрева мазута соответственно нормам технологического проектирования для -ггих станций.  [c.277]

Другой конструктивной разновидностью аксиальнопоршневого насоса является насос, схема которого представлена на рис. 12.10. Он отличается тем, что его ротор I расположен наклонно по отношению к оси вала б. Вращение ротора в этой машине обеспечивается двухшарнирным несиловым карданом 4. Есть подобные гидромашины и с одношарнирным силовым карданом, а также с бескарданной силовой связью через штоки поршневой группы. Возвратно-поступательное движение поршней 2 обеспечивается штоками 3 со сферическими головками на концах, одна из которых, образуя сферический шарнир, закреплена в поршне, а другая — в ведущем диске 5, жестко закрепленном на фланце вала насоса.  [c.203]

Конструкция ротора многоступенчатого. насоса зависит от конструктивной схемы насоса. При одностороннем расположении рабочих колес и скользящей посадке- на вал (разборный ротор) рабочие колеса торцами ступиц упираются друг в друга и передают суммарное осевое усилие на бурт вала (рис. 7.18,в). В случае неперпенцикулярности торцов ступиц возможны возникновение перетоков жидкости по валу и его дополнительный изгиб. Поэтому торцы ступиц обрабатываются с перпендикулярностью 0,01— 0,02 мм при высокой чистоте контактных поверхностей. В горячих насосах между комплектом рабочих колес и упорной втулкой предусмотрен зазор 0,5—1 мм для компенсации тепловых расширений деталей ротора. Скользящая посадка рабочих колес на вал создает возможность для разбалансировки ротора. Наиболее благоприятные условия для обеспечения уравновешенности создаются при неразборной конструкции ротора, когда рабочие колеса посажены на вал с натягом (рис. 7.18,г). Сборка и разборка такого ротора, как правило, производится с подогревом ступицы рабочего колеса. Вал такого ротора имеет ступенчатое уменьшение диаметров посадочных поверхностей под колеса.  [c.171]

Характерной особенностью схем энергоблоков мощностью 300 МВт и более является разделение питательных насосов на основные и бустерные. Установка бустерного насоса диктуется следующими причинами. При увеличении мощности турбин увеличивается и подача применяемых насосов. Но с увеличением частоты в ращения насоса и его подачи повышается требуемый подпор на всасывающей стороне, если одновременно не снижать частоту в ращения ротора. Снижение же частоты вращения уменьшает напор, развиваемый ступенью насоса по квадратичной зависимости, и увеличивает количество ступеней. Это делает насос более тяжелым, дорогим и крупногабаритным (особенно для высоконапорных насосов). Для того чтобы избежать утяжеления насоса, его как бы разделяют на два первый, буст рный — имеет малую частоту в ращения и не требует большого подлора, а второй, основной — имеет большую частоту в ращения, а следовательно, более компактен, что возможно благодаря подпору, создаваемому бустерным насосом. Таким образом, конструктивные соображения вынудили ограничить число ступеней насоса и увеличить частоту его вращения. Последнее в свою очередь пршвело к сооружению бустерного насоса.  [c.239]

Насосы и гидромоторы типа 310 и насосы типа 311 по принципу действия и конструктивным схемам аналогичны гидромашинам типа 210. Они выпусканется трех типоразмеров со шпоночным и шлицевым соединением вы-  [c.168]

Конструктивная схема с несколькими проточными частями одной из тепловозных передач приведена на рис. 114. В данной конструкции имеется один гидротрансформатор и две гидромуфты число обо-рбтов насосов увеличивается по сравнению с числом оборотов двигателя путем введения повышающей зубчатой передачи. Двигатель соединен с валом /. Во время трогания с места и на трудных участках дороги (подъемах) работает гидротрансформатор 6, турбина которого связана с ведомым валом 5. При более легких условиях работы тепловоза проточная часть гидротрансформатора опоражнивается и заполняется гидромуфта 7.  [c.224]

Конструктивная схема рабочей полости предохранительной турбомуфты показана на рис. VIII.9. Предохранительная турбомуфта кроме насосного колеса, вращаемого приводным двигателем, и турбинного колеса, связанного с рабочей машиной, имеет резервуар — дополнительный объем. Дополнительный объем закреплен на насосе и сообщается с рабочей полостью по периферии несколькими небольшими отверстиями и у центральной части кольцевым отверстием со значительным проходным сечением. При работе турбомуфты с номинальным моментом в рабочей полости устанавливается малый круг циркуляции, жидкость отжата к периферии и не вытекает в дополнительный объем, заполнение рабочей полости максимальное. Поэтому скольжение между рабочими колесами турбомуфты небольшое, а следовательно, к. п. д. велик. Обычно номинальный к. п. д. предохранительных турбомуфт 95—96%. Турбомуфта работает по характеристике 1 (см. рис. VIII.9, а), близкой к характеристике полного заполнения. При увеличении нагрузки скольжение в турбомуфте увеличивается и при некотором критическом значении скольжения крит рабочая жидкость приближается к центру и частично вылива-  [c.169]

На рис. 21 была приведена схема кулисного механизма, который является модификацией механизма качающейся кулисы. Такие механдамы в различном конструктивном оформлении (см. рис. 21, б и в) также широко используют в насосах.  [c.244]

В отличие от ранее построенных атомных электростанций на ней впервые в мировой реакторной практике был осуществлен цикл с ядерным перегревом пара. Две группы технологических каналов ее графито-водяного кипящего реактора по конструктивному исполнению блиэки к технологическим каналам реактора Обнинской АЭС, но количество их увеличено и каждый снабжен шестью тепловыделяющими элементами из уранового сплава, обогащенного до 1,3% ураном-235. По трубкам этих элементов в каналах испаряющей группы под давлением 150 атм циркулирует вода первичного контура двухконтурной коммуникационной схемы, нагреваемая до температуры кипения. Образующаяся паро-водяная смесь поступает в сепаратор, в котором происходит разделение пара и воды. Затем пар направляется в змеевики парогенератора и, отдавая тепло воде вторичного контура, конденсируется. На выходе из змеевиков конденсат смешивается с водой, отводимой из сепаратора, проходит через водоподогреватель вторичного контура и, наконец, вновь подается циркуляционными насосами в испаряющие каналы реактора. Пар, получаемый в парогенераторе, проходит через реактор по каналам пароперегревательной группы, нагреваясь до температуры 500° С, и затем поступает в турбину.  [c.177]


Рис. 52. Демонтаж и схемы установки фи гьтроз liTeAA-Temv. а — процесс извлечения фильтрующего элемента со стороны наружной стенки масляного резервуара 6 — конструктивная схема работы отсечного клапана, осуществляющего перекрытие входного отверстия в корпус фильтра в — схема подсоединения фильтра к всасывающему патрубку погружного насоса г — к насосу, установленному на крышке резервуара — к насосу, смонтированному на специальной притычной плите е — конструкция гибкого присоединительного трубопровода Рис. 52. Демонтаж и схемы установки фи гьтроз liTeAA-Temv. а — процесс извлечения <a href="/info/158692">фильтрующего элемента</a> со стороны наружной стенки масляного резервуара 6 — <a href="/info/441835">конструктивная схема</a> работы отсечного клапана, осуществляющего перекрытие <a href="/info/2551">входного отверстия</a> в корпус фильтра в — схема подсоединения фильтра к всасывающему патрубку <a href="/info/607610">погружного насоса</a> г — к насосу, установленному на крышке резервуара — к насосу, смонтированному на специальной притычной плите е — <a href="/info/11177">конструкция гибкого</a> присоединительного трубопровода
Как следует из тепловой схемы АЭС с БН-350 (рис. 8.2), жидкий натрий прокачивается по первому контуру через реактор 1 насосом 5 и по промежуточному контуру насосом 9. Насос 3 имеет биологическую защиту, но конструктивно эти насосы одинаковы. Это центробежные консольные насосы со свободно фиксированным уровнем натрия и механическим уплотнением. еплообменник 2 промежуточного контура представляет собой бак с погруженными в него змеевиками, внутри которых протекает натрий промежуточного контура.  [c.84]

Показывается, что использование управляемого гидромотора вместо управляемого насоса в силовом гидроприводе с разомкнутой схемой управления, кроме существенного уменьшения веса и габаритов, приводит к значительному увеличению постоянной времени и коэффициента демпфирования на больших скоростях движения, делает параметры системы существенно зависимыми от значения параметра регулирования. Устанавливается, что по Отношению к стационарным случайным, воздействиям рассматриваемый гидропривод неустойчив в случае использования гидромотора, кинематика которого меняется с изменением значения параметра регулирования. Дается связь между основными конструктивными параметрами гидромашян и параметрами дифференциального уравнения. Зависимость коэффициентов динамической ошибки от нагрузки и значения параметра регулирования является причиной низкого качества управляемости системы. Динамические свойства на малых скоростях движения не отличаются от свойств традиционной системы. Рис. 2, библ. 16.  [c.221]

Фиг. 78 Конструктивная схема регулирования турбин 2500 и 4СОО кет в исполнении НЗЛ 1 — дроссельный золотник 2—регулятор скорости 3 и дифе-ренциальные сервомоторы 5—масляный насос б—дроссельный масляный клапан 7—приспособление для изменения скорости вращения редукционный клапан 9—регулятор давления 30 — дроссельный золотник 11 — приспособление для выключения регулятора давления 72—приспособление для изменения давления отбора 13 — сервомотор паро-рас-иределения высокого давления 74-пусковая рукоятка 75—отсечный золотник сервомотора поворотного кольца 16—перекидной рычаг 17 — сервомотор поворотного кольца 76 —регулировочные клапаны Фиг. 78 <a href="/info/441835">Конструктивная схема</a> <a href="/info/111294">регулирования турбин</a> 2500 и 4СОО кет в исполнении НЗЛ 1 — дроссельный золотник 2—<a href="/info/12270">регулятор скорости</a> 3 и дифе-ренциальные сервомоторы 5—<a href="/info/27438">масляный насос</a> б—дроссельный масляный клапан 7—приспособление для <a href="/info/437938">изменения скорости</a> вращения <a href="/info/29374">редукционный клапан</a> 9—<a href="/info/29455">регулятор давления</a> 30 — дроссельный золотник 11 — приспособление для выключения <a href="/info/29455">регулятора давления</a> 72—приспособление для изменения <a href="/info/104150">давления отбора</a> 13 — сервомотор паро-рас-иределения <a href="/info/251457">высокого давления</a> 74-пусковая рукоятка 75—отсечный золотник сервомотора <a href="/info/400758">поворотного кольца</a> 16—перекидной рычаг 17 — сервомотор <a href="/info/400758">поворотного кольца</a> 76 —регулировочные клапаны
На рис. 9-15 приведены подобная схема и конструктивные особенности деаэратора, разработанные УЭМП. Безъемкостный деаэратор J готовится из корпуса фильтра со сферическими днищами. Деаэратор имеет в первой ступени деаэрации струйно-разбрызгиваю-щее устройство 2, а во второй — полузамкнутый контур многократной барботажной додеаэрации 3. Вакуум создается вакуум-насосом 4, отсасывающим парогазовую смесь через обезвоживающий охладитель выпара 5.  [c.212]

Недостатком смешивающих (подогревателей является необходимость установки после каждого из них отдельного насоса, подающего Воду в следующую ступень регенеративного подогрева. Число последовательно установленных насосов, не считая конденсат-ного, по пути от конденсатора до парового котла равно в этом случае числу регенеративных отборов. Такая схема изображена на фиг. 47 и применена на некоторых американских электростанциях. Некоторое упрощение может быть достигнуто объединением привода нескольких насосов от общего мотора или даже конструктивным объединениям нескольких насосов в один с промежуточным включением подогревателей между ступенями насосов.  [c.72]

Из приведенной схемы установки видно, что абсорбционный узел этой установкп-состоящий из абсорбера 5, генератора аммиачного пара 5, насоса 4 и редукционного вентиля 7, служит в конечном итоге для сжатия аммиачного пара от давления на выходе из испарителя до давления на входе в конденсатор. Преимущество этого способа сжатия аммиачного пара заключается в том, что если в обычной парокомпрессионной установке на сжатие пара затрачивается значительная работа, то в случае абсорбционной установки насос повышает давление жидкости (водоаммиачный раствор), причем затрата работы на привод этого насоса пренебрежимо мала по сравнению с затратой работы в компрессоре, да и сам насос компактен и конструктивно прост. Конечно, выигрыш в работе, затрачиваемой на привод компрессора, компенсируется затратой тепла в генераторе аммиачного пара это тепло отводится затем охлаждающей водой в абсорбере 5, так что 9ябс=9пг (если пренебречь работой насоса).  [c.447]

Во втором и третьем разделах изложены основы математического моделирования режимов соответственно идеализированного и реального ЦН в координатах действительных чисел (скалярная модель). На базе модифицированного уравнения Эйлера предложена схема замещения насоса, которая состоит из гидравлического источника - аналога электродвижущей силы с постоянным гидравлическим сопротивлением (импедансом). Для учета конечного числа лопастей в рабочих колесах, наличия объемных, гидравлических и механических потерь схема дополняется соответствующими нелинейными сопротивлениями. Расчет параметров этой схемы по конструктивным данным машины ведется в системе относительных единиц, где базовыми приняты номинальные параметры ЦН. На основании уравнений Кирхгофа для схемы замещения записана система нелинейных уравнений равновесия расходов и напоров ЦН, решение которой позволяет построить рабочие характеристики ЦН и оптимизировать его конструктивные параметры. Рассмотрен также вопрос эквивалентирования многопоточных и многоступенчатых насосов одноступенчатой машиной с колесом с односторонним входом.  [c.5]


Смотреть страницы где упоминается термин Насосы Схемы конструктивные : [c.245]    [c.3]    [c.12]    [c.12]    [c.316]    [c.454]   
Машиностроение Энциклопедический справочник Раздел 4 Том 12 (1949) -- [ c.338 ]



ПОИСК



Конструктивные схемы

Конструктивные схемы и основные параметры насосов л гидромоторов, применяемых в приводах объемного управления

Насосы Схемы



© 2025 Mash-xxl.info Реклама на сайте