Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационные принципы для задач термоупругости

В связи с методами исследования тепловых напряжений во второй главе рассматривается аналогия между задачей термоупругости и соответствующей задачей изотермической теории упругости при фиктивных объемных и поверхностных силах, излагаются вариационные принципы для задач термоупругости, являющиеся обобщениями вариационного уравнения Лагранжа  [c.7]


Вариационные принципы для задач термоупругости  [c.44]

Как частные случаи из этой формулировки следуют вариационные принципы для задачи динамической термоупругости и нестационарной теплопроводности.  [c.194]

Таким образом, можно сделать вывод, что принцип виртуальной работы и связанные с ним вариационные принципы для термоупругой задачи описываются теми же соотношениями, что в гл. 3, за исключением различий в выражениях для Л и В. Те же утверждения справедливы для термоупругих задач и в случае теории малых перемещений.  [c.136]

В заключение первой главы на основе термодинамики линейных необратимых процессов рассматривается вариационный принцип для связанной задачи термоупругости, позволяющий развить приближенные методы решения связанных задач динамической теории упругости и нестационарной теплопровод-иости.  [c.7]

Вариационный принцип для связанной задачи термоупругости  [c.32]

Исходя из основных положений термодинамики необратимых процессов, Био [52] установил вариационный принцип для связанной задачи термоупругости. Здесь приводится вывод этого принципа, несколько отличающийся от предложенного Био.  [c.32]

Основные дополнения отразили развитие отдельных разделов, интерес к которым повысился со времени появления в 1951 г. второго издания. В главах 3 и 4 введен анализ влияния концов и теория собственных решений, связанных с принципом Сен-Ве-нана. Ввиду быстрого роста приложений дислокационных упругих решений в науке о поведении материалов, эти разрывные в смещениях решения излагаются более подробно (теория краевых и винтовых дислокаций в главах 4, 8, 9 и 12). К главе 5 добавлены вводные сведения о методе муара с иллюстрацией его применения на практике. Изложение понятия об энергии деформации и вариационных принципов проведено в трехмерном случае и включено в главу 9, что дало основу для новых разделов по термоупругости в главе 13. Обсуждение использования комплексных потенциалов для двумерных задач пополнено группой новых параграфов, основанных на хорошо известных теперь методах Н. И. Мусхелишвили. Этот подход несколько отличается  [c.12]

Принцип возможных перемещений (4.7), дополненный деформационными соотношениями (4.4), (4.8) и физическими соотношениями (4.6), позволяет сформулировать линейную задачу термоупругости многослойной панели следующим образом. Требуется найти такие перемещения и, для которых вариационное уравнение  [c.174]


Решение связанной задачи термоупругости в общем случае представляет значительные математические трудности. Для приближенного решения этой задачи целесообразно использовать вариационный принцип.  [c.32]

Пример. Для иллюстрации применения вариационного принципа Био приведем решение задачи о термоупругом рассеянии энергии при поперечных колебаниях консольной балки [68]. Балка прямоугольного поперечного сечения имеет высоту h, ширину Ь и длину /. Ось балки направлена вдоль оси х, начало координат находится на заделанном конце балки.  [c.284]

Подставляя выражение (5.33) в соотношение (5.24), получаем вариационный принцип Даламбера — Лагранжа для линейных связанных задач термоупругости с источниками тепла и учетом тепловой инерции  [c.127]

Предложенный вариационный принцип позволяет развить различные приближенные методы интегрирования систем дифференциальных уравнений, описывающих термоупругие процессы в твердых телах, в частности взаимосвязанные и с учетом конечности скорости распространения тепла. Исходя из того, что принуждение для действительного движения минимально, можно определить, например, конкурентную способность различных способов приведения трехмерных связанных задач термоупругости к двумерным задачам теории пластин и оболочек, различных моделей реальных нагретых упругих тел.  [c.136]

Применим принцип наименьшего принуждения к решению задачи о термоупругих колебаниях призматического стержня длины I, ширины Ь, толщины к при конечной скорости распространения тепла. Такая связанная задача термоупругости без учета конечной скорости распространения тепла была предложена Био [8, 60] для иллюстрации применения вариационного принципа возможных перемещений для термоупругой среды.  [c.139]

Соотношение (5.112) является вариационным принципом Остроградского — Гамильтона для связанных задач термоупругости при конечной скорости распространения тепла и действии тепловых источников.  [c.147]

К основным методам решения квазистати-ческих трехмерных задач теории упругих температурных напряжений относят методы, основанные на использовании термоупругого потенциала перемещений, вариационных принципов, а также методы возмущений, Майзеля и др. [43, 54, 57, 68, 73]. Для решения плоских задач могут быть ис-  [c.213]

Вариационные принципы. Большое значение для приближенных решений конкретных задач имеет вариационная трактовка проблемы сопряженной термоупругости. Определению вариационных принципов теории посвящены работы [4, 17а, 18, 34, 37]. В работе [4Ь] для квазистатической задачи сформулирован вариационный принцип, аналогичный принципу Вашизу в классической теории упругости, из которого для данного случая следуют все соотношения термоупругости и смешанные граничные условия. Вместе с тем сформулированы некоторые частные вариационные принципы, вытекающие из общего принципа. В работе [4а] общий вариационный принцип применяется к расчету оболочек.  [c.240]

В самой общей постановке вариационная задача сопряженной термоупругости для неоднородного и анизотропного тела сформулирована в работе [17а]. Начальные условия заданы для перемещений, скоростей перемещений и температуры, граничные условия носят смешанный характер и заданы на различных частях поверхности тела для перемещений, напряжений, температуры и теплового потока. При помощи операции свертки со специальными функциями в уравнениях сопряженной термоупру-гости исключены производные по времени, и вариационные принципы сформулированы для произвольного момента времени. Сформулированы общий вариационный принцип, эквивалентный  [c.240]

Аналогичный подход к вариационной формулировке проблемы термоупругости для несколько другого представления системы уравнений был проведен в работах [34а, Ь]. Были получены вариационные принципы, аналогичные принципам Ху—Вашизу, Хеллингера—Рейсснера, минимум потенциальной энергии и другие. В работе [34Ь] показано приложение одного частного вариационного принципа к приближенным вычислениям решения задачи о нагреве полупространства.  [c.241]


Стационарная задача о термоупругом равновесии полого цилиндра (в случае осевой симметрии) изучалась сперва П. М. Огибаловым (1954), а затем Ю. Н. Шевченко (1958), который учитывал изменение модуля упругости материала вдоль оси цилиндра. А. Н. Подгорный (1965) учел влияние торцов цилиндра, а также центробежных сил задача решена приближенно с использованием вариационного принципа Лаграннш. П. И. Ермаков (1961) и В. А. Шачнев (1962) рассматривали стационарную задачу термоупругости для сплошного цилиндра конечной длины при осесимметричной его деформации в первой из этих работ условия на торцах выполнялись приближенно, согласно методу Бидермана, а во второй — решение задачи сведено к решению интегро-дифференциального уравнения. Стационарная задача термоупругости для бесконечного цилиндра с несколькими полостями сформулирована А. С. Космодамианским (1962) — как температурное поле, так и термоупругое состояние определяются методом Бубнова — Галеркина.  [c.21]

Один из основных вариационных принципов аналитической механики дискретных систем — принцип Даламбера — Лагранжа успешно применяется для изучения общих закономерностей сплошной среды и полей различной физической природы [18, 40, 76, 78]. Для описания движения термоупругих сред, в частности для линейных связанных задач термоупругости этот принцип впервые был установлен Био [8] в 1965 г. Обобщение этого принципа на случай связанных задач термоупругостп с тепловыми источниками дано в работе [5]. В монографии [86] подробно изложена последовательность применения вариационного принципа Даламбера — Лагранжа к анизотропным термоупругим средам.  [c.124]

Следует отметить, что в связи с аналогией между принципом наименьшего действия Гаусса и методом наименьших квадратов теории ошибок вариационный принцип может быть успешно применен для разработки приближенных методов решения задач механики сплошной среды, в частности, термоупругости. Как видно из рассмотренного выше примера, принцип наименьшего принуждения может быть применен для приближенного решения связанных задач термоупругости при конечной скорости распространения тепла. Особенно перспективным представляется применение доказанной в гл. 3 теоремы о принуждении системы-модели [50] для оценки, например, различных способов приведения трехмерных задач термоупруТости к двумерным задачам теории оболочек и пластин при учете всевозможных усложняющих факторов, в частности, конечной ско рости распространения тепла  [c.145]

Для краевой задачи связанной теории термоупругости в [115] предложены вариационные формулировки, соответствующие принципам минимума потенциальной энергии системы, Кастильяно, Хеллингера-Рейсснера и Ху-Вашицу, причем в функционалы с помощью свертки явно включены начальные условия. Наиболее удобно для решения краевых задач использовать принцип минимума потенциальной энергии системы или принцип Лагранжа для полей перемещений и температуры, который состоит в следующем [21].  [c.193]

Рост рабочих параметров машин и конструкций и связанное с ним повышение требований к их надежности при одновременном снижении материалоемкости вызвали развитие методов изучения напряженного и деформированного состояния элементов конструкций (машин) от силовых и тецловых нагрузок. В исследовании напряженного и, в частности, термо-напряженного состояния элементов конструкций параллельно развиваются два направления экспериментальное и расчетное. Среди экснеримеН тальных исследований весьма результативными являются исследования напряжений и деформаций на моделях и натурных конструкциях [1—4]. Привлечение для модельных исследований методов трехмерной фотоупругости дало возможность находить температурные напряжения как на поверхности модели, так и по ее сечениям [1, 5, 6]. Что касается расчетных исследований, то численные методы с применением ЭВМ вошли в практику решения задач теории упругости как наиболее универсальные, позволяю-ш ие решать многие задачи теории упругости и термоупругости в принципе с любой желаемой степенью детализации. Наибольшее распространение в настоящее время получили два метода метод конечных элементов (МКЭ) и вариационно-разностный метод (ВРМ).  [c.102]


Смотреть страницы где упоминается термин Вариационные принципы для задач термоупругости : [c.33]    [c.136]    [c.8]    [c.274]    [c.188]   
Смотреть главы в:

Введение в термоупрогость  -> Вариационные принципы для задач термоупругости



ПОИСК



Вариационные принципы для задачи

Вариационные принципы термоупругости

Вариационный принцип для связанной задачи термоупругости

Задача вариационная (задача

Задачи термоупругости

Принцип вариационный

Ряд вариационный

Стационарные задачи термоупругости. Вариационные принципы и теорема взаимности

Термоупругие задачи

Термоупругость



© 2025 Mash-xxl.info Реклама на сайте