Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационный принцип для связанной задачи термоупругости

В заключение первой главы на основе термодинамики линейных необратимых процессов рассматривается вариационный принцип для связанной задачи термоупругости, позволяющий развить приближенные методы решения связанных задач динамической теории упругости и нестационарной теплопровод-иости.  [c.7]

Вариационный принцип для связанной задачи термоупругости  [c.32]


Исходя из основных положений термодинамики необратимых процессов, Био [52] установил вариационный принцип для связанной задачи термоупругости. Здесь приводится вывод этого принципа, несколько отличающийся от предложенного Био.  [c.32]

Соотношение (5.112) является вариационным принципом Остроградского — Гамильтона для связанных задач термоупругости при конечной скорости распространения тепла и действии тепловых источников.  [c.147]

Таким образом, можно сделать вывод, что принцип виртуальной работы и связанные с ним вариационные принципы для термоупругой задачи описываются теми же соотношениями, что в гл. 3, за исключением различий в выражениях для Л и В. Те же утверждения справедливы для термоупругих задач и в случае теории малых перемещений.  [c.136]

Решение связанной задачи термоупругости в общем случае представляет значительные математические трудности. Для приближенного решения этой задачи целесообразно использовать вариационный принцип.  [c.32]

Подставляя выражение (5.33) в соотношение (5.24), получаем вариационный принцип Даламбера — Лагранжа для линейных связанных задач термоупругости с источниками тепла и учетом тепловой инерции  [c.127]

Предложенный вариационный принцип позволяет развить различные приближенные методы интегрирования систем дифференциальных уравнений, описывающих термоупругие процессы в твердых телах, в частности взаимосвязанные и с учетом конечности скорости распространения тепла. Исходя из того, что принуждение для действительного движения минимально, можно определить, например, конкурентную способность различных способов приведения трехмерных связанных задач термоупругости к двумерным задачам теории пластин и оболочек, различных моделей реальных нагретых упругих тел.  [c.136]

Применим принцип наименьшего принуждения к решению задачи о термоупругих колебаниях призматического стержня длины I, ширины Ь, толщины к при конечной скорости распространения тепла. Такая связанная задача термоупругости без учета конечной скорости распространения тепла была предложена Био [8, 60] для иллюстрации применения вариационного принципа возможных перемещений для термоупругой среды.  [c.139]

Основные дополнения отразили развитие отдельных разделов, интерес к которым повысился со времени появления в 1951 г. второго издания. В главах 3 и 4 введен анализ влияния концов и теория собственных решений, связанных с принципом Сен-Ве-нана. Ввиду быстрого роста приложений дислокационных упругих решений в науке о поведении материалов, эти разрывные в смещениях решения излагаются более подробно (теория краевых и винтовых дислокаций в главах 4, 8, 9 и 12). К главе 5 добавлены вводные сведения о методе муара с иллюстрацией его применения на практике. Изложение понятия об энергии деформации и вариационных принципов проведено в трехмерном случае и включено в главу 9, что дало основу для новых разделов по термоупругости в главе 13. Обсуждение использования комплексных потенциалов для двумерных задач пополнено группой новых параграфов, основанных на хорошо известных теперь методах Н. И. Мусхелишвили. Этот подход несколько отличается  [c.12]


Один из основных вариационных принципов аналитической механики дискретных систем — принцип Даламбера — Лагранжа успешно применяется для изучения общих закономерностей сплошной среды и полей различной физической природы [18, 40, 76, 78]. Для описания движения термоупругих сред, в частности для линейных связанных задач термоупругости этот принцип впервые был установлен Био [8] в 1965 г. Обобщение этого принципа на случай связанных задач термоупругостп с тепловыми источниками дано в работе [5]. В монографии [86] подробно изложена последовательность применения вариационного принципа Даламбера — Лагранжа к анизотропным термоупругим средам.  [c.124]

Следует отметить, что в связи с аналогией между принципом наименьшего действия Гаусса и методом наименьших квадратов теории ошибок вариационный принцип может быть успешно применен для разработки приближенных методов решения задач механики сплошной среды, в частности, термоупругости. Как видно из рассмотренного выше примера, принцип наименьшего принуждения может быть применен для приближенного решения связанных задач термоупругости при конечной скорости распространения тепла. Особенно перспективным представляется применение доказанной в гл. 3 теоремы о принуждении системы-модели [50] для оценки, например, различных способов приведения трехмерных задач термоупруТости к двумерным задачам теории оболочек и пластин при учете всевозможных усложняющих факторов, в частности, конечной ско рости распространения тепла  [c.145]

Для краевой задачи связанной теории термоупругости в [115] предложены вариационные формулировки, соответствующие принципам минимума потенциальной энергии системы, Кастильяно, Хеллингера-Рейсснера и Ху-Вашицу, причем в функционалы с помощью свертки явно включены начальные условия. Наиболее удобно для решения краевых задач использовать принцип минимума потенциальной энергии системы или принцип Лагранжа для полей перемещений и температуры, который состоит в следующем [21].  [c.193]

Рост рабочих параметров машин и конструкций и связанное с ним повышение требований к их надежности при одновременном снижении материалоемкости вызвали развитие методов изучения напряженного и деформированного состояния элементов конструкций (машин) от силовых и тецловых нагрузок. В исследовании напряженного и, в частности, термо-напряженного состояния элементов конструкций параллельно развиваются два направления экспериментальное и расчетное. Среди экснеримеН тальных исследований весьма результативными являются исследования напряжений и деформаций на моделях и натурных конструкциях [1—4]. Привлечение для модельных исследований методов трехмерной фотоупругости дало возможность находить температурные напряжения как на поверхности модели, так и по ее сечениям [1, 5, 6]. Что касается расчетных исследований, то численные методы с применением ЭВМ вошли в практику решения задач теории упругости как наиболее универсальные, позволяю-ш ие решать многие задачи теории упругости и термоупругости в принципе с любой желаемой степенью детализации. Наибольшее распространение в настоящее время получили два метода метод конечных элементов (МКЭ) и вариационно-разностный метод (ВРМ).  [c.102]


Смотреть страницы где упоминается термин Вариационный принцип для связанной задачи термоупругости : [c.33]    [c.274]    [c.188]   
Смотреть главы в:

Введение в термоупрогость  -> Вариационный принцип для связанной задачи термоупругости



ПОИСК



Вариационные принципы для задач термоупругости

Вариационные принципы для задачи

Вариационные принципы термоупругости

Задача вариационная (задача

Задачи термоупругости

Мод связанность

Принцип вариационный

Р связанное

Ряд вариационный

Связанная задача термоупругости

Термоупругие задачи

Термоупругость



© 2025 Mash-xxl.info Реклама на сайте