Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные виды коррозии и коррозионных разрушений

ОСНОВНЫЕ ВИДЫ КОРРОЗИИ И КОРРОЗИОННЫХ РАЗРУШЕНИЙ  [c.35]

Межкристаллитная коррозия в основном металле близ линии сплавления или ножевая коррозия поражает узкую полоску стали, которая в результате сварочного термического цикла нагревалась до температур более 1250° С. Этому виду коррозии могут подвергаться только стали, стабилизированные титаном или ниобием и танталом. При нагреве таких сталей до температур, превышающих 1200—1250° С, карбиды титана или ниобия-растворяются в аустените. При последующем воздействии критических температур в участках основного металла, нагревавшихся до температуры растворения карбидов, титан и ниобий, остаются в твердом растворе по границам зерен выпадают карбиды хрома и развивается межкристаллитная коррозия. При дуговой и особенно при электроннолучевой сварке, вследствие высокой концентрации сварочного нагрева, участок перегрева в околошовной зоне очень узок, поэтому и коррозионное разрушение имеет сосредоточенный характер. При дуговой сварке обычно поражается полоска основного металла шириной до 1 —1,5 мм.. В случае электроннолучевой сварки она еще уже, а при электрошлако-вой, наоборот, может расшириться до 3—5 мм. При испытании на загиб образцов, подверженных этому роду коррозии, разрушение имеет вид надреза ножом, отсюда название ножевая коррозия .  [c.278]


По характеру разрушений металлов и сплавов различают несколько основных видов коррозии (ГОСТ 5272—68 ) равномерная коррозия, неравномерная коррозия, местная коррозия, межкристаллитная коррозия, коррозия под напряжением, коррозионное растрескивание, коррозионная усталость, контактная коррозия, щелевая коррозия, биокоррозия.  [c.58]

Современная теория коррозии капиллярно-пористых цементных материалов основывается на классификации видов коррозии бетона В. М. Москвина [4]. В соответствии с этой классификацией все физико-химические процессы, определяюш,ие коррозионное разрушение бетона, делятся на три основных вида.  [c.120]

Помимо трех основных видов коррозии, охватывающих подавляющее большинство процессов, которые приводят к разрушению бетона, исследованы также некоторые специфические виды коррозионного воздействия, из которых следует выделить процессы адсорбционного понижения прочности капиллярно-пористых материалов. Эти процессы развиваются при действии на бетон поверхностноактивных веществ, которые, адсорбируясь на цементном камне, существенно уменьшают его поверхностную энергию, что способствует развитию микротрещин в бетоне и понижению его прочности. Учитывать адсорбционное понижение прочности следует прежде всего в тех случаях, когда поверхностно-активные вещества воздействуют на бетон, находящийся в напряженном состоянии.  [c.121]

В этих условиях коррозионная стойкость сварных швов алюминия на порядок ниже, чем у основного металла. В производственной практике сварные реакционные сосуды автоклавов, отбелочные колонны и другое оборудование выходят из строя спустя несколько месяцев эксплуатации из-за разрушений сварных соединений, тогда как основной металл мог бы служить еще ряд лет. Основной вид коррозии — межкристаллитная, причины — наличие примесей, главным образом кремния, и напряженного поля в зонах шва. Одна из причин — выделение эвтектики по границам зерен, которая обладает положительным потенциалом по сравнению с твердым раствором. Поэтому рекомендуется проводить сварку по возможности с высокими скоростями охлаждения, а также применять присадочные материалы с такими легирующими элементами, как титан, хром, цирконий.  [c.217]


Коррозионная стойкость хромистых сталей зависит также от режимов термической их обработки. Наиболее распространенным видом термической обработки, обеспечивающим высокую сопротивляемость коррозии хромистых сталей, содержащих хром в количестве около 13%, является закалка с отпуском. При нагреве сталей рассматриваемого типа до высоких температур (950—1000°С) достигаются условия, при которых карбиды хрома переходят в твердый раствор. Если фиксировать это состояние быстрым охлаждением (в масле или на воздухе), то углерод удерживается в твердом растворе. Следующий за процессом закалки отпуск при низкой температуре лишь снимает напряжения закалочного происхождения, незначительно изменяя основную структуру, и таким образом общая сопротивляемость стали коррозионным разрушениям сохраняется.  [c.216]

Для аппаратов, в которых производится переработка горячих сероводородных и окислительных серосодержащих сред, а также работающих в среде водорода и растворов хлоридов, основными характеристиками, определяющими работоспособность аппарата, становятся физико-химические свойства рабочей среды и металла, степень защищенности аппарата от коррозии, особенно контактирующей с агрессивной средой. Основным видом разрушения таких аппаратов является внутренняя коррозия. В условиях воздействия сероводородсодержащих продуктов имеют место практически все основные виды разрушений локализованной (язвенное, точечное и коррозионное растрескивание) и общей (равномерная и неравномерная) коррозии. Явление повышения коррозионного повреждения металла под действием механических напряжений принято называть механохимическим эффектом (МХЭ). Как будет показано далее в следующем разделе, наиболее сильно МХЭ проявляется в режиме нестационарного нагружения аппарата, которое реализуется в локальных областях перенапряженного металла при повторно-статических нагрузках.  [c.276]

Коррозионно-механическое разрушение металлов происходит при одновременном воздействии коррозионной среды и механических напряжений. Основные виды коррозионно-механического разрушения металлов коррозионное растрескивание, коррозионная усталость, фреттинг-коррозия, коррозионная эрозия, кавитация, сульфидное растрескивание, водородное охрупчивание.  [c.14]

Изложены общие сведения об истории и динамике развития проблемы защиты металлов от коррозии. Показано технико-экономическое значение защиты металлов от-коррозии как одной из важнейших народнохозяйственных проблем. Рассмотрены основные виды коррозионных разрушений и проанализированы их причины. Описаны физико-химическая природа и современная электрохимическая теория коррозионных процессов, их зависимость от внешних условий и свойств металла.  [c.32]

Химические коррозионные испытания иначе называют испытаниями при полном погружении образцов в коррозионную среду. В отличие от других специфических методов коррозионных испытаний (например, на щелевую межкристаллитную коррозию и т.д.) химические коррозионные испытания не ставят своей целью ускоренную проверку восприимчивости металла какому-то отдельно взятому виду коррозионных разрушений. Как правило, стендовые химические коррозионные испытания проводятся для определения общей коррозионной стойкости металла в данной среде. При таких коррозионных испытаниях легко контролируются основные факторы, влияющие на результаты определения стойкости металла.  [c.160]

По характеру разрушений коррозия металлов обычно классифицируется на следующие основные виды равномерную, контактную, язвенную, щелевую, межкристал-литную, избирательную, а также на коррозию под напряжением, коррозионную усталость и эрозию. Для сравнения этих видов коррозии представляют интерес опубликованные фирмой Дюпон результаты анализа 313 случаев коррозионных разрушений на химических заводах этой фирмы за 1968 и 1969 годы (табл. 1) [11.  [c.5]


Межкристаллитная коррозия (рис. 9) типична для коррозион-но-стойких сталей, проходит между кристаллами и поражает границы зерен. Склонность к коррозии появляется при неправильной термической обработке сталей, которые теряют прочность и вязкость. В первую очередь этот вид коррозии проявляется в виде растрескивания поверхности, а затем и полного распада. С точки зрения разрушения наиболее опасным местом сварных конструкций из аустенитных сталей является зона основного материала, прилегающая к металлу сварного шва. Так называемая ножевая коррозия напоминает по форме надрез ножом в узкой зоне на границе металла шва и основного g  [c.25]

Среди нержавеющих сталей в наибольшей степени подвержены щелевой коррозии хромистые стали. Более устойчивы к этому виду коррозии хромоникелевые стали, однако и они подвергаются интенсивным разрушениям в щелях, если коррозионная среда содержит активаторы, например хлор-ионы. Области применения основных коррозионностойких сталей, выпускаемых в СССР, следующие [36, 39]  [c.63]

Основным показателем скорости коррозионного разрушения как при местной, так и при равномерной коррозии является глубина проникновения. В обоих случаях глубина коррозионного разрушения измеряется в миллиметрах в год независимо от вида металла или сплава. Для относительной характеристики коррозионного поведения металлов разработана шкала коррозионной устойчивости БДС 7906—70 (ГОСТ 13819—68).  [c.37]

Изложены общие сведения об истории и динамике развития проблемы защиты металлов от коррозии. Показано технико-экономическое значение защиты металлов от коррозии как одной из важнейших народнохозяйственных проблем. Рассмотрены основные виды коррозионных разрушений и проанализированы их причины. Описаны физико-химическая природа и современная электрохимическая теория коррозионных процессов, их зависимость от внешних условий и свойств металла. СТРИЖЕВСКИЙ И.В. Подземная коррозия и методы защиты. — М. Металлургия, 1986, 6 л. — (Защита металлов от коррозии)  [c.208]

Образующиеся под воздействием щелочи коррозионные повреждения имеют в основном местный характер (повреждения имеют вид неправильной формы) и располагаются на внутренней поверхности стенки со стороны топочной камеры. Щелочная коррозия относится уже к типу электрохимической она часто сопровождает химическую коррозию и усиливает ее. К электрохимической коррозии относятся процессы разрушения металла при воздействии на него коррозионно-активных газов в присутствии влаги.  [c.89]

Виды и особенности коррозионных разрушений трубопроводов, сопротивляемость коррозии сварных соединений определяются свойствами основного металла и сварного шва, напряженным состоянием, агрессивностью коррозионной среды и условиями взаимодействия сварных соединений со средой.  [c.8]

Решение комплексной задачи повышение эффективности безаварийной работы технического ресурса разветвленных подземных трубопроводных сетей различного назначения требует применения специальных и разнообразных методических подходов. Это связано с тем, что трубопроводы (водопроводы, газопроводы и теплопроводы) испытывают различные режимы эксплуатации и подвергаются соответственно различным видам коррозионного разрушения. Традиционно основным путем защиты от наружной (почвенной, грунтовой) коррозии трубопроводов в городских условиях является катодная защита, а для резервуаров НПЗ и сельских районах, особенно на большом удалении от источника электроэнергии др., преимущественно - протекторная. Трубопроводы городского водоснабжения защищаются от коррозии в основном путем использования катодной электродренажной защиты. В теплопроводах подземной канальной прокладки в основном используется защитное покрытие. В этих сетях наиболее коррозионно-чувствительными является являются компенсаторы тепловых перемещений, которые в настоящее время изготовляются в виде гибкой металлической оболочки из коррозионно-стойкой аустенитной хромоникелевой сталей типа 18-10. Они подвергаются специфическому воздействию паровоздушной среды, насыщенной хлор-ионами и могут быть подвержены так же как и водоводы и газопроводы полю действия блуждающих токов, изменяющемуся по величине и знаку поляризационного потенциала.  [c.37]

Коррозионная усталость представляет собой сложный вид разрушения, при котором совместно сказываются неблагоприятные эффекты коррозии и усталости, приводящие к разрушению. В процессе коррозии на поверхности металла часто образуются ямки, служащие концентраторами напряжений. В результате концентрации напряжений процесс усталостного разрушения ускоряется. Кроме того, трещины в хрупком слое продуктов коррозии служат зародышами усталостных трещин, распространяющихся в основной металл. С другой стороны, в результате действия циклических напряжений или деформаций происходит растрескивание и отслаивание продуктов коррозии, т. е. открывается доступ коррозионной среде к свежему металлу. Таким образом, оба процесса ускоряют друг друга, и опасность разрушения может быть очень большой.  [c.22]

В настоящей монографии авторы в сжатой форме излагают основные обобщающие результаты научных исследований, выполненных, главным образом, за последние два десятилетия как в СССР, так и за рубежом по вопросам теории коррозии, наиболее опасным видам коррозионных разрушений и закономерностям создания и свойствам коррозионностойких сплавов.  [c.6]


Металлические покрытия в отличие от органических непроницаемы для коррозионных агентов (воды, газов), поэтому вопрос об образовании продуктов коррозии под непрерывным, защитным металлическим слоем, казалось бы, снимается. Однако и в них могут быть дефекты в виде пор, царапин, вмятин и т. д. При наличии шор характер коррозионного разрушения основного металла определяется электрохимическими характеристиками обоих металлов, поэтому различают анодные и катодные металлические покрытия ( см. рис. 2-3). Например, по отношению к стали цинковое покрытие является анодным, тогда как медное — катодным.  [c.68]

Некоторые исследователи различают два вида разрущения металла под влиянием движущейся жидкой среды коррозионно-эрозионное, когда механическое воздействие среды сводится к разрушению защитных пассивных пленок или продуктов коррозии, и разрушение механическое, которое сводится уже к разрушению структуры самого металла. Одни исследователи основную роль отводят механическому фактору 78—80], другие коррозионному [81—83].  [c.316]

Металлические покрытия, в отличие от органических, непроницаемы для коррозионных агентов (воды, газов), поэтому вопрос об образовании продуктов коррозии под слоем непрерывного металлического покрытия казалось бы отпадает. Однако и в металлическом покрытии могут быть дефекты в виде пор, царапин, вмятин и пр. При наличии поры характер коррозионного разрушения основного металла определяется электрохимическими ха-  [c.119]

Обладая высокой коррозионной стойкостью, аусте-нитная и хромистые стали подвержены опасному виду коррозионного разрушения — межкристаллитной коррозии. Для предотвращения межкристаллитной коррозии при сварке высоколегированных сталей рекомендуется снижать содержание углерода в основном металле и металле шва до 0,02—0,03 % легировать основной металл и металл шва титаном, ниобием, танталом, ванадием, цирконием применять стабилизирующий отжиг в течение 2—3 ч при 850 — 900 °С с охлаждением на воздухе дополнительно легировать металл шва хромом, кремнием, молибденом, ванадием, вольфрамом, алюминием закалять стали (стали типа 18-8 при 1050 — 1100°С). При сварке жаростойких сталей нужно стремиться приблизить состав металла шва к составу основного металла. Азот хорошо растворяется в высоколегированных сталях, поэтому пор в сварных швах не вызывает. При сварке в аргоне некоторых аустенитных сталей наблюдается образование пор по границе сплавления. Добавка к аргону 2—5 % кислорода предупреждает появление пор. В остальном требования к предотвращению пор такие же, как и при сварке обычных углеродистых сталей.  [c.111]

Одним из опасных видов коррозии алюминиевых сплавов является расслаивающая коррозия. Она представляет особый вид подповерхностной коррозии, развивающейся в направлении максимальной пластической деформации и приводящей к отслаиванию частиц и пластин металла и полному разрушению его при достаточно длительной выдержке (см. рис. 224). Расслаиванию обычно в атмосферных условиях и при периодическом воздействии морской воды в основном подвержены прессованные профили, плиты и нагартованные листы в определенном структурном состоянии. Сюда же можно отнести широко применяемые для коррозионных испытаний растворы хлористого натрия с перекисью водорода.  [c.517]

Когда площадь анодной составляющей сплава невелика по сравнению с площадью катодной составляющей и анодная составляющая равномерно распределена по поверхности сплава, процесс коррозии вначале протекает интенсивно, но после растворения анодных включений скорость коррозии уменьшается до величины, примерно соответствующей стойкости более благородной структурной составляющей сплава в данной среде. Если же анодная составляющая сплава имеет меньшую площадь, но распределена по границам зерен сплава, то это может явиться одной из основных причин самого опасного вида коррозионного разрушения—межкристаллитной коррозии. Если при этом анодные составляющие распределены по всему сплаву, то коррозия идет очень быстро и распространяется по границам кристаллитов в толщу металла, разрушая его.  [c.57]

В монографии рассматриваются два основных вида коррозии под механическим напряжением коррозионное растрескивание (разрушение металлов под совместным воздействием статической нагрузки и агрессивной среды) и коррозионная усталость (разрушение под одновременным воздействием периодической нагрузки и агрессивной среды). Механизмы растрескивания и усталости проанализированы на рснове положений механики разрушения, объясняющей их с позиций зарождения и развития в металле трещин.  [c.3]

В табл. 3 на рисунках показаны основные типы электрохимической гетерогенности, от которых в первую очередь зависят различные виды коррозионных разрущений. Факторами, определяющими вид разрушения, являются характер электрохимической гетерогенности и стабильность распределения анодных и катодных участков по поверхности во времени. В некоторых случаях электрохимическая гетерогенность поверхности сплава связана с образованием стабильно работающих коррозионных пар, что приводит к ярко выраженной местной коррозии, например, контактная коррозия разнородных металлов, коррозия вследствие неравномерной аэрации, межкристаллитная коррозия и коррозионное растрескивание. Подобные виды коррозии надо относить к явно гетерогенно-электрохимическому механизму коррозии. В других случаях, например, при структурноизбирательной коррозии, вследствие вытравливания отдельных кристаллитов, расположение катодов и анодов коррозионных пар не жестко фиксировано на поверхности. Это также приведет к местной коррозии, но, естественно, уже в микромасштабах. Примером может служить выявление поликристаллической структуры металла при травлении шлифа. В микромасштабе подобный вид коррозионного разрушения можно условно рассматривать и как равномерный.  [c.24]

Стали для рельсов (М7Б по ГОСТ 24182—80) и рельсо- вых скреплений (ВСтЗ, ВСт4 по ГОСТ 380—71) не являются коррозионно-стойкими. Обычно элементы рельсовых ( скреплений не имеют специальных противокоррозионных Р юкрытий./в этих условиях металлические конструкции верхнего строения пути подвержены разрушению, в первую очередь под влиянием атмосферных воздействий и засорителей (руда, уголь, соли, удобрения и т. п.). На сухих участках с высоким электросопротивлением между рельсами и балластом основным видом коррозии является атмосферная, вследствие которой возникают повреждения  [c.188]

Основные виды коррозии сварных соединений. Аустенитные сталп и сварные швы подвержены несколькил видам коррозионного разрушения, главными из которых являются межкристаллитная (МКК), общая жидкостная и коррозионное растрескивание [20, 24, 52, 81, 90]. Межкристаллитная коррозия наблюдается при выдержке стали или сварных швов при температурах 500—800° С или при медленном охлаждении пх с 900—1000° С. В процессе сварки участки металла в околошовной зоне подвергаются тепловому воздействию в области указанных температур п там может развиваться межкристаллитная коррозия.  [c.123]

Следует иметь в виду, что в зависимости от технологического режима коксования и состава шихты, которая меняется в зависимости от месторождения используемых углей (табл. 4), меняются процентные соотношения некоторых компонентов коксового газа, в основном Н. З, НСЫ, ННз, а следовательно, и свойства газа в отношении его коррозионного воздействия на металл. НгЗ, НСН способны вызывать опасный вид коррозионного разрушения — коррозионное растрескивание. Оно вызывается одновременным воздействием коррозионной среды и растягивающих напряжений, причем среда может быть и не агрессивна в обычном понимании слова коррозия . Такие разрушения наблюдались в эксплуатационных условиях коксохимического производства на лопатках нагнетателя 0-1200-21, изготовленных из стали марки ЗОХГСА (рис. 8). Трещины и обрывы наблюдались в зоне полок лопаток, примыкающих к основному диску. Ниже приведены исследования, проведенные в лабораторных и производственных условиях, которые подтвердили, что наблюдаемые разрупюния могут быть отнесены к коррозионному растрескиванию. Для надежной работы нагнетателей потребовалась замена лопаточного материала.  [c.19]


Межкристаллитная коррозия (МКК) - oд и из наиболее часто наблюдаемых и опасных видов коррозионного разрушения аустенитных хромоникелевых, а также хромистых коррозионно-стойких сталей. Как видно из названия этого вида коррозии, разрушению подвергаются в основном границы зерен. металла, происходит избирательная коррозия.. Металл в течение короткого времени теряет прочность и пластичность. При этом отсутствуют внешние признаки разрушения, что затрудняет контроль и раннюю диагностику экснлуатарующихся деталей на МКК- К настояще.му вре.мени разработаны довольно эффективные способы повышения стойкости сталей к МКК., по несмотря на это необходимость в тщательном контроле возможности появления этого вида разрушения не отпадает. Тем более необходимо это при изменении конструкции. машины, условий ее эксплуатации. Практика показывает, что чаще всего и.менио в этих случаях происходят разрушения от МКК.  [c.46]

Ситуация на сегодняшний день такова, что значительная часть трубопроводных систем (до 50 - 65 %) исчерпала установленный ресурс и вступает в период интенсификации потока отказов. При этом следует отметить, что одной из основных причин высокой аварийности технологических трубопроводных систем являются коррозионные повреждения (по литературным данным до 30 % от общего количества аварий). Проблема усугубляется еще и тем, что по условиям эксплуатации трубопровод, как правило, воспринимает одновременное воздействие механических нагрузок (деформаций) и коррозионно-активных сред. Такое совместное воздействие может вызвать ускоренное коррозионномеханическое разрушение трубопроводов в виде общей механохимической коррозии, коррозионного растрескивания, коррозионной усталости и др., которое значительно интенсифицируется под влиянием полей блуждающих токов.  [c.5]

Наиболее благоприятными для эксплуатации стальных оцинкованных труб являются pH 7,5—8,5, при более низких я более высоких pH коррозионная стойкость труб снижается. Коррозия оцинкованных сталей проявляется в разрушении цинкового покрытия (на что указывает появление в воде белой суспензии) и стали с переходом продуктов коррозии в воду и с локальным отложением их на внутренних поверхностях труб, что вызывает утончение их стенок. Кроме того, на стенках труб образуются бороздки. Бороздки появляются в результате коррозии металла вблизи сварных швов труб вследствие различия н электродных потенциалах металла сварного шва и основнога металла. Наиболее типичными видами коррозии стальных оцинкованных труб горячего водоснабжения являются локальная коррозия (в основном питтинговая) и контактная коррозия, С повышением скорости движения воды (начиная с 0,30— 0,95 м/с) скорость коррозии оцинкованных труб увеличивается прямо пропорционально корню кубическому из скорости воды.  [c.159]

По характеру разрушений коррозию делят на общую, местную и межкристаллнтную. Для борьбы с коррозией используют покрытия металлами, стойкими к коррозии, неметаллами (лаками, красками, эмалью), а также оксидные пленки (воронение, форсфатирование), имиче-ски стойкие сплавы и др. Если раньше борьба с коррозией указанными способами приносила ощутимые результаты, то в современных условиях эта борьба резко осложнилась. Металл в основном применяли в машино-, станкостроении, на железнодорожном транспорте. Сейчас резко увеличился удельный вес использования металла в агрессивных средах, в условиях высоких температур и скоростей с одновременным воздействием силовых нагрузок. Появилась потребность в коррозионностойких, жаростойких сплавах. Коррозия таких материалов бывает трех видов коррозионное растрескивание, характерное для тепловой, атомной, нефтегазовой техники, поражающее изделия из высокопрочных металлов и сплавов межкристаллитная коррозия, разрушающая коррозионно-стойкую сталь, сплавы меди, алюминия точечная коррозия (питтинговая), быстро проникающая в глубь металла, выводящая из строя детали сельскохозяйственной техники.  [c.16]

Процессы коррозионного разрушения экранных труб изложены в третьей главе книги. На основе анализа основных причин, определяющих развитие коррозии экранных труб, установлены общие закономерности коррозии мазутных и пылеугольных котлов. Показано, что как в мазутных, так и пылеугольных котлах причины коррозии связаны с режимом сжигания топлива при недостатке воздуха. В пылеугольных к отлах это вызвано условиями воспламенения топлива и выхода жидкого шлака, в мазутных котлах — стремлением обеспечить сгорание мазута с предельно малыми избытками воздуха при повышенных форсировках топочной камеры. Как в мазутных, так и в пылеугольных котлах большое значение приобретают вопросы водно-химического режима и уменьшения роста внутренних отложений в экранных трубах. Наряду с этим для мазутных котлов разработаны мероприятия, направленные на снижение тепловых нагрузок экранных труб. Для пылеугольных котлов с жидким шлакоудалением целесообразно выполнение схемы пылеприготовления с разомкнутой сушкой топлива. При сжигании всех видов топлива рекомендуется применение кислотных промывок НРЧ.  [c.8]

Образование вздутий на нефтеперерабатывающем оборудовании из-за проникновения водорода в сталь сделалось основной коррозионной проблемой на некоторых установках. Особенно склонны к этому виду разрушения ректификационные системы, сопряженные с системами каталитического крекинга. Зона наибольшего разрушения, ио-видимому, располагается во второй или третьей очереди холодильников высокого давления и барабанах-сборниках в основной ректификационной газо-компрессорной системе. Подвергаются коррозии и системы верхнего отгона, начиная от стабилизирующей колонны. Верхние пароконденсационные системы на участках абсорбции и ректификации также подвержены некоторому разрушению. Небольшие разрушения наблюдались в основном ректификаторе, холодильниках, сборниках низкого давления и в верхней зоне адсорбционных колонн. Механизм образования вздутий уже обсуждался ранее (гл. П). Основное отличие состоит в том, что.в данном случае первопричиной коррозионного разрушения, т. е. источником водорода, является сероводород. Водный раствор сероводорода взаимодействует со сталью с образованием атомарного водорода, который проникает в сталь с последующим образованием вздутий. В соответствии с указанным механизмом находятся следующие достаточно хорошо известные факты  [c.266]

Практически все разновидности внутренней коррозии экранных труб паровых котлов могут быть отнесены с определенной условностью либо к категории пластичных, либо к категории хрупких повреждений металла [3]. Такое предварительное разделение целесообразно как в отношении классификационной простоты и ясности, так и с точки зрения имеющихся различий в методах профилактики указанных видов коррозионных разрушений. В свете такого подхода было предложено разделить коррозионные повреждения парогенерирующих труб, изготовленных из перлитных сталей, на два основных типа  [c.36]

Наибольшее значение в определении величины коррозии подземных конструкций имеют коррозионные макропары, а, б, в, и г, определяемые неодинаковйм доступом кислорода к различным участкам корродирующей поверхности. Основными факторами, влияющими на коррозионную активность почвы, являются удельное электросопротивление почвы, влажность я способность почвы удерживать влагу во времени, кислотность и pH почвы, солевой состав и воздухопроницаемость. Для небольших подземных конструкций основное значение имеет работа микрокоррэзион-ных пар, приводящих к относительно равномерному коррозионному разрушению. Протяженные подземные конструкции, вследствие неодинаковой кислородной проницаемости почв на смежных участках, разрушаются под действием коррозионных макропар. Этот вид коррозии имеет язвенный характер и более опасен.  [c.161]


Смотреть страницы где упоминается термин Основные виды коррозии и коррозионных разрушений : [c.87]    [c.133]    [c.141]    [c.31]    [c.34]    [c.46]    [c.724]    [c.361]    [c.53]    [c.7]   
Смотреть главы в:

Коррозия и основы гальваностегии Издание 2  -> Основные виды коррозии и коррозионных разрушений



ПОИСК



Виды коррозионных разрушени

Виды коррозионных разрушений

Виды основные

Коррозия виды разрушений

Коррозия разрушение

Основные виды коррозии

Разрушение коррозионное

Разрушение, виды

Ток коррозии (коррозионный)



© 2025 Mash-xxl.info Реклама на сайте