Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия виды разрушений

Механическое истирающее воздействие на металл другого твердого тела при наличии коррозионной среды (например, зубьев шестерен, омываемых водой) или непосредственное воздействие самой жидкой или газообразной коррозионной среды (например, воды на гребные винты судов, насосы, трубы) приводит к ускорению коррозионного разрушения вследствие износа защитной пленки окислов или других соединений, образующихся на поверхности металла в результате взаимодействия со средой. К этому виду разрушения, называемого коррозией при трении, недостаточно устойчивы, например, серый чугун с повышенным содержанием углерода, оловянистые бронзы и некоторые другие материалы.  [c.338]


Катодная электрохимическая защита значительно снижает скорость коррозии при трении стали в морской воде, что, кстати, подтверждает механико-электрохимический механизм этого вида разрушения металла.  [c.340]

Медь подвергается сильной коррозии и при действии газовых сред — хлор, бром, йод, пары серы, сероводород, углекислота разрушают медь. В особенности интенсивная коррозия меди имеет место при действии на нее водорода при высоких температурах. Этот вид разрушения известен под названием водородной болезни . Технические марки меди всегда загрязнены примесью закиси меди, которая при взаимодействии с водородом восстанавливается до металлической с образованием паров воды. Образующиеся при указанной реакции пары воды стремятся выделиться и нарушают связь между отдельными кристаллитами металла, вследствие чего медь становится хрупкой, дает трещины и не выдерживает динамических нагрузок. С повышением температуры водородная хрупкость меди увеличивается (рис. 174).  [c.249]

Коррозионные испытания металлов в напряженном состоянии. Как известно, коррозия металла в напряженном состоянии носит специфический характер и отличается как от чисто механического, так и от чисто электрохимического его разрушения. Характерным видом разрушения металла при постоянных растягивающих напряжениях является коррозионное растрескивание металла. Разработано много методов испытаний на устойчивость  [c.347]

Помимо коррозии, на практике встречается другой вид разрушения - эрозия - истирание материалов при механическом воздействии среды.  [c.3]

При подборе конструкционных материалов следует учитывать, что скорость точечной коррозии на сталях, которые подвержены этому виду разрушения, как правило, в несколько раз превышает скорость общей коррозии.  [c.9]

По характеру разрушения различают следующие основные виды коррозии общую, местную, коррозию п.од напряжением. Если коррозией охвачена вся поверхность металла, такой вид разрушения называют общей иля сплошной коррозией, общая коррозия может быть равномерной или неравномерной в зависимости от глубины поражения на отдельных участках.  [c.44]

ИЛИ В аэрированных растворах, содержащих ионы, которые образуют комплексы с медью (например, N , NHJ), может наблюдаться значительная коррозия. Для меди характерна также коррозия в быстро движущейся воде или водных растворах, которая носит название ударной коррозии (рис. 19.1). Ее скорость возрастает с увеличением концентрации растворенного кислорода. В обескислороженной быстро движущейся воде, по крайней мере вплоть до скорости движения 7,5 м/с, ударная коррозия незначительна. В аэрированной воде коррозия усиливается с ростом концентрации С1 и уменьшением pH [1 ]. Свободная от кислорода медь с высокой электрической проводимостью, а также электролитически рафинированная медь практически стойки к коррозионному растрескиванию под напряжением (КРН). Однако раскисленная фосфором медь, содержащая всего 0,004 % Р, подвержена этому виду разрушений [2].  [c.327]


Для аппаратов, в которых производится переработка горячих сероводородных и окислительных серосодержащих сред, а также работающих в среде водорода и растворов хлоридов, основными характеристиками, определяющими работоспособность аппарата, становятся физико-химические свойства рабочей среды и металла, степень защищенности аппарата от коррозии, особенно контактирующей с агрессивной средой. Основным видом разрушения таких аппаратов является внутренняя коррозия. В условиях воздействия сероводородсодержащих продуктов имеют место практически все основные виды разрушений локализованной (язвенное, точечное и коррозионное растрескивание) и общей (равномерная и неравномерная) коррозии. Явление повышения коррозионного повреждения металла под действием механических напряжений принято называть механохимическим эффектом (МХЭ). Как будет показано далее в следующем разделе, наиболее сильно МХЭ проявляется в режиме нестационарного нагружения аппарата, которое реализуется в локальных областях перенапряженного металла при повторно-статических нагрузках.  [c.276]

Цель применения ингибиторов на сероводородсодержащих нефтегазовых месторождениях — обеспечение защиты оборудования и трубопроводов не только от общей коррозии, но и от наводороживания, то есть предотвращение сероводородного растрескивания и водородного расслоения металла. Именно с целью изучения защитных свойств ингибиторов от всех указанных видов разрушения вследствие сероводородной коррозии проводятся исследования в лаборатории Надежность Оренбургского государственного университета (ОГУ).  [c.233]

Атмосферная коррозия — наиболее распространенный вид разрушения. Приблизительно 80 % металлоконструкций эксплуатируется и хранится в атмосферных условиях. В нефтегазовой промышленности атмосферной коррозии подвергаются наружные поверхности наземного оборудования — вышки, резервуары, теплообменники, сепараторы, а также трубы и другое оборудование при их хранении на воздухе.  [c.4]

При этом не только усиливается скорость коррозии, но и меняется также характер разрушения металла. В зависимости от условий взаимодействия металла с внешними факторами возможны различные виды разрушения оборудования.  [c.3]

Общая коррозия может быть равномерной и неравномерной (см. рис. 1, а, б). Равномерная представляет собой наименее опасный вид разрушения при условии, что ее скорость не превышает норм, предусмотренных для данного вида оборудования. Однако общая коррозия опасна при работе оборудования на изгиб и кручение, так как разрушаются наиболее нагруженные внешние слон металла.  [c.3]

Однако коррозия — одна из основных причин выхода из строя обсадных колонн. Коррозии подвергаются наружная и внутренняя поверхности обсадных труб. Наружная поверхность контактирует с различными по составу, структуре, и насыщенности флюидами (подземными пластами), а внутренняя — с нефтью, пластовой водой и нефтяным газом. Наиболее сильно разрушается наружная поверхность обсадных колонн. Основные виды разрушения — язвы, питтинги при наличии общей коррозии.  [c.135]

Интенсивные коррозионные разрушения характерны для конструкций, работаюш.их в жидких средах, вызывающих электрохимическую коррозию. Особенно опасный вид разрушения — коррозионное растрескивание возникает при одновременном действии коррозионной среды и статических или повторно-статических нагрузок. При этом свойства металла, определяющие его восприимчивость к коррозионному воздействию среды, непосредственно связаны с параметрами технологического процесса.  [c.440]

В данной монографии автор стремился сосредоточить основное внимание на методах и средствах контроля за наиболее распространенными и опасными видами разрушений металла котлов, к числу которых необходимо отнести кислородную, кислотную, пароводяную, межкристаллитную коррозию, а также коррозионное растрескивание металла. Исходя из современных достижений электрохимии, в монографии существенное внимание уделено электрохимическим методам контроля за протеканием коррозии [1]. Некоторые методы, например гравиметрический, метод поляризационного сопротивления могут быть использованы для коррозионного контроля не одного, а нескольких видов теплоэнергетического оборудования.  [c.3]


Коррозия Б присутствии кислорода — основной вид разрушения оборудования водоснабжения и теплосети. Она наблюдается и при их эксплуатации, и при простаивании.  [c.18]

В основе механизма этого вида разрушения металла лежат два процесса электрохимический и химический. Начальная стадия коррозии развивается с преобладанием электрохимического процесса, обусловленного появлением анодных участков под шламом, образовавшимся на огневой поверхности. Функцию деполяризатора этой коррозионной пары выполняют оксиды трех-валентного железа и меди, расположенные на остальной поверхности труб, играющей роль катода. Скорость проникновения подобной коррозии в глубь металла находится в прямой зависимости от количества поступающих в трубы оксидов железа и меди.  [c.30]

В последние годы по мере возрастания объема производства и применения лакокрасочных материалов выяснилось во многих случаях для того чтобы лакокрасочные покрытия защищали изделие от коррозии химической или электрохимической, они сами должны быть защищены от коррозии микробиологической. Под этим видом коррозии понимают разрушение материалов, обусловленное действием различных микроорганизмов, населяющих воздух, воду и землю. Как утверждает статистика, из-за микробиологической коррозии (часто ее называют просто биокоррозией) лакокрасочные покрытия, особенно в условиях повышенной влажности и температуры, значительно быстрее выходят из строя, чем под действием лишь химических агрессоров.  [c.74]

Следует заметить, что электрохимическая гетерогенность сварного соединения, обусловившая избирательный характер коррозии, сама по себе не является достаточным условием появления наиболее опасного вида разрушения типа коррозионного растрескивания, возникающего только при определенных сочетаниях  [c.219]

С лабораторными и эксплуатационными коррозионными испытаниями связаны и методы оценки. Результаты иопытаний оценивают визуально по изменению состояния поверхности, массы и размеров, общей площади и распределению участков неравномерного коррозионного разрушения, изменению структуры и виду разрушения, выявленным металлографическим путем, изменению механических и эксплуатационных свойств. Наиболее распространенным методом оценки коррозии металлов является определение убыли массы, которую можно оценить количественно, считая, что коррозия протекает равномерно. По этой убыли  [c.91]

Атмосферная коррозия является самым распространенным н наиболее сложным видом разрушения металлов. Она может происходить в результате химических процессов (сухая атмосферная коррозия), а также электрохимических (растворение металлов), наиболее распространенных в тропических районах.  [c.5]

Равномерная коррозия один из наименее опасных видов разрушения металлов, если ее величина не превышает норм в соответствии с десятибалльной шкалой коррозионной стойкости металлов.  [c.6]

Местная (локальная) коррозия характеризуется разрушением отдельных участков поверхности металла, причем она бывает нескольких видов  [c.10]

Если коррозия распространяется на всю поверхность металла, то такой вид разрушения называют общей и сплошной коррозией. Сплошная коррозия, распространяющаяся примерно с одипако1 011 скоростью по всей поверхности металла, называется равномерной (рис. 125, о), а распространяющаяся с неол1И аковой скоростью на ра и[пчпых участках металла — неравномерной (рис. 125, 6).  [c.158]

Если коррозия вызывает разрушение только некоторых от-дел1 ,пых участков поверхности металла, а остальная часть поверхности не подвергается разрушению, то такой вид коррозии называют местной. Проявление местной коррозии весьма разнообразно, так как она может иметь различные. характер и сте-негж иерав1[ол ерности. Местная коррозия бывает различных типов, из которых наиболее характерные приведены иа рпс. 125.  [c.158]

Другой вид разрушения, характерный для латуни,— коррозионное растрескивание,— рассмотрен в гл. VII. Для испытания латунных изделий на склонность к растрескиванию их подвергают действию реагентов, вызывающих межкристаллитную коррозию. В качестве таких реагентов употребляют ртутные соли HgN O , и Hg b, а также аммиак и его соединения. Коррозионное растрескивание латуней вызывается ие только ртутными и аммиачными соединениями, но и примесями SO2, присутствующими в больших количествах в промышленном воздухе. В воздухе, загрязненном аммиаком и его соединениями, латунные изделия растрескиваются очень быстро. Дополнительное легирование латуней небольшими добавками кремния (0,5%) повышает их стойкость к коррозионному растрескиванию.  [c.253]

Коррозионная стойкость стали. Коррозией называют разрушение металлов под действием окружающей среды. При этом часто металлы покрываются продуктами коррозии (ржавеют), В результате воздействия внешней среды механические Boii Toa металлов резко ухуди]аются, иногда даже при отсутствии видимого изменения внешнего вида поверхности.  [c.277]

При местной коррозии происходит разрушение отдельных участков поверхности металла. Наиболее характерными видами местной коррозии являются коррозия в виде пятен, язв, точечная и подповерхностная, межкристаллртная и транскристаллитная. Наиболее опасный вид местной коррозии — это межкристаллитная коррозия, которая, не разрушая зерен металла, продвигается вглубь по их менее стойким границам.  [c.44]

На металлах, покрытых ЛКМ, могут протекать коррозионные процессы, приводящие к образованию на поверхности <рого-численных извилистых нитевидных поражений. Этот вид разрушений, именуемый иногда подпленочной коррозией, Шармон [12] назвал нитевидной коррозией (рис. 15.1). Она изучена рядом исследователей и воспроизведена в лабораторных условиях [13— 15]. Согласно опубликованным данным, нити или прожилки на стали обычно имеют ширину 0,1—0,5 мм. Собственный цвет нити— красно-бурый, характерный для FegOs. Головка нити имеет зеленый или голубой цвет, указывающий на присутствие ионов двухвалентного железа. Каждая нить растет в произвольном направлении с постоянной скоростью примерно 0,4 мм в день, но нити никогда не пересекаются. Если головка нити приближается к другой нити, то она или меняет направление движения, или ее рост вообще прекращается.  [c.256]


Уменьшение содержания углерода. Содержание углерода в промышленно выпускаемых нержавеющих сталях может быть уменьшено, но при этом резко увеличивается стоимость стали. Сплавы с низким содержанием углерода (например, <0,03 % С) обозначаются буквой L (304L, 316L и т. п.). При сварке или другого рода термообработке этих сталей, когда достигаются температуры сенсибилизации, существует несравненно меньшая опасность протекания межкристаллитной коррозии. Однако абсолютной устойчивостью к этому виду разрушений они не обладают.  [c.307]

Фреттинг-коррозия возникает также в вакууме, в среде кислорода, азота и гелия. Интенсивность изнашивания при фреттинг-коррозии в атмосфере воздуха выше, чем в вакууме и среде азота, а в кислороде больше, чем в гелии. Отсюда следует, что интенсивность изнашивания зависит не столько от силы трения, сколько от окисления поверхностей трения и металлических продуктов разрушения. В противном случае наибольшая интенсивность изнашивания наблюдалась бы в вакууме, где силы трения максимальны. Вместе с тем на кинетику реакции окисления влияет и механический фактор, о чем свидетельствует появление при фреттинг-коррозии оксидов кадмия, отличных от ранее известных окислов этого металла. Таким образом, фрептиш -коррозия представляет собой вид разрушения металлов и сплавов в мало- и неагрессивных коррозионных средах при одновременном воздействии механических и химических факторов.  [c.139]

Высокая коррозионная стойкость алюминия и его сплавов в условиях агрессивных сред, характерных для нефтедобывающей промышленности, делает перспективным их использование в качестве конструкционного материала для изготовления буровых, насоснокомпрессорных труб и деталей газопромыслового оборудования. Известно, что алюминий и его сплавы подвергаются коррозионному разрушению в результате общего растворения, питтинга, межкристаллит-ной коррозии, коррозии под напряжением, расслаивающейся коррозии. Вид коррозионного разрушения определяется составом алюминиевого сплава, зависит от состава коррозионной среды и условий эксплуатации. Так, при использовании бурильных труб из алюминиевых сплавов возможно развитие контактной коррозии за счет соединения их с остальными замками. В зазорах резьбовых соединений происходят процессы щелевой коррозии, а при нагружении таких соединений пере-меннылА нагрузками возникают процессы фреттинг-коррозии. Значительное влияние на характер коррозионного разрушения оказывает pH коррозионно-активной среды. Практика эксплуатации алюминиевых труб показывает, что с увеличением pH от 1 до 13 меняется характер коррозионного поражения равномерная коррозия — в сильнощелочной, щелевая - в сильно кислой областях, питтинговая - при pH = 3-11.  [c.120]

Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкрнсталлитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен-  [c.23]

Таким образом, предложенная гипотеза механизма горячесолезого растрескивания позволяет не только объяснить особенности протекания этого вида разрушения, но и прогнозировать оптимальные направления легирования, термической обработки сплавов и обработки их поверхности, обеспечивающие повышение сопротивляемости горячесолевой коррозии.  [c.78]

Рис. 12.3. Общий вид (а) изломов двух (слева / с очагом из-за отсутствия ребра жесткости, а справа 2 с очагом из-за коррозии) из разрушенных лонжеронов лонасти несущего винта вертолета, изготовленных из алюминиевого снлава АВТ-1 и (в) общая схема последовательности формирования различных зон (/, 2 и 3) излома в лонжеронах. Комментарии даны в тексте Рис. 12.3. Общий вид (а) изломов двух (слева / с очагом из-за отсутствия <a href="/info/4722">ребра жесткости</a>, а справа 2 с очагом из-за коррозии) из разрушенных лонжеронов лонасти <a href="/info/760467">несущего винта вертолета</a>, изготовленных из алюминиевого снлава АВТ-1 и (в) <a href="/info/4759">общая схема</a> последовательности формирования различных зон (/, 2 и 3) излома в лонжеронах. Комментарии даны в тексте
Бактерии, грибы, актиномицеты инициируют и стимулируют процессы коррозии и старения продуктами своей жизнедеятельности, а при прямом или комбинированном воздействии (совместно с другими факторами среды) вызывают особый вид разрушения материалов и покрытий — биоповреждения. В настоящее время отечественные и зарубежные исследователи подчеркивают, что биоповреждения представляют собой эколого-технологическую проблему. Она является комплексной в научном плане и многоотраслевой — в практическом. Основа научных исследований проблемы базируется на законах биологии и химии, материаловедческих и природоведческих дисциплинах. Рациональная борьба с биоповреждениями немыслима без изучения экологии микроорганизмов, особенностей их существования, а также без знаний физико-химических свойств материалов и условий эксплуатации машин, оборудования и сооружений, без понимания вопросов природоиспользования и необходимости защиты природы от загрязнений. За несколько миллиардов лет эволюции жизни на земле микроорганизмы получили способность быстрой адаптации к изменяющимся условиям их обитания и источникам питания. Только этим можно объяснить активность ряда микроорганизмов в отношении созданных человеком конструкций, приводящую к разрушению последних.  [c.3]

Однако, и в материалах, мало склонных к очаговой коррозии, при наличии адсорбционно-активных сред может протекать разрушение, которое следует отнести к категории коррозионноусталостных. При этом основное отличие от сухой усталости, заключающееся в ускорении роста трещины, наблюдается в процессе разрушения. На изломе отсутствуют явно выраженные продукты коррозии, микроусталостные полоски имеют обычный вид. В этом случае, если нет соответствующих данных о скорости развития трещины в аналогичных условиях нагружения (по величине напряжения, частоте приложения нагрузки, геометрии изделия и т. д.), но без влияния среды, идентификация вида разрушения по фрактографическим признакам затруднена.  [c.129]


Необходимо отметить, что указанные факторы — амплитуда деформации, длительность и максимальная температура цикла — являются основными, но не единственными параметрами, определяющими вид разрушения. Не изменяя в целом вид диаграммы, границы областей, характеризующих разрушения различного вида, можно сдвигать в ту или иную сторону для учета воздействия технологических и экшлуатационных факторов (например, шособа и режима выплавки металла, влияния среды, защитных покрытий). Так, вакуумная выплавка никелевого сплава существенно повышает прочность границ зерен, вследствие чего при одних и тех же условиях нагружения смещается область величин сре, фо Ф 1 в которой разрушение происходит по границам зерен. Наоборот, при активном повреждении границ зерен, например при эксплуатации в газовых средах или при склонности материала к межкристаллитной коррозии, разрушение от термической усталости почти всегда начинается по границам зерен еледовательно, в этом случае уменьшаются области Л и 5 на рис. 58 (по границам зерен развивалось разрушение при нагружении стали 12Х18Н9Т при 750° С тв=1,5  [c.102]

Следует иметь в виду, что в зависимости от технологического режима коксования и состава шихты, которая меняется в зависимости от месторождения используемых углей (табл. 4), меняются процентные соотношения некоторых компонентов коксового газа, в основном Н. З, НСЫ, ННз, а следовательно, и свойства газа в отношении его коррозионного воздействия на металл. НгЗ, НСН способны вызывать опасный вид коррозионного разрушения — коррозионное растрескивание. Оно вызывается одновременным воздействием коррозионной среды и растягивающих напряжений, причем среда может быть и не агрессивна в обычном понимании слова коррозия . Такие разрушения наблюдались в эксплуатационных условиях коксохимического производства на лопатках нагнетателя 0-1200-21, изготовленных из стали марки ЗОХГСА (рис. 8). Трещины и обрывы наблюдались в зоне полок лопаток, примыкающих к основному диску. Ниже приведены исследования, проведенные в лабораторных и производственных условиях, которые подтвердили, что наблюдаемые разрупюния могут быть отнесены к коррозионному растрескиванию. Для надежной работы нагнетателей потребовалась замена лопаточного материала.  [c.19]

Межкристаллитная коррозия (МКК) - oд и из наиболее часто наблюдаемых и опасных видов коррозионного разрушения аустенитных хромоникелевых, а также хромистых коррозионно-стойких сталей. Как видно из названия этого вида коррозии, разрушению подвергаются в основном границы зерен. металла, происходит избирательная коррозия.. Металл в течение короткого времени теряет прочность и пластичность. При этом отсутствуют внешние признаки разрушения, что затрудняет контроль и раннюю диагностику экснлуатарующихся деталей на МКК- К настояще.му вре.мени разработаны довольно эффективные способы повышения стойкости сталей к МКК., по несмотря на это необходимость в тщательном контроле возможности появления этого вида разрушения не отпадает. Тем более необходимо это при изменении конструкции. машины, условий ее эксплуатации. Практика показывает, что чаще всего и.менио в этих случаях происходят разрушения от МКК.  [c.46]

Поскольку коррозионное растрескивание, так же как и питтинговая коррозия, является по своей природе электрохимическим процессом, развивающимся в результате депассивации части металлической поверхности, стойкость металла к данному виду разрушения определяется прежде всего стабильностью возникающей на нем пассивирующей пленки [152,15 3] и может регулироваться за счет регулирования электродного потенциала металла. В настоящее время хорошо известно, что наложение катодной поляризации затрудняет, а анодной - облегчает развитие коррозионного растрескивания. Так, например, катодная поляризация аустенитной нержавеющей стали в кипящем растворе Mg l2 током 3 10" а/см обеспечило защиту ее от растрескивания на протяжении всего опыта, длившегося 24 ч [154]. Показано также [ 155], что полную защиту стали 18/9 в кипящем 42%-ном растворе Mg l2 удается обеспечить катодной поляризацией ее током 1,5 10-4 а/см2.  [c.35]

Стимулируя коррозию черных металлов в кислых средах, сероводород является также и стимулятором наводо-роживания их как в процессах коррозии, так и при катодной поляризации [2,8,55-64]. Сероводород, содержащийся в пластовых водах нефтяных скважин, ускоряет диффузию и растворение водорода в решетке стали и увеличивает его концентрацию в поверхностных слоях, способствуя разрушению границ кристаллов металла, что является причиной возникновения хрупкости стали [65-68]. Водородная хрупкость стального оборудования нефтеперерабатывающих заводов стала одной из основных коррозионных проблем на ряде установок. Наиболее склонны к этому виду разрушения ректификационные колонны, сопряженные  [c.55]

Таким образом, величина предела выносливости материала или натурного элемента конструкции, повреждаемых фреттингом, может прогнозироваться с учетом интенсивности процесса фреттинг-коррозии, вида нагруя-сения, конструктивной особенности заделки, технологических и других факторов для заданной вероятности разрушения.  [c.386]

Особенно опасна питтинговая коррозия. Этому виду разрушения в наибольшей мере подвержены нержавеющие стали, коррозионная стойкость которых определяется образованием на них пассивационных пленок. Такие стали, легко пассивирую-идаеся в окислительных средах, подвергаются в присутствии ионов галогенов (депассиваторов) местному коррозионному разрушению, которое проявляется в виде мелких глубоких поражений, называемых пнттиигами. Данный вид коррозии вызывает сильные разрушения многих конструкций и трубопроводов 176, 83].  [c.35]


Смотреть страницы где упоминается термин Коррозия виды разрушений : [c.105]    [c.159]    [c.172]    [c.34]    [c.70]    [c.3]   
Теоретические основы коррозии металлов (1973) -- [ c.13 , c.14 ]



ПОИСК



Виды коррозии. Влияние конструктивных факторов на развитие коррозийных разрушений машин и аппаратов ЛОКАЛЬНЫЕ ВИДЫ КОРРОЗИИ МЕТОДЫ ИСПЫТАНИЯ МАТЕРИАЛОВ НА СТОЙКОСТЬ ПРОТИВ КОРРОЗИИ Локальные виды коррозии

Виды коррозионных разрушений и методы исследования коррозии

Коррозия разрушение

Основные виды коррозии и коррозионных разрушений

Особенности коррозии и виды коррозионных разрушений сварных соединений

Разрушение, виды



© 2025 Mash-xxl.info Реклама на сайте