Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физические методы анализа металлов

Физические методы анализа металлов  [c.41]

Физические методы исследования металлов. Для изучения превращений в металлах и сплавах широко ис- пользуют различные методы физико-химического анализа.  [c.31]

При изготовлении сварных швов из сталей обычно содержание большинства элементов (Si, Мп, Сг, Ni и др.) определяют физическими методами анализа (спектральным, рентгеноспектральным и др.) на образцах различного размера. Содержание ряда элементов (С, S, Р и др.) в металле определяют из его стружки химическими способами анализа.  [c.41]


Труд охватывает следующие методы испытания металлов макроанализ, микроанализ, рентгеноструктурный анализ, термический анализ, физические методы исследования металлов, методы испытания механических свойств, методы испытания твердости и технологические пробы. Книга широко используется в заводских лабораториях, научно-исследовательских институтах и высших учебных заведениях.  [c.10]

Анализ приведенных работ показывает, что физические методы количественной оценки состояния поверхностны х слоев при трении в период предразрушения и разрушения представляют особый интерес. При их использовании для изучения усталостного механизма износа целесообразно принять во внимание основные закономерности структурных изменений металлов и сплавов, полученные для объемной усталости.  [c.32]

Краткая характеристика некоторых физических методов контроля внутренних дефектов в металле, отливках и деталях. Спектральный анализ дает возможность быстро, точно и без разрушения образца определить наличие в металле или сплаве различных элементов и их процентное содержание. Метод основан на анализе светового спектра, полученного от электрической дуги или искры, возбуждаемой между испытываемым металлом детали и медным дисковым разрядником. По характеру светового спектра судят о наличии тех или иных элементов в металле. Для выполнения такого анализа применяются приборы, называемые стило-скопами. По сравнительной интенсивности его характерных линий 310  [c.310]

Для изучения металлов и сплавов нередко используют физические методы исследования (тепловые, объемные, электрические, магнитные). В основу этих исследований положены взаимосвязи между изменениями физических свойств и процессами, происходящими в металлах и сплавах при их обработке или в результате тех или иных воздействий (термических, механических и др.). Наиболее часто применяют дифференциальный термический анализ (построение кривых охлаждения в координатах температура— время) и дилатометрический метод, основанный на изменении объема при фазовых превращениях. Для ферромагнитных материалов применяется магнитный анализ  [c.11]

С одной стороны, наука о металлах обязана учитывать насущные вопросы практики — поставлять материалы, удовлетворяющие необычайно высоким и разнообразным требованиям машиностроения и новых отраслей техники. Условия эксплуатации деталей машин и приборов делают эту задачу весьма сложной. Металловедение не может пока отказаться от многих чисто эмпирических приемов, на основе которых даются практические рекомендации, хотя для этого приходится проводить трудоемкие и длительные эксперименты. С другой стороны, в металловедение в настоящее время весьма интенсивно внедряются новые физические представления и физические методы исследования, сильно обогащающие науку о металлах. В частности, необычайно расширяются возможности исследования металлов благодаря применению ядерных излучений, резонансных методов, дифракционного анализа и т. д. для выяснения атомного механизма явлений привлекаются представления квантовой механики, статистической физики, теории поля, термодинамики необратимых процессов и др. Можно ожидать нового серьезного шага вперед в связи с проникновением в металловедение математики, использованием методов математического планирования эксперимента, внедрением вычислительной техники.  [c.5]


Спектральный анализ черных металлов. Рассмотренный выше уровень характеристик точности химического анализа черных металлов не может быть непосредственно распространен на результаты измерений спектральными и другими физическими методами, так как фактические значения их погрешностей и даже концентрационные зависимости показателей точности могут не совпадать с установленными для химических методов. В общем комплексе методик аналитического контроля иной может быть и допускаемая погрешность инструментальных измерений при массовом контроле качества продукции наиболее важно получение измерительной информации в сроки, согласующиеся с продолжительностью современных металлургических про-  [c.53]

Описанный анализ структурных состояний некоторых сталей и высокопрочного чугуна после ТЦО в сравнении с методами ТО, известными ранее, не является полным и всесторонним. Однако приведенные структуры и другие данные показывают основные отличия структур сплавов на основе железа, обработанных по обычному методу с изотермическими выдержками и по методу ТЦО (нестационарный). Ясно, что значительным различиям в структурах соответствует существенная разница в механических и физических свойствах черных металлов.  [c.71]

Другие методы исследования металлов позволяют определять температуры, при которых происходят превращения по тепловому эффекту (термический анализ), или характеризовать тип и условия превращения, а также структуру сплава по изменению физических (методы определения электрического сопротивления магнитных свойств, объемных изменений) или механических свойств (механические испытания).  [c.9]

Метод анализа размерностей. Если физический процесс не может быть описан системой уравнений, критерии подобия можно найти методом анализа размерностей. Этот метод применяют при наличии всех важных для данного процесса параметров, особенно успешно при анализе очень сложных задач обработки металлов давлением, математическое описание которых затруднено [78].  [c.150]

Наиболее распространены следующие методы физического анализа термический, дилатометрический, электрического сопротивления и магнитный. В последнее время все чаще применяют метод внутреннего трения. При помощи этих методов также определяют величину свойств, что важно для характеристики сталей и сплавов с особыми физическими свойствами. Некоторые из физических методов являются одновременно средством контроля качества металлов и сплавов.  [c.23]

С точки зрения физических процессов анализ результатов измерения внутреннего трения и демпфирования колебаний, очевидно, представляет существенные трудности, однако измерение внутреннего трения,несомненно, получит распространение как чувствительный экспериментальный метод исследования различных состояний деформационной субструктуры в металлах.  [c.225]

Физические методы испытания применяют для выявления в металле внутренних дефектов — пористости, шлаковых и газовых включений, а также для изучения кристаллического строения металлов. В настоящее время широко используют рентгеновский анализ, метод контроля магнитным порошком, ультразвуком и радиоактивными изотопами. Эти методы высокопроизводительные, точ-  [c.56]

Спектральный анализ — один из наиболее распространенных современных физических методов определения химического состава металлов я сплавов.  [c.275]

Спектральный анализ является одним из наиболее распространенных современных физических методов определения химического состава веществ, в частности металлов и сплавов.  [c.180]

Среди физических методов исследования и контроля материалов важное место занимает рентгеноструктурное исследование кристаллических материалов. Металлы и сплавы, неорганические и органические химические соединения и другие кристаллические материалы применяются в химической промышленности и машиностроении, металлургии и строительстве, радиотехнике и сельском хозяйстве. Поскольку технические материалы, как правило, являются поликристаллическими, в промышленности проводят преимущественно рентгеноструктурный анализ различных процессов, происходящих в поликристаллических телах.  [c.10]


К физическим методам принадлежат рентгеновский метод структурного анализа и магнитный. Компоненты напряжений изучаются при этом методе на основе определения изменений параметров кристаллической решетки металла. Облучение исследуемых кристаллов металла производится полихроматическими или монохроматическими лучами. Рентгенограммы позволяют определять одноосные и плоскостные напряжения.  [c.101]

В книге изложены методы изучения металлов, применяемые в металловедении, приведены лабораторные работы по основным разделам курса (термический анализ, макро- и микроанализ, измерение твердости, определение физических свойств, термическая обработка) и даны задачи по диаграммам состояния двойных и. тройных сплавов, разЛ>ру микроструктур стали, чугуна и цветных сплавов и по выбору сплавов и режимов их обработки.  [c.2]

Авторы монографии — достаточно известные специалисты в области исследования работоспособности машин, механизмов и конструкций в условиях низких температур. Их первые работы были опубликованы в 1963 г. С тех пор авторы усовершенствовали методы сбора, обработки и анализа информации по аварийности машин и механизмов, выполнили ряд оригинальных исследований, связанных с хрупким разрушением и абразивным изнашиванием металлов, и начали развивать основы физической теории низкотемпературной надежности технических устройств.  [c.3]

Многие современные физические методы исследования металлов основаны на изучении взаимодействия объекта с каким-либо видом электромагнитных волн. Помимо классических (оптических, рентгеновских и электронно-микроскопических) методов, используются ядерный магнитный и электронный парамагнитный резонанс [1] методы исследования поверхности (Оже-электронная спектроскопия и дифракция медленных электронов) электронная спектроскопия для химического анализа ионный микрозонд [2] и др. Во всех случаях изучается поглощение. рассеяние падающих или испускание вторичных электромагнитных волн (или пучка электронов, ионов) частицами исследуемой системы. При некоторых энергиях падающего излучения, совпадающих с энергиями соответствующих переходов в системе, интенсивность эффекта возрастает — такие методы являются резонансными. В частности, резонанс укван-тов на атомных ядрах заключается в резком возрастании вероятности поглощения (или рассеяния) у-квантов с энергией, соответствующей возбуждению ядерных переходов.  [c.161]

Большинство современных физических методов исследования металлов основано на изучении взаимодействия объекта с электромагнитными волнами какого-либо вида. Помимо классических оптических, рентгеновских и электронно-микроскопических методов, это — ядерный магнитный и электронный парамагнитный ре-аонанс [П.1 ], методы исследования поверхности — Оже-электрон-ная спектроскопия и дифракция медленных электронов, электронная спектроскопия для химического анализа [П.2], ионный микрозонд [11.3 j и др. Во всех случаях изучают поглощение, рассеяние падающих или испускание вторичных электромагнитных волн (или пучка электронов, ионов) частицами исследуемой системы. При некоторых энергиях падаюпхего излучения, совпадающих  [c.133]

С течением времени заметные изменения претерпевает структура массивов СО. Наряду с образцами состава массовых металлургических материалов, аттестованными по содержанию обычных компонентов, развивается выпуск СО металлов и сплавов, аттестованных по содержанию примесей. В числе СО, для которых характерны более высокие темпы роста выпуска, — образцы газов и газовых смесей, а также многих органических соединений (так, Национальная физическая лаборатория Англии к началу 70-х годов предлагала потребителям около 160 типов СО органических веществ, в том числе более 40 образцов пестицидов [58]). Если говорить о методах анализа, то с начала данного периода и до настоящего времени четко прослеживается возрастание доли СО, предназначенных для физических методов анализа (преимущественно для эмиссионного атомного спектрального анализа в ультрафиолетовой, а позднее — и в рентгеновской области), а также веществ аттестованной частоты для хроматографического и других методов анализа. В этот, второй период был в основном рещен ряд важных научных и технических задач по изготовлению СО, обеспечению достаточной однородности их материала, по развитию методических аспектов аттестационных анализов, созданию так называемых синтезированных СО (например, в виде смесей оксидов металлов или газов). Был сформулирован и частично реализован ряд методологически важных следствий концепции [41] о том, что стандартные образцы должны играть для химиков ту же роль, что и метр, и килограмм в измерении длины и массы .  [c.23]

Сборник посвящен химическим, физико-химическим и физическим методам анализа руд цветных металлов и продуктов их переработки. В книге описывается фазовый анализ руд и продуктов их переработки с применением химического и рентгеновского методов. Приведены новые данные по использованию переменнотоковой полярографии для определения малых количеств элементов Описывается аппаратура для спектрального и рентгеновского методов анализа.  [c.2]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]


В теории ОМД и при обработке результатов пластометрических исследований физические модели течения металлов, к сожалению, пока еще мало используются. Для анализа кривых текучести а—е применяются лишь, как правило, эмпирические методы, которые не учитывают механизм упрочнения — разупрочнения материала при горячей деформации.  [c.10]

Для химического анализа металлов применяются методы а) химические (весовой и объёмный) б) физико-химические (электроанализ, потенциометрия, колориметрия, фотоколориметрия, полярография и др.) и в) физические (спектральный и рентгеновский).  [c.91]

Следует отметить, что в основе описанных методов анализа уширения линий лежит модель кристалла, разбитого на упруго деформированные области когерентного рассеяния, поэтому они применимы только тогда, когда в изучаемом металле имеются физически ограниченные области малого размера. В массивных материалах такие области, как правило, не обнаруживаются прямыми электронно-микроскопическими методами. В этом случае анализ уширения можно провести на основе теории рассеяния рентгеновских лучей дефектными кристаллами, разработанной М. А. Кривоглазом [9, 45]. Он показал, что в кристаллах, содержащих прямолинейные хаотически распределенные дислокации, дислокационные скопления типа pile up и границы ячеек, физическое уширение меняется пропорционально tg 0 и корню квадратному из плотности этих дефектов. В частности, для прямолинейных дислокаций плотаостъю р уширение равно  [c.142]

В настояш,ее время развитие науки о металлах характеризуется непрерывным возрастанием роли физических представлений, составляюш их предмет физики металлов и физического металловедения. В связи с этим все большее значение приобретают также точные физические методы исследования. По этим вопросам в Советском Союзе издан ряд отечественных монографий, среди которых надо отметить широко известные курсы Физика твердого тела Г. С. Жданова [1] и Физическое металловедение Я. С. Уманского, Б. Н, Финкельштейна и др. [21. Глубокий теоретический анализ металлического состояния и отдельных проблем физики металлов и физического металловедения дан в трудах Л. Д. Ландау и Е, М. Лифшица, Я. И. Френкеля, А. А. Бочвара, Г. В. Курдюмова, Н. В. Агеева, С, Т. Конобеев-ского, С. В. Вонсовского и др. Выпущено также много переводных изданий, в числе которых монографии В. Юм-Роаери 3, 4], Ф. Зейтца, Ч. Киттеля, Б. Чалмерса, Дж. Займана [5—9] и ряд книг  [c.5]

Спектральный анализ. Это физический метод качественного и количественного анализов состава вещества на основе изучения его спектра. Для анализа используют специальные приборы — стилоскопы и спектрографы. Между анализируемой деталью и медным электродом стиласкопа возбуждают электрическую дугу. Свет от дуги (раскаленные пары металла) проектируется, на щель спектрального аппарата, проходит через оптическую систему линз и разлагается на гамму цветов — линейный спектр. В спектре наблюдается пять основных цветов красный, желтый, зеленый, голубой и фиолетовый. Каждый элемент имеет свою инию спектра. По цвету и интенсивности линий спектра, наблюдаемых в стилоскопе, определяют, какой элемент и в каком количестве находится в металле. Спектральный анализ помогает быстро сортировать готовые детали по маркам стали.  [c.187]

Развитие теоретических представлений и углубление знаний в области трения и изнашивания материалов во многом йависят от уровня экспериментальных исследований в этой области. Этот уровень, в свою очередь, определяется возможностями существующих методов исследования структуры и свойств поверхностей трения. В настоящей главе рассмотрены физические методы, используемые при анализе поверхностей трения. К ним относятся в первую очередь традиционные оптическая и электронная микроскопии, рентгеновская техника, электронография и спектроскопия. Особый интерес для исследования поверхностей трения представляют методы, не вызывающие нарушения, исследуемых поверхностей. В этой связи большое внимание уделено рентгенографическому методу скользящего пучка лучей, который специально разработан для анализа поверхностей трения и в силу ряда преимуществ (возможность послойного исследования в диапазоне толщин 10" —10" м, в котором локализуются основные процессы при трении., проведение исследований без дополнительной подготовки поверхности, неизбежно искажающей экспериментальные результаты), а также большой информативности самого рентгенографического метода является перспективным в оценке структурных изменений металлов и сплавов, деформированных трением.  [c.58]

Широкий круг физических методов иссле дования поверхностных слоев металлов и сплавов основан на дифракции рентгеновских лучей, электронов, нейтронов. Особенности картин, получаемых при дифракции, определяются длинами волн излучений и законами рассеяния лучей атомами вещества. В рентгеноструктурном анализе используют лучи с длинами волн в интервале 0,05—0,25 нм (Хр = 1,234/и, где и — напряжение, кВ). При обычно применяемых в электронографии напряжениях 20—100 кВ длины электронных волн лежат в пределах 0,008—0,003 нм, т. е. на порядок меньше длины наиболее жестких монохроматнч еских лучей, используемых при рентгеноструктурном анализе. В нейтронографических исследованиях чаще всего используют так называемые тепловые нейтроны, энергия которых соответствует тепловому равновесию с замедляющими м атомами, т. е. закону распределения Максвелла (Хц = 2,521/Т).  [c.64]

Метод с использованием точки перегиба невыгоден тем, что для получения всех величин т необходимо иметь почти полные кривые ползучести или упругого последействия. Вероятно, более правильные значения т можно получить из анализа, который предполагает определенную форму спектра времен релаксации. Так называемая логарифмически нормальная форма распределения, предложенная Новиком и Берри [6, 7], обладает важным достоинством в том отношении, что она выбрана на основании приемлемой физической модели. При логарифмически нормальном распределении предполагается, что интенсивность релаксации имеет гауссовское распределение в зависимости от логарифма времени около наиболее вероятного времени релаксации Тт. Новик и Берри показали, что эта форма распределения точно соответствует данным по зинеровской релаксации для сплавов Ag—Zn. Так как для исследованных сплавов ширина релаксационного спектра относительно узка, то в пределах точности эксперимента опытным данным соответствуют и другие спектры времен релаксации. Единственным дополнительным параметром, введенным в логарифмически нормальное распределение времен релаксации, является величина р — полуширина спектра в точке, соответствующей 1/е максимальной его величины. Для данной величины р неупругая деформация при ползучести зависит только от tfxrn> Эта функциональная зависимость была табулирована [G] так, что если известно то Тт может быть легко получена из опытов по релаксации. Этот метод анализа был успешно использован для нахождения временной зависимости Тт [8], Для справедливости этого метода необходимо, чтобы форма спектра времен релаксации оставалась постоянной при изменении Тт со временем. Таким образом, этот метод применим только тогда, когда отклонение от равновесия невелико так, что в металле имеется небольшой градиент концентрации вакансий.  [c.360]


Определение состава металла осуществляется с помощью следующих методов анализа химических (весового и объёмного ), физико-химических (колориметрия, фотоколориметрия, электроанализ, потенциометрия, полярография и др.) и физических (спектральный и рентге-  [c.46]

В учебнс м пособии изложены методы изучения металлов, приведены лабораторные работы по основным разделам курса (термический анализ, макро- н микроисследования, определения твердости и физических свойств, термическая обработка стали, чугуна и цветных металлов), задачи по разбору диаграмм состояния сплавов, микроструктур металлов и рациональному выбору состава и обработки сплавов.  [c.2]

Всестороннее освещение получили в справочнике методы исследования и испьггания металлов и металлических сплавов. Изложены основные положения известных и широко применяемых испытаний для определения механических свойств, макро- и микроструктуры, технологических свойств и др., а также современных физических методов исследования (рентгеновский анализ, электронная микроскопия, определение внутренних напряжений, электрических, тепловых и другик свойств металлов), которые получают все большее и большее распространение в наших заводских лабораториях.  [c.12]

Определение содержания азота. Определение содержания азота (0,01-0,5 %) химическим (титрометрическим) методом основано на растворении навески из металла в неокисляю-щихся кислотах. Недостатком его является значительная длительность анализа. Результаты определения азота химическим методом более точны. Поэтому его применяют для аттестации стандартных образцов, выполнения арбитражных анализов, контроля правильности различных физических методов определения азота. Автоматизация химического метода (например, с использованием установки ГНЦ РФ ЦНИИчермет) позволяет применять его также для проведения массовых анализов азота в металлах.  [c.719]

Расчетные методы. При разработке расчетных методов применяют два основных методических подхода. Первый используют параметрические уравнения, полученные статистической обработкой экспериментальных данных. Они связывают ваходные параметры (показатель склонности к трещинам, требуемую температуру подогрева и другие) с входными параметрами (химическим составом, режимом сварки и другие) без анализа физических процессов в металлах прн сварке, обусловливающих образование трещин. Поэтому их применение ограничено областью, в пределах которой изменялись входные параметры при проведении экспериментов. При этом часто не учитывается все многообразие факторов, влияющих на образование трещин, в том числе и существенно значимых. Второй предусматривает анализ физических процессов в металлах при сварке, обусловливающих образование трещин. В этом случае используются концептуальные физические модели процесса разрушения при образовании трещин, аналитические зависимости законов металлофизики, регрессионные уравнения, описывающие характеристики и константы материалов на основе сгатистической обработки опытных данных. Такие расчетные методы имеют более универсальный характер, чем параметрические уравнения, и позволяют учитывать достаточно широкий ряд металлургических, технологических и геометрических факторов. Выполнение расчетов производится с помощью ЭВМ.  [c.142]

Среди этих трудов исследования М. X. Шоршорова отличаются своим подходом к изучению и регулированию физических процессов в металлах при сварке. Этот подход основан на теории тепловых процессов и на тех расчетных методах, которыми она располагает для анализа изменения температуры, деформаций и напряжений в сварных соединениях в зависимости от способа, параметров режима и технологии сварки. Рассматриваемый комплекс работ М. X. Шоршорова отличается также систематичностью исследований, разнообразием методических средств, а главное — широтой и глубиной теоретического анализа фазовых превращений в неравновесных условиях и их влияния на прочность металлов при сварке. Эти работы во многом способствовали созданию и развитию нового научного направления в теории сварочных процессов, охватывающего вопросы физического металловедения сварки, разработка которых требует учета одновременного влияния сложных тепловых, механических и химических воздействий на металл.  [c.6]

Метод акустической эмиссии. Для проведения анализа процессов микротрещинообразования в образцах и изделиях из металлов [14] необходимо применять метод акустической эмиссии, который основан на исследовании акустических параметров (интенсивность акустических импульсов, амплитудный и частотный спектры импульсов и т. д.) при образовании микротрещин под воздействием напряженно-деформированного состояния изделий, конструкций и образцов при приложении нагрузки, уровень которой значительно ниже предельного (разрушающего) значения. Для композиционных материалов метод еще недостаточно изучен [14], однако ему в последнее время уделяется все большее внимание. Значительная эффективность данного метода объясняется тем, что физический процесс микротрещинообразования непосредственно связан с кинетикой разрушения материала как на стадии изготовления, так и эксплуатации. Метод позволяет оценивать состояние изделия в процессе эксплуатации, если наблюдение за режимом трещинообразования в изделии было начато с самого начала эксплуатации изделия. Метод является также эффективным при контроле прочности изделий , который основан на установлении многопараметровой связи акустических параметров микротрещинообразования с прочностью изделия. Метод применяется при контроле изделий из полимерных композиционных материалов в режиме их опрессовки.  [c.88]


Смотреть страницы где упоминается термин Физические методы анализа металлов : [c.228]    [c.263]    [c.86]    [c.655]    [c.548]    [c.5]    [c.9]   
Смотреть главы в:

Технология металлов и конструкционные материалы  -> Физические методы анализа металлов



ПОИСК



Анализ ОЭП 24, 28, 29 - Методы

Методы физические

Физические методы анализа



© 2025 Mash-xxl.info Реклама на сайте