Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Соотношения между напряжениями и деформациями и общие уравнения теории упругости

СООТНОШЕНИЯ МЕЖДУ НАПРЯЖЕНИЯМИ И ДЕФОРМАЦИЯМИ И ОБЩИЕ УРАВНЕНИЯ ТЕОРИИ УПРУГОСТИ  [c.397]

Поскольку иногда детали машин и элементы конструкций работают за пределом текучести, необходимо исследовать зависимость между напряжениями и деформациями в пластической области, где соотношения линейной теории упругости уже неприменимы. Соотношения между деформациями и напряжениями в пластической области в общем случае нельзя считать не зависящими от времени. В любой точной теории пластического деформирования следовало бы учитывать влияние всего процесса изменения пластической деформации с момента начала пластического течения. Соотношения, учитывающие это, были бы очень сложными, они содержали бы в себе напряжения и скорость изменения деформации во времени. Уравнения были бы аналогичны уравнениям течения вязкой жидкости, а деформацию в каждый момент времени следовало бы определять, осуществляя пошаговое интегрирование по всему процессу изменения деформации. Такой подход привел бы к очень трудоемким расчетам даже при решении простейших задач о пластической деформации. Вследствие этого обычно делают некоторые упрощающие предположения, которые позволяют относительно просто исследовать процессы пластического деформирования и получать достаточно простые результаты, пока температура ниже температуры ползучести и в случае обычных скоростей деформации.  [c.118]


Основные соотношения. Расчет упрочняющихся пластин по теории пластического течения требует большой вычислительной работы. Поэтому, как правило, используют уравнения теории упруго-пласти-ческих деформаций. Для упрощения задачи принимают условие несжимаемости. Уравнения изгиба пластин при общей зависимости между интенсивностями напряжений и деформаций приведены в работе [4]. Эти зависимости существенно упрощаются для случая степенного закона  [c.621]

Теория упругости как стройная научная дисциплина зародилась в начале XIX столетия, когда почти одновременно Л. Навье (1821) [54], А, Коши (1822) [40] и С. Пуассон (1829) [55] вывели общие уравнения равновесия и движения упругих тел и дали правильную постановку соответствующих задач. При этом допускалось, что перемещения точек тела весьма малы и что соотношения между напряжениями и деформациями линейны.  [c.9]

Задача теории упругости неоднородного тела формулируется и решается аналогично задаче теории упругости однородного изотропного или анизотропного тела. Различие между ними состоит лишь в том, что в физических уравнениях (законе упругости) механические характеристики являются заданными непрерывными функциями координат. Здесь необходимо еще раз подчеркнуть, что при этом деформации тела считаются малыми и предполагается выполнение обобщенного закона Гука. Очевидно, что в случае неоднородного тела остаются справедливыми общие уравнения механики сплошной среды соотношения Коши между деформациями и перемещениями и т. д. Подробное изложение теории напряжений и деформаций приводится в многочисленных книгах [11, 100, 138 и др.], поэтому ниже они даются без вывода в прямоугольной системе координат х, у, z) в объеме, необходимом для дальнейшего изложения. Эти же уравнения в других системах координат (цилиндрической, сферической) можно найти в указанных выше и других изданиях.  [c.32]

Подобно геометрии, в которой разные фигуры вводятся как идеализации определенных природных объектов, так и в ме- ханике сплошных сред разные идеальные среды вводятся че-Ьез частные формы соотношения между тензором напряжений перемещением или деформацией тела. Некоторые материалы Представляют чрезвычайно большой самостоятельный интерес (например, упругие материалы), но большинство из них в основном интересны не сами по себе, а лишь в качестве представителей некоторого класса материалов. Поэтому есть необходимость в общей теории определяющих уравнений.  [c.105]


Анализ конкретных задач о трещинах в реальном нелинейно-упругом теле, напряженное состояние которого зависит лишь от его деформации (не зависит от поворотов), провести аналитическими средствами довольно трудно. (Решена плоская задача при условии сильного начального растяжения тела [119].) Однако выводы о концентрации деформаций (см. 3.3), о связи между раскрытием трещины и напряжениями на ее продолжении, а также о потоке энергии (см. 3.4) можно сделать, основываясь на геометрически точных соотношениях и не привлекая конкретных уравнений состояния. Достаточным является введение довольно естественных предположений общего характера, например об устойчивости материала. Оказывается, что неограниченность деформаций у края трещины не является следствием линеаризации. Она сохраняется и при точной постановке задачи. Характер особенности может измениться, но поток энергии сохраняется - линейная теория определяет его правильно.  [c.69]

В рамках теории упругости наследственные модели деформируемых тел рассматривались в механике по предложению Л.Больцмана с конца XIX века [50]. Их основу составляет идея Больцмана о том, что уравнения состояния твердых тел, определяющие связь между локальными напряжениями и деформациями, должны выражаться соотношениями, учитывающими, например, историю деформирования в окрестностях данной точки упругой (наследственно-упругой) среды. В общем такая связь в линейном случае может быть представлена с помощью введения некоторого интегрального оператора в виде [51] (также см. ссылку на монографии [64]вЧ.1)  [c.152]

Прагер [8] вывел уравнение, описывающее в общем виде соотношение между напряжением и деформацией при пластической деформации деформационно упрочняемых материалов. Это уравнение основано на теории общей деформации и не связано с теорией приращения деформации. Однако, как указано в разделе 4.1, ползучесть характеризуется закономерностями, аналогичными закономерностям нелинейной упругости. Поэтому скорость ползучести часто рассматривают [9, 11 ] с позицией теории общей деформации. В связи с этим в настоящем разделе авторы обсуждают обобщенное уравнение, описывающее соотношение напряжение—скорость ползучести с помощью теории Прагера.  [c.102]

В предыдущих параграфах настоящего раздела обсуждалась общая теория пластичности, в которой связь между напряжениями и деформациями имеет достаточно общую форму, когда t (см. соотношение (7)) при выходе за предел упругости учиты- ваются как упругая, так и пластическая части приращения де- формации. Так как, по определению, приращение упругой части деформации связано с пропорциональным приращением напряжений (уравнение (8)), то в итоге связь между полными напряжениями и деформациями (определяемая, например, уравнениями (22)) будет такой, что напряжения за пределом упругости будут изменяться с изменением деформаций (см. рис. 1). Такие материалы известны под названием упругопластических материалов с упрочнением.  [c.205]

ОС НОРшая задача механики деформируемого твердого тела — описание процессов деформирования с учетом экспериментальных данных, определяющие соотношения которых могли бы быть использованы при решении конкретных технических задач. Поэтому развитие теории механики деформируемого твердого тела идет по пути постепенного усложнения и уточнения определяющих соотношений по мере накопления экспериментальных данных. В качестве основной исходной характеристики обычно принимают деформацию. При упругом деформировании (простейший вид) определяющие уравнения связи между напряжениями и деформациями можно записать, в виде конечных соотношений, при пластическом деформиро Банин — в приращениях или дифференциалах. В последнем случае процесс нагружения-деформирования зависит только от последовательности наложения элементарных процессов (нагрузки, разгрузки, повторной нагрузки и т. п,) и не зависит от промежутков времени, в течение которых эти процессы происходят, т. е. окончательный результат не зависит от масштаба времени. В более общем случае деформирования деформации могут зависеть от масштаба времени, например, изменение деформаций во времени при постоянном напряжении. Поэтому принято полные деформации разделять на мгновенные, или упругопластические, и длительные деформации ползучести.  [c.3]


В своём выводе основных уравнений теории упругости Навье (см. стр. 129) исходил из предположения, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают силы взаимодействия. При этом принималось, что силы эти пропорциональны изменениям расстояний между молекулами и действуют по направлениям соединяющих их прямых линий. Таким путем Навье удалось установить соотношения между деформациями и упругими силами для изотропных тел с введением лишь одной упругой константы. Коши (см. стр. 135) первоначально ввел две константы в зависимости между напряжением и деформацией в случае изотропии. В самом же общем случае анизотропного тела Пуассон и Коши допускали, что каждая из шести компонент напряжения может быть представлена однородной линейной функцией шести компонент деформации (обобщенный закон Гука). В эти функции входило 36 постоянных. Положив в основу физического истолкования явления упомянутую выше молекулярнуро теорию, они снизили число постоянных для общего случая до 15. Они показали, что изотропия допускает дальнейшее снижение этого числа, так что окончательно для записи соотношений между компонентами напряжения и деформации необходима лишь одна постоянная, которую и ввел Навье.  [c.262]

Изучению напряжений, деформаций и перемещений в пластически деформируемых телах посвящен раздел механики деформируемого твердого тела, называемый теорией пластичности [10, 12, 13, 18, 36]. Теория пластичиости решает глав1гым обра юм те же задачи, что и линейная теория упругости, но для материалов с другими физическими свойствами. Поэтому между указанными теориями имеется много общего, в частности общими оказываьзтся уравнения равновесия, зависимости между перемещениями и деформациями, уравнения совместности деформаций. Только вместо закона Гука, используемого в линейной теории упругости, в теории пластичности применяются другие физические соотношения.  [c.293]

Кинетическая теория описывает изотропное несжимаемое идеально упругое тело и позволяет установить соотношения между главными напряжениями и главными удлинениями, аналогичные тем, которые были выведены нами ранее для материала, подчиняющегося условию (4.7). (У Трелоара в уравнениях (4.19а) символы ti, ки G, р соответствуют символам ри, е,-, [Хо, —р в нашей записи уравнений (4.14)). Из того, что эти уравнения были выведены для однородной деформации общего типа (при постоянном объеме), следует идентич-  [c.111]

Первое систематическое рассмотрение устойчивости равновесия упругих тел принадлежит Дж. Брайану Он выяснил пределы применимости теоремы Кирхгофа и показал, что при условии малых деформаций она отпадает, если только один или два размера тела можно считать малыми. При этом явление неустойчивости может иметь место в пределах упругости, если произведение модуля упругости Е на квадрат отношения малого размера к конечному будет того же порядка, что и предел упругости материала. Дальнейшая разработка общей теории устойчивости равновесия упругих тел принадлежит Р. Саусвеллу Он устраняет ограничение относительно малости деформаций и оперирует с идеальным телом бесконечно большой прочности. При этих условиях и тела, у которых все размеры одного порядка, могут оказаться в состоянии неустойчивого равновесия. Исходя из однородного напряженного состояния тела, Р. Саусвелл дает точкам тела весьма малые перемещения и, v, w ) и для этой отклоненной формы пишет дифференциальные уравнения нейтрального равновесия, причем считает начальные деформации конечными. То соотношение между внешними силами и размерами тела, при котором полученные уравнения дают для и, у и w решения, удовлетворяющие условиям на поверхности, определяет критическое значение нагрузки в рассматриваемом случае. Применяя свой общий метод к тонким стержням и пластинкам, Р. Саусвелл нашел, что имеющееся решения задач устойчивости являются лишь первыми приближениями, хотя и вполне достаточными для практических приложений. Мы в дальнейшем ограничимся этими приближенными решениями, отсылая интересующихся теорией вопроса к работе Р. Саусвелла.  [c.258]


Смотреть страницы где упоминается термин Соотношения между напряжениями и деформациями и общие уравнения теории упругости : [c.10]   
Смотреть главы в:

Введение в теорию упругости для инженеров и физиков  -> Соотношения между напряжениями и деформациями и общие уравнения теории упругости



ПОИСК



5 — Соотношения между

597 — Деформации и напряжения

Деформации Уравнения

Деформация упругая

НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ Теория напряжений

Напряжения Уравнения

Напряжения упругие

Общая теория деформаций

Общая теория напряжений

Общие соотношения

Общие уравнения

Соотношение между напряжениями

Соотношение между напряжениями и деформациями

Соотношения напряжения—деформации

Соотношения теории упругости

Теории Уравнения

Теория Уравнения общие

Теория деформаций

Теория напряжений

Теория напряжений и деформаций

Теория упругости

Теория упругости Уравнения в напряжениях или

Упругость Теория напряжений и деформаций

Упругость Теория — см Теория упругости

Упругость напряжение

Упругость соотношения

Уравнения Уравнения упругости

Уравнения теории напряжений и теории деформации

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте