Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КОРРОЗИЯ МЕТАЛЛОВ В РАЗЛИЧНЫХ УСЛОВИЯХ

КОРРОЗИЯ МЕТАЛЛОВ В РАЗЛИЧНЫХ УСЛОВИЯХ  [c.61]

Средняя скорость коррозии металлов в различных условиях испытания  [c.258]

Такие вопросы теории и механизма электрохимической коррозии, как равновесные и стационарные электродные потенциалы, электрохимическая гетерогенность поверхности металла, кинетика катодного и анодного процесса, работа коррозионного элемента и пассивность рассмотрены в работах № 4—11. Особенности коррозии металлов в различных условиях службы, например кислотостойкость, подземная коррозия металлов, межкристаллитная и точечная коррозия сталей, коррозия сварных соединений, коррозионное растрескивание и усталость, иллюстрируются работами № 12—19. Современные методы коррозионных исследований даны в работе № 20, а также в работах № 5, 12, 14—19 при выполнении частных задач.  [c.51]


Скорость коррозии металлов в различных условиях производства  [c.39]

Коррозия металлов в различных условиях  [c.590]

При коррозии металла в сложных условиях изменение температуры может приводить к различным изменениям скорости диффузии и химических реакций окисления. Причиной этого, например, может быть изменение диффузионных свойств оксидной пленки. Б связи с этим находящийся в формуле (3.7) показатель степени окисления и предэкспоненциальный множитель в выражении (3.9) не являются постоянными, а зависят от температуры. С учетом изложенного в [100, 101] обоснована формула расчета интенсивности высокотемпературной коррозии металла  [c.92]

В отличие от стандартного электродного потенциала, который является постоянным для данного равновесного процесса, потенциал коррозии зависит от окружающей среды, температуры, скорости и др. Существует множество таблиц, в которых приведены потенциалы металлов в различных условиях окружающей среды. С учетом особого значения морской воды как коррозионной среды изучению потенциала коррозии в ней было уделено особое внимание, и полученные результаты были включены в так называемый ряд активностей.  [c.36]

Этот недостаток особенно ярко проявляется в том случае, когда разбрызгивание нейтральной соли показывает, что для защиты стали лучше использовать кадмий, а не цинк. Известно, что в атмосфере промышленной среды цинк обеспечивает лучшую коррозионную защиту, чем кадмий, а в морских условиях целесообразность применения того или иного покрытия зависит от окружающей среды. Причины этих очевидных аномалий, вероятно, связаны с разной природой данных металлов и растворимостью продуктов коррозии, образующихся в различных условиях. Обильное количество электролита хорошей проводимости, обеспечиваемое при испытаниях на атмосферную коррозию, препятствует какому-либо защитному действию продуктов коррозии, которое может проявляться лишь при высыхании и повторном увлажнении, происходящих естественным путем. Кроме того, переоценивается эффективность действия протекторной защиты, создаваемой анодными покрытиями этого типа.  [c.157]

Для использования этого метода расчета скорости коррозии металлов необходимы накопление и систематизация экспериментального материала по коррозии металлов в различных метеорологических условиях.  [c.61]

При травлении сталей и изделий из них применение ингибиторов уменьшает потери металла и подавляет процесс наводороживания. Ингибиторы, используемые при травлении, приведены в табл. 16.3. Выбор ингибиторов для защиты от коррозии металлов в различных средах можно осуществить, руководствуясь соответствующими источниками [2]. В перекиси водорода устойчивость многих металлов недостаточна. Исследование окисляемости углеродистых сталей в растворах перекиси водорода показало, что на поверхностях образцов из стали 45, полностью или частично погруженных в 5. .. 85 %-ные растворы перекиси водорода, через 4. .. 72 ч появляется налет продуктов коррозии. Наблюдаемое увеличение скорости коррозии на границе воздух — раствор согласно теории электрохимической коррозии объясняется функционированием пар неодинаковой аэрации. Такая коррозия в условиях эксплуатации развивается при недостаточной промывке и сушке внутренней поверхности узлов оборудования. Сохранение раствора перекиси водорода в застойных зонах способствует локализации процесса коррозии.  [c.492]


Разработка климатологической части теории- атмосферной коррозии в ближайшее время вступает в завершающую фазу. Развитие новых методов исследования коррозии металлов в натурных условиях, привлечение к решению этой проблемы специалистов-климатологов, широкое внедрение вычислительной техники уже в ближайшее время позволит дать общие прогнозы коррозионной устойчивости металлов в различных районах земного шара. Тем самым ускоренные методы испытаний будут поставлены на научный фундамент.  [c.201]

Более 70% всех металлоконструкций эксплуатируются в атмосфере воздуха. Прямое химическое окисление железа при 20° С идет очень медленно. Заметная скорость коррозии в атмосфере может быть связана с электрохимическим процессом, протекание которого возможно в пленке влаги. Установлено, что общий материальный эффект коррозии в атмосферных условиях прямо пропорционален продолжительности пребывания пленки влаги на поверхности металла. Поэтому, исходя из метеорологических характеристик данного района (подсчитывая число дней с осадками, туманом, росой, оттепелью), можно ориентировочно рассчитать среднее время коррозии металлов в различных районах страны, а исходя из времени увлажнения в течение года определить скорость коррозии (рис. 4). Для точного расчета, кроме продолжительности пребывания пленки влаги на металле, надо знать химический состав и количество загрязнений, присутствующих в воздухе сернистого газа,  [c.19]

При определении коррозионной стойкости необходимо учитывать все факторы, влияющие на скорость и характер коррозии металлов в производственных условиях. Кроме того, для получения сравнительных коррозионных характеристик испытания различных образцов должны проводиться в одних и тех же условиях, а результаты испытаний должны выражаться в одних и тех же величинах.  [c.90]

Значение измерений при решении практических вопросов. Если интерес к коррозии появляется вследствие затруднений, возникающих в практической работе, а не при научных исследованиях, количественные данные < также необходимы, например в таких случаях, когда нужно установить, сколько времени простоит в атмосфере или жидкости лист или пластина определенной толщины до ее перфорации в результате коррозии, или как долго будут находиться напряженные элементы конструкции в агрессивной среде до разрушения. На первый взгляд кажется, что ответ может быть легко получен эмпирическими измерениями скорости коррозии металлов в соответствующих условиях. Может казаться, что нет необходимости в понимании механизма процесса для ответа на заданный вопрос. Однако легко показать, что эмпирические данные не обеспечивают удовлетворительного ответа. Интенсивность коррозии зависит от совокупности многих факторов (например, времени, температуры, скорости течения и концентрации каждой составляющей в металлической, жидкой и газообразной фазах). Если должны быть исследованы эмпирически десять переменных для десяти различных условий, необходимо провести десять миллиардов опытов, чтобы обследовать все возможные комбинации. Даже если некоторые маловероятные комбинации будут исключены из программы испытаний, проведение оставшихся испытаний выходит за пределы возможного. Для выполнения этой огромной работы не найдется достаточного квалифицированного экспериментатора, и вообще ставить такую задачу нельзя.  [c.704]

Эта теория в ее современном виде объясняет не только общую величину коррозии, но и влияние гетерогенности поверхности корродирующих металлов (включая и структурную гетерогенность) на характер и скорость (увеличение и уменьшение ее, равно как и отсутствие влияния в ряде случаев) коррозионного разрушения. Она была широко использована для объяснения коррозионного поведения конструкционных металлов и сплавов в различных условиях  [c.187]

Влияние разнообразных факторов на коррозионное поведение металлов не позволяет однозначно предсказать скорость коррозии различных металлов в атмосферных условиях. Она может колебаться в довольно широких пределах, как это следует из сравнительных данных (табл. 1).  [c.13]


В работе [31] была предложена физико-математическая модель процесса атмосферной коррозии и оценены скорости коррозионного разрушения металлов и покрытий на их основе с учетом факторов, оказывающих наибольшее влияние на процесс коррозии температуры, продолжительности существования фазовой пленки на металлах, поверхностной концентрации хлоридов и концентрации сернистого газа, а также были получены значения коэффициентов коррозии различных металлов в атмосферных условиях.  [c.51]

С современных позиций рассмотрено электрохимическое поведение металлов под адсорбционными и фазовыми слоями электролитов. Приведено большое количество экспериментальных данных о влиянии внешних условий на развитие коррозии металлов. На основе физико-математических моделей рассмотрена возможность использования ускоренных лабораторных испытаний для прогнозирования коррозионного поведения металлов в различных климатических зонах. Дана оценка эффективности современных средств и методов защиты металлов от коррозии.  [c.2]

Преимущественный контроль скоростью катодной реакции характерен для коррозии металлов в кислых средах, в нейтральных электролитах и атмосферных условиях, а также для коррозии амфотерных металлов в щелочных средах. Контроль скоростью протекания анодной реакции характерен для металлов, способных переходить в пассивное состояние. Смешанный контроль — контроль скоростями обеих реакций — наиболее распространен в практике и встречается в различных условиях, например при коррозии алюминия в нейтральных электролитах.  [c.17]

В Лаборатории прикладных исследований ВМС США было исследовано влияние микробов на коррозию и разрушение металлов в глубоководных условиях, связанных с большим гидростатическим "давлением, осмотическим давлением и пониженными температурами воды. Все перечисленные физические факторы обычно подавляют клеточную активность (за исключением некоторых адаптированных к таким условиям организмов) и поэтому могут оказывать существенное влияние на биологические коррозионные механизмы. Необходимость в подобных исследованиях возникла в связи с ожидаемым использованием дна океана для различных целей, в том числе для сооружений систем противолодочной обороны. Натурные испытания материалов были предприняты с целью получения надежных коррозионных данных в реальных условиях. Эти данные служат критерием при анализе результатов ускоренных коррозионных лабораторных испытаний и, конечно же, дополняют другие данные о коррозионном поведении различных металлов на больших глубинах  [c.435]

Не менее важна специфика условий работы силовых цилиндров. Долговечность узла трения зависит прежде всего от износостойкости антифрикционного материала. Полиамиды имеют очень хорощую износоустойчивость в различных условиях абразивного трения они изнашиваются значительно меньше, чем металлы и другие неметаллические материалы. При использовании полимерных материалов в подшипниках скольжения практически отсутствует износ сопряженных с полимером металлических деталей. Обязательным условием для малого износа полиамидных антифрикционных деталей, работающих в паре с металлом, является высокая чистота сопрягаемой металлической поверхности. Легче всего это достигается применением закаляемой стали, которая обязательно должна быть защищена от коррозии. Установлено, что чем чище металлическая поверхность, тем меньше износ пластических масс при работе с этими поверхностями. Износостойкость пластмассовых подшипников значительно выше, чем бронзовых [47]. Долговечность полимерных вкладышей и втулок в 10 раз больше, чем металлических, что сокращает время ремонта.  [c.115]

Изложены основные принципы выбора метода коррозионных испытаний металлов, предназначенных для эксплуатации в различных условиях. Рассмотрены наиболее доступные способы коррозионных испытаний для определения общей, точечной, щелевой, межкристаллитной коррозии металлов в нейтральных и агрессивных средах. Даны рекомендации по подготовке образцов перед испытаниями, проведению этих испытаний. Описаны обработка результатов и аппаратурное оформление процессов.  [c.208]

Процессы коррозии в различных условиях в любых металлах и сплавах представляют собою необратимые процессы, протекающие с рассеянием энергии и вещества, что вызывает значительный рост энтропии.  [c.16]

Полная защита поверхностей нагрева от коррозии с газовой стороны требует, чтобы температура стенки была выше точки росы. Однако соблюдение этого условия при сжигании сернистых топлив, имеющих температуру точки росы порядка 120—150° С, приводит к недопустимо высокой температуре уходящих газов. Снижение температуры уходящих газов приводит к работе поверхностей нагрева с температурой стенки ниже точки росы дымовых газов. В связи с этим представляет интерес определение скорости коррозии металла в среде дымовых газов при температуре стенки ниже точки росы. С этой целью было произведено исследование скорости коррозии при различных температурах стенки.  [c.54]

В [Л. 21] описано устройство ряда сравнительно простых приборов для коррозионных испытаний металла, образны которого подвержены воздействию теплового потока. Применение этих устройств дает положительные результаты при различных исследованиях. В [Л. 22] рассмотрены общие характеристики процесса теплообмена и возможное влияние его на процессы коррозии металлов в различных условиях, преимущественно в жидкостях (кипящих и некипящих). Описаны применявшиеся ранее другими авторами методики экспериментального изучения влияния теплопередачи на коррозию металла (термогальванические пары, опыты с локальным подводом тепла, сопротивление нагреву, дисковые образцы, трубчатые образцы). Предложена новая методика с особым способом крепления образцов, циркуляционным контуром, включающим газопоглотительную колонку и другие элементы.  [c.62]


Влияние температуры на скорость коррозии металлов в естественных условиях, особенно в сельской атмосфере, выяснить не удается. Регрессионный анализ многочисленных данных свидетельствует о том, что в области температур от —5° до 25° С скорость коррозии цинка, кадмия, алюминиевыж сплавов изменяется несущественно. Это отчасти связано с тем, что средневзвешенная температура фазовых пленок воды, образующихся при выпадении осадков, изменяется в различных климатических районах в небольшом диапазоне (от 2,5° в районе Мурманска до 12,3° в Батуми). Поэтому во многих климатических зонах температурный фактор атмосферы не оказывает заметного влияния на скорость коррозии (при расчете коррозии на единицу времени увлажнения). Разумеется, что при температурах ниже нуля заметная коррозия может протекать только в сильно загрязненной атмосфере, когда на поверхности металла образуются пленки концентрированных электролитов, температура замерзания которых заметно ниже, чем чистой воды.  [c.79]

В 1957 г. с помощью поляризационных диаграмм были установлены типичные случаи коррозии металлов в различных окисли-- ельных условиях . В 1958 г. к аналогичным выводам пришел Элелеан в теоретической части своей работы ч  [c.7]

Преимущество испытаний в заводских условиях по сравнению с лабораторными испытаниями состоит в том, что они позволяют более полно воспроизвести влияние многочисленных факторов, воздействующих на коррозию металлов в реальных условиях. К числу таких факторов можно отнести изменение в производственном процессе концентрации различных примесей и изменения физико-химических свойств среды, вязкости, происходящие при упаривании, перегонке, полимеризации, сульфировании и других производственных процессах. К ним также относятся [1] градиенты температуры, механические напряжения в швах и изменение структуры металла в пришовной зоне, ско рость протекания жидкостей или газов и т. д. В заводской аппаратуре предоставляется возможность испытать влияние на коррозию металлов недостаточно изученных веществ, постоян-  [c.225]

При исследовании коррозионного поведения металлов и сплавов в жидких средах часто возникает задача определения в растворе весьма малых количеств продуктов растворения. С такой задачей исследователь сталкивается, например, при измерении скоростей растворения коррозионно-стойких металлов и сплавов, особенно при потенциалах пассивной области или при очень отрицательных потенциалах, при исследовании кинетики начальных стадий растворения, при оценке коррозионной стойкости анодов из благородных металлов в различных условиях электролиза, при определении скорости растворения микропримесей и в ряде других случаев. Чувствительность обычных, традиционных методов, используемых при таких коррозионных испытаниях, как определение весовых потерь или колориметрическое определение продуктов коррозии в растворе, часто недостаточна для проведения соответствующих измерений. В этих случаях весьма эффективным может оказаться применение радиохимического метода, сущность которого состоит в следующем. В исследуемый образец вводятся радиоизотопы составляющих его элементов. Затем образец подвергается коррозионному испытанию,  [c.93]

Большое количество металла находится в почве в виде тру--бопроводов, оболочки кабелей, частей строительных сооружений и др. Коррозия металла в этих условиях происходит вследствие соприкосновения с влажной почвой, через которую может проникать воздух. Коррозия в почвах относится к электрохимической, причем электролитом является почвенная вода. Составы почвенных вод, минералогический состав и структура почв весьма разнообразны и поэтому различна их коррозионная лгрессивность.  [c.64]

Широкие исследования при испытаниях на атмосферную коррозию сталей в различных условиях показывают, что иа стандартных образцах размером 102x152 мм около И г металла должно превратиться в продукты коррозии (ржавчину), прежде чем установится стабильная скорость коррозии. Для лучших сталей в наиболее агрессивных промышленных условиях для этого потребуется около 4 лет. Поэтому такие испытания должны продолжаться, по крайней мере, этот отрезок времени и более длительные периоды в морской и сельской атмосферах, где требуется больший срок, чтобы развился полный защитный эффект ржавчины. Испытания в воде н почве обычно должны проводиться свыше трех лет прн периодическом съеме части образцов после различных сроков выдержки. Желаемой схемой съема образцов прн любом периоде испытаний в природных условиях является такая схема, при которой интервал между съемами каждый раз увеличивается. Напрнмер, первый съем должен быть после одного года, второй —после трех лет и третий — до семи лет и т. п. В любом случае продолжительность испытаний должна фиксироваться одновременно с результатами коррозии для того, чтобы на основании полученных результатов иметь точное представление о характере развития коррозии во времени, что прн необходимости дает возможность путем экстраполяции и интерполяции прогнозировать результаты на более длительные сроки.  [c.541]

Защита от атмосферной коррозии изделий из черных и цветных металлов в различных условиях хранения Осушение изделий после обезжиривания в водных растворах технических моющих средств, защита от коррозии изделий из черных и цветных металлов при межопера-ционном хранении в легких и средних условиях  [c.58]

Наиболее распространенные металлические материалы подземных конструкций — это низколегированная сталь и чугун. Однако для техники представляет большой интерес поведение в почве также и других металлов и сплавов. Сравнение коррозионных характеристик различных металлических материалов в почвенных условиях может быть сделано только приближенно и не всегда достаточно надежно. Причина лежит в очень большом влиянии различных факторов на скорость коррозии металлов в почвенных условиях. Только данные испытаний различных металлических материалов, полученные в однотипных условиях, т. е. проведенные параллельно в одних и тех же почвах и в одно и то же время, могут сравниваться и обсуждаться с достаточным основанием. Данные, полученные разными исс тедователями, часто в большей степени зависят от условий испытаний, чем от различия коррозионной устойчивости металлических материалов. Большим затруднением для сравнения коррозионного поведения различных металлов в почве служит также разобранное выше влияние макрокоррозионных пар, в частности, пар неравномерной аэрации. Поэтому приведенные ниже сведения, взятые из различных литературных источников, являются приближенными характеристиками коррозионного поведения различных металлических материалов в почвенных условиях.  [c.390]

Первопричиной коррозии металлов является термодинамическая неустойчивость металлов в различных средах при данных внешних условиях. Термодинамика дает исчерпывэющ,ие сведения о воз-  [c.10]

Исследование щелевой коррозии металлов основано на различных способах создания щелей (зазоров) и наблюдения за поведением металлов в этих условиях. На рис. 342 приведен метод создания зазора по И. Л. Розенфельду и И. К- Маршакову при помощи плексигласовой накладки с прямоугольным отверстием, крепящейся на исследуемом образце плексигласовыми винтами. Набор накладок с различной шириной прямоугольного отверстия позволяет изменять величину зазора между двумя поверхностями образца исследуемого металла и поверхностями плексигласа. Коррозию оценивают по потерям массы и площади поражения исследуемого образца после выдержки в коррозионном растворе.  [c.455]


Приведены основные сведения по творив химической и электрохимической коррозии металлов. Дана краткая оценка коррозионной стойкости конструкционных материалов в различных условиях, рассмотрены принципы основных видов защиты металлов от коррозии, технология производства некоторых видов антикоррозионных работ и ремонта обо дования.  [c.2]

Следует помнить, что во всех атмосферах, за исключением особо агрессивных, средняя скорость коррозии металлов в общем ниже, чем в природных водах или почвах. Это видно из табл. 8.3, где скорость коррозии стали, цинка и меди в трех различных атмосферах сравнивается со средней скоростью коррозии в морской воде и различных почвах. Кроме того, атмосферная коррозия равномерна, пассивирующиеся металлы (например, алюминий или нержавеющие стали) в этих условиях в меньшей степени подвержены питтингу, чем в воде или в почвах.  [c.174]

Общее представление о возможности протекания коррозии стали и чугуна npi различных условиях в коррозионной среде дает диаграмма потенциал — pH системь Fe-HjO (рис. 93), Можно видеть, что металл в водных условиях не являете термодинамически устойчивым. В области устойчивости РедО и РваОз возможн пассивация при относительно высоких значениях pH (8-14). Однако при очень высоком pF вновь возникает опасность коррозии. Небольшие легирующие добавки обычно и( оказывают существенного влияния на коррозионные характеристики.  [c.102]

Результаты длительных и краткосрочных коррозионных испытаний конструкционной углеродистой стали в естественных водных средах свидетельствуют о существенном влиянии морских организмов на скорости коррозии сплавов на основе железа в морской воде. В начальный период экспозиции, пока обрастание макроорганизмами не привело к образованию сплошного покрытия, наблюдались очень высокие скорости коррозии (до 400 мкм/год). Продолжительность этого начального периода, тип и интенсивность обрастания, а также коррозионные потери в течение первого года экспозиции в разных местах могут значительно отличаться. К концу первых 1—1,5 лег экспозиции большинство исследованных образцов было покрыто толстым слоем морских организмов, участвующих в обрастании. Хотя состав этих естественных покрытий сильно изменялся в зависимости от географического положения места испытаний, все они оказывали существенное защитное влияние на стальные пластины. Защитные свойства естественных покрытий, образующихся при обрастании, значительно уменьшаются, когда они становятся достаточно толстыми (биологически активными) и препятствуют проникновению кислорода к поверхности металла. В этих условиях процесс коррозии контролируется сульфатвосстанавливающими бактериями, активными в анаэробной среде на поверхности металла, сохраняющейся благодаря самозалечивающемуся покрытию, возникшему при обрастании. Скорость коррозии стали приобретает стационарное значение, причем для различных мест эти значения очень близки.  [c.453]

Чрезвычайно важной проблемой машиностроения является борьба с коррозие металлов, от которой разрушается оборудование и ежегодно теряется огромное количество металла. Радиоактивные изотоиы позволяют изучить механизм коррозии различных металлов в разнообразных условиях и разработать рациональные методы защиты поверхности от коррозионного износа.  [c.5]


Смотреть страницы где упоминается термин КОРРОЗИЯ МЕТАЛЛОВ В РАЗЛИЧНЫХ УСЛОВИЯХ : [c.360]    [c.32]    [c.488]    [c.360]    [c.170]    [c.87]    [c.15]   
Смотреть главы в:

Техника борьбы с коррозией  -> КОРРОЗИЯ МЕТАЛЛОВ В РАЗЛИЧНЫХ УСЛОВИЯХ



ПОИСК



Коррозия в различных условиях

Коррозия металлов

Различные металлы



© 2025 Mash-xxl.info Реклама на сайте