Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность и ползучесть в дисках

Пластичность и ползучесть в дисках  [c.68]

Деформационные теории пластичности и ползучести. Расчет дисков в упругопластической области методом конечных элементов с применением итерационных процедур для решения нелинейных упругопластических задач не представляет принципиальных трудностей. Предложенные и развитые [13, 49] численные методы решения упругопластических задач, описанные в гл. 3, могут быть легко использованы и в случае конечно-элементного представления конструкции [14]. Принципиально близкие методы применяют в иностранных работах — метод начальных деформаций и др. [46].  [c.167]


Следовательно, коэффициент концентрации с учетом пластичности и ползучести в 1,75 раза меньше коэффициента концентрации в упругом состоянии и позволяет правильно предсказать опасные напряжения в диске.  [c.182]

Основной недостаток теории старения, так же как и деформационной теории пластичности, состоит в неучете истории нагружения. Они приспособлены для описания монотонно возрастающего нагружения (силового и теплового) при отсутствии явлений разгрузки. Однако во многих практических задачах расчет по деформационным теориям пластичности и ползучести дает хорошие результаты и вполне пригоден для сравнительной оценки прочности дисков.  [c.77]

Чтобы определить полные деформации, возникающие в диске за бесконечно малый этап нагружения, воспользуемся допущением о суммировании деформаций упругости, пластичности и ползучести.  [c.84]

Накопление ошибки счета- В процессе шагового расчета накапливаются ошибки счета, которые, если не принимать специальных мер, могут привести к существенному искажению или даже к полностью неверным результатам. Накопление ошибки связано с рядом причин. Составляющими ошибки счета являются погрешности аппроксимации при решении интегральных задач. Если при рассмотрении стационарного процесса, расчете дисков с использованием конечных соотношений упругости и деформационных теорий пластичности и ползучести задание определенной точности решения дает удовлетворительные результаты при сходящемся процессе, то при повторении этих погрешностей на расчетных этапах и последующем суммировании результатов при шаговом расчете нестационарного процесса накапливается существенная погрешность.  [c.103]

Пример 3.4- Рассмотрим процесс деформирования диска газовой турбины, расчет которого приведен в 8 (пример 3.1) для демонстрации использования деформационных теорий пластичности и ползучести. Геометрические размеры диска приведены в приложении 1. Для удобства сравнения результатов с расчетом по деформационным теориям приняты те же расчетные сечения, что и в предыдущих примерах. В табл. 3,5—3.9 приведены исходные данные, использованные в расчете истории деформирования диска.  [c.105]

МЕТОД РАСЧЕТА НЕРАВНОМЕРНО НАГРЕТЫХ ВРАЩАЮЩИХСЯ ДИСКОВ НА ПРОЧНОСТЬ С УЧЕТОМ ИЗГИБА В СОСТОЯНИИ ПЛАСТИЧНОСТИ И ПОЛЗУЧЕСТИ  [c.183]

А. Ф. П р о н к и н. Расчет на прочность и профилирование неравномерно нагретых дисков минимального веса с учетом пластичности и ползучести по принципу предельных напряжений. Тепловые напряжения в элементах турбомашин. Докл. науч. совещ., вып. 1. Киев, 1961.  [c.191]


Методы расчета на прочность дисков переменной толщины применяют при проектировании паровых и газовых турбин, компрессоров и т. д. Температурные напряжения в дисках, изменение параметров упругости вдоль радиуса, учет пластичности и ползучести материала см. в работах [1, 6, 9], а также в более ранних работах [10]. Существует свыше 50 методов определения напряжений в дисках. Эти методы можно разделить на три группы аппроксимации, конечных разностей, интегральные.  [c.593]

Расчет на прочность вращающихся неравномерно нагретых турбинных дисков при пластичности и ползучести на основе феноменологической теории состояния реономного тела. Э. Б. Калмыкова, О. В. Сорокин. Информационное обеспечение, адаптация, динамика и прочность систем-74. Куйбышевское книжное издательство. 1976, с. 487.  [c.533]

Рассмотрим методы расчета дисков, основанные на представлении разрешающей системы уравнений в интегральной форме с последующим решением методом последовательных приближений. Этот метод Достаточно просто реализуется на ЭВМ и широко применяется в инженерной практике П, 2, 7, 8, 9). Алгоритм упругого расчета диска с переменными параметрами упругости легко используется как основной блок при проведении упругопластических расчетов, основанных на деформационных теориях пластичности и ползучести, а также при учете истории нагружения.  [c.355]

Рассмотрим напряженно-деформированное состояние диска, работающего в условиях пластичности и ползучести. Выбор расчетной схемы зависит от условий работы диска, нагрузок и поля темпера-  [c.367]

Для получения минимальных отличий результатов расчета и фактического поведения диска свойства материала при циклическом нагружении учитываются с максимальной полнотой в основном без применения каких-либо ограничивающих аналитических аппроксимаций. Материал наделяется свойствами упругости, пластичности и ползучести. При этом учитывается, что накопленная пластическая деформация может повлиять на ползучесть материала.  [c.484]

При этом следует иметь в виду некоторое снижение длительной прочности. Такая структура может быть получена при деформации в двухфазной а+Р-области (на 30—50°С ниже температуры а,+р->р-превращения). Для деталей, длительно работающих в условиях растягивающих напряжений и повышенной температуре (диски и другие детали), требуется структура корзиночного плетения, обеспечивающая наиболее высокие значения жаропрочности, сопротивление ползучести при хорошем сочетании пластичности, выносливости и термической стабильности. Получить такую структуру можно при нагреве заготовок в р-области с последующей деформацией на 50—70% за последний нагрев и окончанием деформации в а+р-области (не ниже 850°С).  [c.250]

Разрушение при ползучести. В. И. Розенблюм (1957) получил решение задачи об определении времени до разрушения диска постоянной толщины с отверстием. В основу положены уравнения установившейся ползучести, распространенные на случай конечных деформаций, таким образом, рассмотрена схема вязкого разрушения. Л. М. Качанов (1960) рассмотрел на основе своей теории некоторые задачи о времени разрушения стержневых систем, сформулировал общую постановку задачи о движении фронта разрушения и определил время разрушения скручиваемого вала. Ю. Н. Работнов (1963) решил задачу о разрушении диска с отверстием по схеме хрупкого разрушения. При этом учитывалось влияние накопления поврежденности на скорость ползучести и, следовательно, на распределение напряжений. Позже Ю. Н. Работнов (1968) рассмотрел вопрос о влиянии концентрации напряжений на длительную прочность. При этом считалось, что распределение напряжений мало отличается от распределения напряжений в жестко-пластическом теле, но переменная величина степени поврежденности со фигурирует в условии пластичности, которое становится подобным условию равновесия неоднородной сыпучей среды.  [c.149]


При анализе критериев и границ существования приспособляемости наряду с использованием простейшей диаграммы деформирования идеально пластичного тела привлекаются механические дискретные и статистические структурные модели тел В дискретных моделях [37] рассматривается система одновременно деформирующихся на одинаковую величину подэлементов, наделенных различными упругопластическими и реологическими свойствами. Это позволяет описать влияние скорости деформирования на диаграмму растяжения металла, эффект Баушингера и циклическое упрочнение при малоцикловом нагружении, ползучесть и релаксацию при выдержках, а также воспроизвести деформационные процессы при сложном, в том числе неизотермическом нагружении. Тем самым использование моделей способствует введению надлежащих уравнений состояния в вычислительные решения задач о полях упругопластических деформаций при термоциклическом нагружении. На этой основе рассматривались вопросы неизотермического деформирования лопаток и дисков газовых турбин, образцов при термоусталостных испытаниях и, ряд других приложений.  [c.30]

Элементы машин и конструкций могут работать в экстремальных условиях, при низких или высоких температурах, испытывать большие динамические, статические и циклические перегрузки, воздействие агрессивных сред и т. д., приводящие к отказам деталей машин. При перегрузках в деталях из пластичных материалов возможна пластическая деформация (изгиб оси и валов, растяжение болтов, слияние посадочных поверхностей в крепежных деталях и т. д.) или вязкое разрушение. При длительной эксплуатации при высоких температурах за счет ползучести (см..с. 301) нередко наблюдаются недопустимые деформации. Ползучесть материала лопаток и дисков турбин, паропроводов и других деталей ограничивает срок их службы.  [c.314]

Для обеспечения надежной работы полотна диска материал должен противостоять действию теплосмен, т.е. обладать определенной термостойкостью. Значения его длительной прочности и сопротивления ползучести должны быть такими, чтобы не допустить разрушений диска и появления чрезмерной вытяжки. Требование к длительной пластичности вызвано необходимостью обеспечения работоспособности диска вблизи концентраторов напряжений (отверстий, галтелей), расположенных в нагретой части полотна диска. К дискам, изготовленным из перлитных сталей, предъявляется также требование повышенной стойкости против хрупких разрушений.  [c.36]

Для дисков турбин ГТУ разного назначения перечисленные выше требования к материалу не могут быть сформулированы в виде перечня конкретных значений пределов текучести, ползучести, длительной прочности, пластичности, сопротивления термической и механической усталости, релаксации, склонности к хрупким разрушениям, количеству и размерам допустимых металлургических дефектов критическим значениям коэффициента интенсивности напряжений при циклическом нагружении и т.д. Тем не менее в настоящее время установились некоторые представления о механических свойствах, которыми должны обладать разрабатываемые материалы дисков ГТУ различных типов.  [c.37]

В результате необратимых процессов пластичности и ползучести деформация дисков может быть значительной и приводить к нежелательным явлениям — изменению зазоров в лабиринтных уплотнениях, короблению, изменению посадок, задеванию лопаток за корпус и т. д. Пластические деформации, появляющиеся сразу после нагружения, в дальнейшем не увеличиваются вследствие упрочнения материала, если нагрузки не превышают первоначально приложенных это используют на практике. Для того чтобы при работе не менялись посадки и зазоры, а материал деформировался упруго, применяют технологическую операцию предварительной раскрутки диска — автофретирование. Диск, почти полностью механически обработанный, за исключением посадочных мест, раскручивается (обычно без лопаток) на специальной технологической установке при постоянной температуре, примерно соответствующей рабочей. Частоту вращения при этой операции определяют расчетным путем таким образом, чтобы напряжения в диске примерно соответствовали напряжениям упругого расчета для облопаченного диска на максимальном рабочем режиме в эксплуатации. Затем диск снимают с установки и подвергают окончательной механической обработке посадочные места, уплотнения и т. п. В табл. 4.2 приведены остаточные удлинения дисков газовых турбин различных размеров (типов) по наружному диаметру после автофретирования и указана относи-  [c.122]

Восьмой, девятый и десятый разделы тома (хн. 2) ПОСВ.ЯЩ6НЫ изложению теории и методам расчета напряженно-деформированного состояния классических моделей прикладной механики - стержней и стержневых систем, пластин и оболочек, дисков и. толстостенных труб с учето.м свойств пластичности и ползучести материала, в линейной и нелинейной постановках. Рассмотрены задачи устойчивосги и кoJseбaний, даны методы численного расчета.  [c.16]

В настоящей статье излагается метод расчета неравномерно на-ретых вращающихся дисков на прочность с учетом изгиба в состо-гнии пластичности и ползучести.  [c.183]

Изложенным методом были произведены расчеты ряда реальных дисков. Для одного из них на рис. 1 заданы исходные данные (п.1), а на рис. 2 представлены результаты расчета эпюры. напря-жений 0°, а° при растяжении диска и суммарные напряжения растяжения и изгиба (а и а ) в упругом и упруго-пластическом состояния5с. Резкая разница между этими состояниями указывает на необходимость расчета напряжений изгиба с учетом пластичности и ползучести.  [c.190]


В первом разделе рассмотрены основные законы и общие уравнения механики твердого деформируемого тела, применяемые в теории пластичности и ползучести. Особое внимание уделено теориям полей напряжений и деформаций, а также векторному представлению процесса нагружения в точке упругопластически деформируемого тела как в пространстве напряжений, так и в пространстве деформаций. Приведены основные законы и уравнения теории пластичности, показано их применение при решении краевых задач. Обобщены методики приложения теории пластичности к расчету на прочность стержней и стержневых систем, цилиндров, оболочек дисков и пластин. Рассмотрено предельное состояние элементов конструкций.  [c.12]

И. 3. Паллей (1965 и сл.) исследовал процессы неизотермического циклического нагружения на основе обобщения теории пластичности и ползучести с введением подобия девиаторов напряжений и скорости пластической деформации. В связи с этим была решена задача о неравномерно нагретой пластине и диске при циклическом нагружении.  [c.412]

ПронкинА. Ф. Метод расчета неравномерно нагретых вращающихся дисков на прочность с учетом изгиба в состоянии пластичности и ползучести. Ползучесть и длительная прочность . Труды Всесоюзного совещания по теории расчетов на ползучесть и длительную прочность, изд-во Сибирского отделения АН СССР, 1963.  [c.259]

В инженерной практике наиболее распространено определение (Тэкв на основании упругопластического расчета с учетом пластичности и ползучести по соответствующим деформационным теориям. Величина оценивается для каждого из тяжелых режимов.. Это обычно режимы с максимальными температурными градиентами и внешними нагрузками или большой длительности. В частности, для дисков стационарных машин запас прочности при кратковременном нестационарном режиме—запуске — благодаря большим перепадам температуры по радиусу и толщине может иметь то же значение, что и запас по напряжениям стационарного режима с более равномерным распределением температуры, несмотря на его, большую длительность.  [c.394]

Различные решения для пологих оболочек вращения с учетом боль ших прогибов даны во многих работах [ , 7, 15, 18, 22 ]. Однако вопросам расчета таких оболочек при неравномерном нагреве и в предполо-жении переменных упругих и геометрических параметров уделяется существенно меньше внимания, в то время как при оценке прочности и податливости многие детали машин (тонкие гибкие искривленные диски, днищи сосудов и др.) требуют именно такого рассмотрения [8 9]. Рассмотрим термоупругую задачу для пологой оболочки при больших прогибах и решение с учетом неупругих деформаций — пластичности и ползучести.  [c.432]

На рис. 3.7 показан диск турбины транспортного газотурбинного двигателя. Материал диска сплав ХН77ТЮР (ЭИ437Б). Расчет проведен с учетом пластичности и ползучестн. Для учета пластичности использована теория течения с изотропным упрочнением. Учет ползучести производился в соответствии с теорией упрочнения. График нагрузки иа диск (изменение частоты вращения и температуры в центре и на ободе во времени) показан на рис. 3.6 Это распределение соответствует полному циклу работы двигателя от запуска до останова. Весь цикл работы (1,5 ч) разбит на 12 расчетных этапов равной длительности. Номера этапов обозначены римскими цифрами. На рис. 3.7 показано распределение температуры по радиусу диска в конце этих этапов. В процессе счета каждый из них был разделен иа подэтапы равной длительности. Изменение нагрузки и температуры в пределах расчетного этапа следует линейному закону.  [c.387]

Расчет с учетом истории нагружения обычно дает большее значение запаса местной статической прочности по сравнению с расчетом по деформационной теории для конечного состояния. Такое увеличение запаса связано с существенной релаксацией и перераспределением напряжений при циклическом нагружении. При оценке запаса шаговым методом определяющими являются напряжения установившегося цикла, которые существенно перераспределяются по сравнению с максимальными напряжениями первого цикла, близкими к напряжениям, получаемым с использованием деформационных теорий пластичности и ползучестн. Рднако условия разрушения, которые приняты при оценке прочности дисков, изучены недостаточно, особенно в связи с неоднородностью напряженного состояния и неизотермическим нагружением. При оценке запаса не учитывается влияние малоцикловой усталости, перерывов в работе. Расчет долговечности дисков с учетом повреждаемости из-за ползучести и малоцикловой усталости может быть проведен по формулам главы 2. При этом амплитуды деформаций в каждой точке диска (или напряжений) легко рассчитать по формулам этого раздела.  [c.396]

По условиям эксплуатации обычно различают диски турбин ГТД, работающих при сравнительно небольшом числе циклов нагружения при высокой температуре (для них неупругие деформации, в основном деформации ползучести, в любом цикле не равны нулю) и диски транспортных ГТД и высокоманевренных ГТУ, работающие при большом числе циклов нагружения (10 -10 ) и сравнительно невысокой температуре (для них неупругие деформации, в основном деформация пластичности, возникают лишь в первых циклах нагружения) [305].  [c.497]

Еще одним конкурирующим классом материалов для высококачественных турбинных дисков является семейство сплавов на основе интерметаллидного соединения Т1зА1. Сплавы этого типа по сравнению с никелевыми суперсплавами имеют значительно более низкую плотность и сохраняют достаточно высокий предел ползучести до 625°С. Однако прочность на разрыв таких Т1зА1 сплавов пока не отвечает требованиям к материалам для турбинных дисков, а их пластичность при комнатной температуре невелика. В настоящее время предпринимаются энергичные усилия для исправления этих недостатков.  [c.332]

Чередование нестационарных режимов работы со стационарными делает все более сложными и напряженными условия работы дисков турбомашин [22, 23, 44]. Мощные тепловые потоки в авиадвигателе вызывают в турбинных дисках высокие температуры (до 700° С) при значительных радиальных перепадах (до 300°С). Это определяет большие термические напряжения циклического характера [43, 70]. На стационарных режимах температуры и нагрузки сохраняются постоянными, но достаточно высокими, что приводит к ползучести и релаксации напряжений во время эксплуатации. Таким образом, в материале турбинного диска при многократном повторении нестационарного режима возникают циклически изменяющиеся пластические деформации, а их накопление от цикла к циклу в ряде случаев является причиной разрушения дисков [22, 43], особенно если пластичность материала снижается с увеличением выработки ресурса и пребывания материала в условиях высоких температур [10, 100]. В этом отношении характерны результаты теоретического и экспериментального исследования термопрочно- сти дисков турбомашин [43], приведенные на рис. 1.7.  [c.15]


Иными словами, твердые тела одновременно обладают некоторым сопротивлением начальной пластической деформации или пределом текучести (в этом их отличие от собственно жидкостей) и существенной зависимостью этого сопротивления от скорости (т. е. вязким поведением, подобно поведению вязких жидкостей). Явление по,тзучести, т. е. постепенного нарастания остаточной деформации во времени при достаточной температуре, есть важнейшее проявление вязко-пластических особенностей материалов. Подобно теориям пластичности (см. п. 5) на основе механики сплошных однородных сред, развиты математические теории ползучести, на основе которых проведены многочисленные расчеты [15]. Они позволили определить кривые релаксации по кривым ползучести (и наоборот), рассчитать ползучесть при сложных напряженных состояниях для труб под внутренним давлением, пластин, оболочек, вращающихся дисков и т. п. Далее, по кривым ползучести при простом напряженном состоянии (обычно при растяжении) и постоянной температуре рассчитана  [c.138]

Понижение несущей способности деталей, набл1йдаемое для деталей из сталей при телшературах выше 300—400° С, а для деталей из легких сплавов и пластмасс — выше 100—150° С. Это связано с понижением основных механических характеристик материалов, в частности предела прочности и предела выносливости, с охрупчиванием — потерей пластичности во времени и, наконец, с явлением ползучести. Ползучесть, т. е. процесс малой непрерывной пластической деформации при длительном нагружении, становится основным критерием работоспособности для отдельных деталей машин лопаток и дисков турбин, элементов паровых котлов высокого давления и др. Ползучесть очень опасна в связи с возможностью выборки зазоров у вращающихся или поступа-тельно-перемещающихся деталей. Расчеты па ползучесть основываются па задании допустимых пластических перемещений за определенный срок службы.  [c.20]

А.А. Нигиным разработана программа расчета на ЭВМ кинетики напряженно-де( рмированного состояния дисков методом конечных элементов, алгоритм которой основан на использо-вании теории пластичности с трансляционным упрочнением в формулировке [75] и теории ползучести с анизотропным упрочнением в формулировке [76]. Использование этой программы позволяет рассчитать параметры деформационного критерия. Такие расчеты были проведены применительно к дискам [304], условия испытаний которых приведены в табл. 6.20. Тело диска разбивалось на треугольные элементы, в пределах которых принималась линейная зависимость перемещений от координат (рис. 7.21). Для определения распределения контурной нагрузки, действующей на выступ диска от лопаток, также использовался метод конечны элементов [304]. Пример такого расчета приведен на рис. 7.22.  [c.494]


Смотреть страницы где упоминается термин Пластичность и ползучесть в дисках : [c.238]    [c.4]    [c.6]    [c.178]    [c.37]    [c.17]    [c.642]    [c.36]   
Смотреть главы в:

Расчет на прочность вращающихся дисков (БР)  -> Пластичность и ползучесть в дисках



ПОИСК



Калмыкова, О. В. Сорокин. Расчет на прочность вращающихся неравномерно нагретых турбинных дисков при пластичности и ползучести на основе феноменологической теории состояния реономного тела

П р о н к и н. Метод расчета неравномерно нагретых вращающихся дисков на прочность с учетом изгиба в состоянии пластичности и ползучести

ПЛАСТИЧНОСТЬ И ПОЛЗУЧЕСТЬ

Расчет дисков с учетом пластичности и ползучести



© 2025 Mash-xxl.info Реклама на сайте