Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Образование соединений при контактной сварке

Как происходит образование соединения при контактной сварке  [c.120]

При пайке деталей из разнородных металлов, способных образовывать эвтектики или твердые растворы, нет необходимости в припое. В этом случае образование соединения аналогично соединению при контактной сварке.  [c.260]

ПРОЦЕСС ОБРАЗОВАНИЯ СОЕДИНЕНИЯ ПЕРЕСЕКАЮЩИХСЯ СТЕРЖНЕЙ ПРИ КОНТАКТНОЙ СВАРКЕ  [c.236]

Коэффициентом полезного действия (к. п. д.) при контактной сварке называется отношение полезной мощности, расходуемой на нагрев свариваемого металла для образования сварного соединения к полной мощности, включающей и ту, которая идет на нагрев сварочной цепи и корпуса машины, т. е.  [c.22]


Рассмотрим процесс образования соединения. При сжатии деталей электродами из-за малой площади контакта рельефа с плоской деталью (рис. 3, а) контактное сопротивление деталь—деталь при рельефной сварке больше, чем при точечной сварке того же металла. После включения сварочного тока металл рельефа интенсивно нагревается и его вершина деформируется контактное сопротивление быстро уменьшается и теплота выделяет-  [c.7]

Низколегированные и углеродистые стали при контактной сварке склонны к закалке из-за относительно высоких скоростей нагрева и охлаждения, используемых при ней, поэтому при точечной и шовной сварке используют более мягкие режимы для уменьшения опасности возникновения раковин и трещин в результате образования структур закалки в литой и околошовной зонах металла сварного соединения. Структуры закалки повышают хрупкость и снижают пластичность соединений. Для повышения прочности и пластичности-металла необходима термическая обработка в печи или непосредственно в сварочной машине. При точечной и шовной сварке этих металлов используют токи ниже (на 25— 30%), а давления выше (в 1,5—2 раза), чем при сварке  [c.23]

Качество соединений, выполненных контактной сваркой, проверяется без их разрушения практически лишь внешним осмотром и пробой на герметичность эти способы контроля недостаточно надежны. Поэтому для получения изделий высокого качества большое значение имеют точная наладка и правильная эксплуатация контактных машин, выполнение при сварке заданного технологического режима и проверка качества поступающего на сварку металла. Всё это может исключить образование дефектов.  [c.151]

Получение при контактной сварке вполне качественного соединения обычно сопровождается образованием на границе соединяемых деталей общих зерен металла (фиг. 32) — взаимной кристаллизацией (А. к. Алов). Образование таких зерен без расплавления металла возможно при одновременном соблюдении трех условий а) свариваемые поверхности должны плотно прилегать друг к другу (должно быть приложено достаточное давление) б) на свариваемых поверхностях не должно быть пленок окислов, грязи и других посторонних веществ, препятствующих непосредственному взаимодействию атомов свариваемых деталей (поверхности свариваемых деталей должны предварительно очищаться)  [c.52]

Рассмотрим раздельно процессы, протекающие при контактной сварке непосредственно в месте соединения и в прилегающем к нему металле (в околошовной зоне). Как уже отмечалось, сварка может осуществляться без расплавления или с расплавлением металла. Сущность процесса сварки без расплавления была рассмотрена в предыдущем параграфе. При нагреве стальных деталей, начиная с некоторой температуры, зависящей от химического состава стали, состояния поверхностей деталей и приложенного давления, может начаться сварка, т. е. образование на границе между плотно сжатыми деталями общих кристаллических зерен. С повышением температуры и давления число таких зерен растет и прочность получаемого сварного соединения увеличивается. При нагреве до температуры сварки соприкасающихся поверхностей, которые никогда не бывают вполне точно пригнаны друг к другу, появляются более или менее толстые пленки окислов. Окислы, остающиеся в соединении после сварки, существенно понижают его механические свойства и в особенности показатели пластичности (удлинение при растяжении, угол загиба, ударную вязкость).  [c.54]


При контактной сварке металл нагревается до размягчения или плавления. При нагревании меди выше 400° С происходит ее интенсивное окисление. Скорость окисления с повышением температуры возрастает. Расплавленная медь хорошо растворяет газы, выделяюш,иеся при затвердевании и образующие пористость сварного соединения. В нагретую медь легко проникает большое количество водорода. Водород, встречаясь с кислородом, находящимся в меди в виде закиси меди СигО, вступая с ней в реакцию СигО + Нз = 2Си + НгО, образует пары воды. Пары воды в меди нерастворимы. Накапливаясь в ней, они при нагревании создают большое давление, которое разрывает металл. При этом образуется сеть пор и микротрещин, понижающих прочность металла и повышающих его хрупкость. Явление образования пор и трещин вследствие действия водяных паров получило название водородной болезни.  [c.9]

Образование сварного соединения при ультразвуковой сварке происходит без расплавления металла на свариваемых поверхностях. При этом не происходит значительного разогрева изделий, образования литой структуры сварной точки, уменьшающей прочность соединения, изменения свойства металла вблизи места сварки и др. Отсутствие расплавленного металла при ультразвуковой сварке позволяет избежать выплесков, которые являются помехой при изготовлении ряда изделий контактной сваркой. Так, например, при сварке радиоламп выплески являются серьезным недостатком электрической точечной сварки. При выплеске на детали лампы может осаждаться металл, служащий источником шума в приборе, а иногда и причиной брака лампы.  [c.72]

При контактной сварке пластическая деформация металла является вторым основным процессом образования соединения. Деформация возникает под действием усилия электродов и за счет напряжений в связи с несвободным тепловым расширением металла зоны сварки. Величина напряжения и степень деформации неодинаковы в различных точках зоны сварки (рис. 16,а). Например, наибольшее напряжение в направлении оси электродов Ог наблюдается в центральной зоне в радиальном направлении о, наибольшее, начиная с середины контакта. Напряжения, необходимые для начала пластической деформации в  [c.20]

Соединение свариваемых деталей при контактной сварке (как и при других способах сварки) происходит путем образования связей между атомными агрегатами в зоне контакта. При этом для образования физического контакта и активации соединяемых поверхностей затрачивается тепловая и механическая энергия, подводимая извне.  [c.128]

Технология сварки определяет требования к сварочному оборудованию, которое представляет в целом комплекс различных механизмов и устройств (рис. 25). Необходимым и достаточным условием образования соединения при точечной контактной сварке является образование общей зоны расплавленного металла или ядра заданных размеров. Формирование соединений при этом состоит в основном из трех этапов.  [c.71]

Основным признаком всех видов сварки давлением (контактная, диффузионная, холодная, трением и др.) является пластическая деформация металла в зоне контакта соединяемых деталей, необходимая для образования сварных соединений. При сварке происходит принудительное образование межатомных связей между кристаллическими решетками соединяемых деталей. Выделяют три основные стадии процесса образования сварного соединения при сварке давлением  [c.105]

Шовная сварка — вид контактной сварки, при которой происходит образование непрерывного соединения (шва) последо-  [c.110]

Плавление основного металла при сварке осуществляется с целью соединения между собой свариваемых деталей. Идеальным в отношении затрат теплоты представляется такое тепловыделение в источнике, при котором обеспечивалась бы минимальная глубина проплавления сопрягаемых поверхностей, а присадочный металл не требовался бы вовсе или входил в соединение в минимальном объеме. Если не рассматривать диффузионную сварку и пайку, при которых детали нагреваются полностью, и сварку трением, при которой полного плавления металла не достигается, наиболее близко этому требованию отвечает высокочастотная сварка и некоторые виды контактной сварки (точечная, шовная, рельефная). В перечисленных способах сварки суш,ественная роль в образовании соединения принадлежит давлению, что позволяет плавить основной металл незначительно. Ограничимся рассмотрением случаев плавления основного металла в способах сварки без применения давления.  [c.228]


Разновидностью контактной точечной сварки является рельефная сварка, характер образования сварного соединения при которой во многом сходен с точечной сваркой. Сварка в данном случае происходит по предварительно подготовленным в металлических изделиях выступам.  [c.479]

На образовании прочных металлических связей между двумя заготовками основаны такие технологические процессы, как кузнечно-прессовая сварка, контактная сварка сопротивлением и плакирование методом горячей прокатки. Но в отличие от схватывания эти процессы характеризуются соединением металлов при значительном давлении и при температуре выше температуры рекристаллизации. В этих технологических процессах, как и при спекании изделий, большое значение имеет диффузия.  [c.201]

Сварное соединение, аналогичное соединению, выполненному контактной точечной или шовной сваркой, образуется при совместном действии на свариваемые поверхности ультразвуковых колебаний и механических усилий. Под действием этих колебаний происходят разрушение поверхностных пленок и местный нагрев свариваемых поверхностей. Механическое усилие сближает нагретые частицы металла и создает условия образования сварного соединения. По сравнению с контактной сваркой сварка ультразвуком дает следующие преимущества возможность сварки металлов очень малой  [c.265]

Ферритные стали —стали, легированные только хромом. Хром, растворяясь в железе, обеспечивает получение однофазной ферритной структуры, хорошо работающей в условиях атмосферной коррозии, К этой группе относятся стали Х13, Х14, Х18, Х25 и др. Свариваемость ферритных сталей прежде всего зависит от содержания углерода в стали. Чем больше углерода, тем больше возможности образования карбидов хрома и более вероятна закалка шва и переходных зон. Сварное соединение этих сталей можно получать газовой, ручной, дуговой, автоматической под флюсом, аргоно-дуговой и контактной сваркой. Общими рекомендациями для всех способов сварки является применение мягких тепловых режимов, уменьшающих скорость остывания сварного соединения. В ряде случаев при сварке больших сечений рекомендуется предварительный подогрев изделия. Рекомендуемые электроды для сварки этих сталей указаны в табл. 14, способы сварки сталей — в табл. 92.  [c.302]

При стыковой контактной сварке процесс образования сварного соединения протекает следующим образом обработанные под сварку торцы труб одновременно нагреваются до оплавления нагревательным инструментом, а затем стыкуются и осаживаются под давлением. Нагревательный инструмент представляет собой обычно металлический диск с плоскими поверхностями, изготовленный из нержавеющей стали, алюминия или других материалов.  [c.192]

Точечная сварка - способ контактной сварки, при котором детали свариваются по отдельным ограниченным участкам касания (по ряду точек). При точечной сварке (рис. 1, а) детали 1 собирают внахлестку, сжимают усилием электродами 2, к которым подключен источник 3 электрической энергии (например, сварочный трансформатор). Детали нагреваются при кратковременном прохождении сварочного тока /св до образования зоны 4 взаимного расплавления деталей, называемой ядром. Нагрев зоны сварки сопровождается пластической деформацией металла в зоне контакта деталей (вокруг ядра), где образуется уплотняюший поясок 5, надежно предохраняющий жидкий металл от выплеска и от окружающего воздуха. Поэтому специальной защиты зоны сварки не требуется. После выключения тока расплавленный металл ядра быстро кристаллизуется, и образуются металлические связи между соединяемыми деталями. Таким образом, образование соединения при точечной сварке происходит с расплавлением металла.  [c.129]

В реальных условиях поверхность твердого тела всегда имеет шероховатости и покрыта трудноудаляемыми адсорбированными слоями газов, воды и дру. гих веществ, которые необходимо удалить для получения надежного и прочного соединения. Как отмечалось выше, надежность и прочность соединения возрастают, если зона соединения расширится и приобретет объемный характер в результате самодиффузии или взаимной диффузии атомов соединяемых материалов. Для удобства анализа процесс образования соединения при диффузионной сварке (ДС) металлов удобно рассматривать по стадиям. Следует выделить две основные стадии, оканчивающиеся определенным энергетически устойчивым состоянием атомов поверхностей свариваемых металлов, а также законченными физическими процессами в зоне соединения. Как показано на рис. 7, в результате контактного взаимодействия при сближении кристаллов с чистыми поверхностями на расстояние, соизмеримое с периодом решетки, энергетически выгодно образование металлических связей (кривая 1). Однако для образования металлических связей потенциальная энергия атомов реальных поверхностей поликристаллов может быть ниже требуемой, например, из-за наличия адсорбированных слоев. В этом случае начальное контактное взаимодействие определяется нестационарными (флуктуа-ционными) электромагнитными полями металлов и адсорбированных слоев на их поверхностях (кривая 2). Активация за счет термодеформационного воздействия и очистки поверхностей, повышающая потенциальную энергию на величину Еа, приводит к образованию металлических связей (соединению). При ДС реальных металлических макроповерхностей происходит образование начального контакта  [c.21]


Известны две разновидности сварки давлением без нагрева (сварка взрывом, импульсом магнитной энергии, холодная сварка) и с нагревом (кузнечная, ультразвуковая, трением, диффузионная, высокочастотная, газопрессовая и контактная сварка). Природа образования соединения во всех случаях сварки как с нагревом, так и без него одна это результат взаимодействия между активированными атомами соединяемых поверхностей. Различают три стадии процесса образования соединения при сварке давлением. На первой стадии образуется физический контакт, происходит активация поверхностей, которые сближаются ка параметр кристаллической решетки, преодолевая энергетический барьер, но сохраняют устойчивое состояние, не сливаясь. На второй с т а д и и образуется химическое соединение активированных поверхностей, происходит сварка - сближение атомов на расстояние межатомарного взаимодействия. Ширина границы раздела становится соизмеримой с шириной межзеренной границы, прочность соединения становится соизмеримой с прочностью основного металла. Н а третьей стадии происходит диффузионный обмен масс через объединенную поверхность соединения. При этом вновь полученная поверхность раздела размывается или расчленяется продуктами взаимодействия.  [c.255]

При контактной сварке в сварном соединении возникают межатомные связи металлов соединяемых деталей, для образования которых необходимо затратить энергию. Эта энергия вводится (при помощи контактной сварочной машины) в двух видах тепловой — для нагрева и механической — для деформации (или сдавливамя) свариваемых деталей. КЬличество тепловой энергии определяется необходимостью местного нагрева деталей до температуры плавления металла или близкой к ней. Величина сжимающих усилий ойределя-ется необходимостью сжатия соединяемых деталей и разрушения окисных пленок.  [c.4]

Прп газопрессовой сварке оплавлением механизм соединения имеет некоторое сходство с таковым при электрической контактной сварке оплавлением. Механизм соединения при газопрессовой сварке в пластическом состоянии слабо изучен. На основании исследований структуры и механических свойств образцов, сваренных при различных темнературах, наиболее вероятно предположить, что соедпненпе происходит посредством образования общих зерен метал.та соединяемых частей и диффузии окислов, находящихся на поверхности раздела, в основной металл.  [c.313]

Процессы образования соединения при рельефной и точечной сварке имеют много общего. Две детали 2 из листа, на одной из которых выштампованы рельефы сферической формы, зажимаются между электродами 1 с большой контактной поверхностью (плитами), подводящими ток к соединяемым деталям (рис. 3, а). Для обеспечения одинаковых условий нагрева каждого рельефа необходимо, чтобы приложенное усилие / эл и ток /г (рис. 3, б) равномерно распределялись между всеми точками контакта деталей (Рсв, /св).  [c.7]

Уместно сделать еще следующее замечание. Сравнительно новые виды сварки — холодная и сварка трением имеют свою специфику, резко отличную в некотором г)тношенин от ультразвуковой сварки. Механизм образования соединения при этих видах сварки изучен недостаточно. Поэтому нам представляется нецелесообразным объяснять механизм ультразвуковой сварки сопоставлением с этими видами сварки. Сравнивать различные виды сварки, безусловно, полезно лишь при условии возможности сопоставления их конкретных особенностей. Например, такой подход оказался плодотворным при сопоставлении схемы напряженного состояния металла в различных способах стыковой сварки давлением (контактная, холодная, сварка трением), хотя пластичное состояние металла достигается в них совершенно по-разному [112]. Конкретное сопоставление ультразвуковой и других видов сварки встречается редко, видимо, потому, что имеющиеся сведения о механизме сварки ультразвуком недостаточно полны и систематизированы. По нашему мнению, сначала следует свести воедино возможно большее количество экспериментальных данных, относящихся к процессу образования соединения, а затем уже на их основе строить представления о механизме образования соединения. Поэтому, рассмотрев в 2—5 ряд металлофизических и тепловых явлений в зоне соединения, мы в 6 перейдем к формулированию некоторых представлений о самом механизме ультразвуковой сварки.  [c.105]

При этом аналитическая обработка позволила Т1Ж5<си помимо значения показателя П определить положение центра тяжести концентрационных кривых и площадь под ними. Положение центра, тяжести концентрационной кривой характеризует перемещение основной массы атомов на среднюю глубину, а площадь под кривой оценивает сушу перемещаемых радиоактивных атомов. Из представленных данных можно заключить, что картина распределение изотопа в зоне объемного взаимодействия при КСС и УСВ идентична. В результате проведенных исследований установлено, что при контактной стыковой сварке сощто-тивлением могут при определенных условиях (импульсный нагрев в сочетании с скоростями деформации превышающими 0,1 м/с) развиваться процессы аномального массопереноса существенно влияющего на формирование соединений. В частности образование металлических связей наблюдалось при величинах деформации, которые на порядок ниже чем при канонических режимах сварки сопротивлением. Количественные показатели массопереноса в данном случае весьма близки к аналогичным показателям при ударной сварке в вакууме.  [c.160]

Таким образом, проведенные исследования показали, что при внедрении детали из стали Х18Н9Т в алюминиевые сплавы АД1 и АМгЗ при температуре 400° С пластическая деформация стали на глубину порядка 500 А в первом случае и 10 ООО А во втором случае обеспечивает схватывание металлов по всей поверхности контакта с образованием соединения, равнопрочного алюминиевому сплаву (разрушение сварных соединений происходит по основному материалу с меньшим пределом прочности). При снижении температуры или изменении других параметров процесса сварки прочность соединения уменьшается. Анализ дислокационной структуры поверхностного слоя показал, что декорирование наблюдается не только в макроскопическом масштабе, но и в микроскопическом на отдельных единичных дислокациях (рис, 3). При этом на электронно-микрогжопических картинах наблюдаются мельчайшие клубки второй фазы, которые светятся при темнопольном изображении и декорируют дислокацию лишь с одного конца, а именно с того, который выходит на свободную контактную поверхность раздела материалов. Второй же конец дислокаций, выходящий на другую поверхность, образовавтнуюся в результате приготовления пленки и утонения образна, не декорирован фазой.  [c.102]

Сварные соединения — наиболее рациональный и распространенный вид неразъемных соединений, приближающий по форме составные детали к целым их широко применяют в строительстве и машиностроении. Сварка обеспечивает образование межатомных связей между соединяемыми частями при их местном нагревании до расплавленного состояния (сварка плавлением) или до расплавленного состояния с последзтощим сдавливанием (контактная сварка).  [c.78]


Каждый вид сварного соединения имеет свои преимущества и недостатки. Наиболее распространено стыковое соединение. Его применяют в широком диапазоне толщины свариваемых деталей от десятых долей миллиметра до сотен миллиметров почти при всех способах сварки. Не применяют его при контактной точечной сварке. При стыковом соединении на образование шва расходуется меньше присадочного материала, легко и удобно контролировать качество. Однако стыковое соединение требует более точной сборки деталей под сварку плавлением - нужно вьщержать равномерный зазор между кромками по всей длине стыка. Особенно сложно обрабатывать и подгонять кромки длинных (до нескольких метров) стыков и кромки профильного проката (уголков, швеллеров и т.п.).  [c.11]

При сварке углеродистых сталей уменьшения склонности к образованию горячих трещин добиваются снижением содержания углерода в наплавленном металле вследствие применения сварочной проволоки с меньшим содержанием углерода по сравнению с основным металлом. Одновременно шов легируют марганцем и кремнием, которые обеспечивают сохранение необходимых механических свойств металла шва. Кроме того, присутствие марганца связывает серу в соединение MnS, в котором сера находится в виде твердого раствора. Температура плавления такого раствора выше 1180°С, поэтому в шве снижается количество легкоплавких примесей, способствующих образованию горячих трещин. Для сварки углеродистых сталей можно рекомендовать ручную дуговую сварку покрытыми электродами, сварку са-мозащитной порошковой проволокой, под флюсом, сварку в атмосфере защитных газов (аргона, аргона с добавлением кислорода или углекислого газа), электрошлаковую, газовую или контактную сварку.  [c.508]

Свариваемость двухфазных хромоникелевых сталей переходных классов по сравнению с однофазными выше, особенно сопротивляемость образованию трещин и межкристаллитной коррозии. Мартенситно-стареющие коррозионностойкие стали (08Х15Н5Д2Т и др.) могут иметь в зоне сварного соединения ослабленные участки в отношении величины ударной вязкости и стойкости против коррозии. Антикоррозионные свойства сварных соединений восстанавливаются после полной термической обработки. Рекомендуется для этих же целей отпуск перед сваркой при 600—650 °С. Для предотвращения старения металла в зоне сварного соединения в процессе эксплуатации конструкции и последующего снижения его пластических свойств применяют термообработку после сварки (при 600—650 °С). Хромоникелевые стали сваривают практически всеми методами. Режимы стремятся подбирать так, чтобы сварка происходила при малых значениях погонной энергии. Успешно сваривают хромоникелевые стали контактной сваркой.  [c.511]

Полученные нами результаты представляют также интерес в практическом отношении применительно к оптимизации, интенсификации и управлению кинетикой диффузионных процессов при различных методах образования соединения в твердой фазе и при выборе оптимальных методов приложения внешней нагрузки в этих процессах [368, 654, 655], а также оптимальных режимов тренировки материалов в псевдоупругой области деформирования с целью их упрочнения [656, 657]. Например, предложенный в [654, 655] программированный метод приложения контактного усилия в процессе твердофазной сварки позволяет существенно увеличивать площадь схватывания и соответственно прочность сварного соединения в случае дискретного приложения внешней нагрузки по сравнению с однократным приложением одной и той же или даже большей величины общей нагрузки.  [c.247]

При диффузионной сварке кроме установок для единичного производства с ручным управлением для серийного и поточно-массового производств применяют установки с полуавтоматическим или автоматическим программным управлением. В этом случае для образования сеарнОго соединения не требуются электроды, припои, флюсы и другие вспомогательные материалы. Применяют различные автоматические установки для контактной  [c.170]

Г[рименение режима, обеспечивающего интенсификацию трения, приводит к характерному для сухого трения значительному износу контактирующих поверхностей и образованию соединения с низкой прочностью [35, 49]. Применение режима малых lee и больших Рев (по имеющимся данным) позволило получить соединения, в микроструктуре которых не обнаруживались следы износа и большие пластические течения металлов. Такие соединения обладают и лучшими прочностными свойствами. Разрушение этих соединений при испытаниях на срез происходит в большинстве случаев путем вырыва сварной точки. Прочность соединений при испытаниях на отрыв составляет около 50% от прочности на срез. Перечисленные факторы свидетельствуют о более равновесном состоянии структуры полученных соединений. Таким образом, меняя соотношение между колебательной амплитудой сварочного наконечника и контактным давлением при сварке одних и тех же материалов, можно получить сварные соединения, существенно отличающиеся друг от друга как структурой, так и прочностью и пластичностью.  [c.34]


Смотреть страницы где упоминается термин Образование соединений при контактной сварке : [c.290]    [c.367]    [c.223]    [c.313]    [c.33]    [c.682]    [c.206]    [c.409]    [c.429]    [c.427]   
Смотреть главы в:

Технология конструкционных материалов  -> Образование соединений при контактной сварке



ПОИСК



219 — Сварка и соединения

Образование соединений

Особенности контактной сварки пересекающихся стержней — Процесс образования соединения пересекающихся стержней при контактной сварке

Сварка контактная

Соединение контактное

Соединения контактной сваркой



© 2025 Mash-xxl.info Реклама на сайте