Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства металлов, определяющие жаропрочность

С и выше. Повышение температуры перегрева пара ограничивается свойствами металла, из которого сделаны трубы, выдерживать большие давления при высоких температурах, т. е. конечные параметры пара определяются наличием относительно дешевых жаропрочных металлов.  [c.303]

I 500—3 000° С. Это значительно выше того, что могут выдержать металлы, но стенки камеры, в которой происходит горение, можно охлаждать, к в этом случае такие температуры становятся приемлемыми. Однако конечная температура продуктов горения при расширении их в газовых турбинах до атмосферного давления оказывается еще значительно выше температуры окружающей среды, что неблагоприятно для термического к. п. д. цикла. Обратное наблюдается у другого рабочего тела — водяного пара. Он получается в перегревателе парогенератора путем подвода тепла от горячих газов через металлическую стенку труб перегревателя, и его температура всецело определяется жаропрочностью металла, которая не позволяет получать пар с температурами более 600—650° С, да и то при использовании весьма дорогих высоколегированных сталей. С другой стороны, как это было показано при анализе циклов паросиловых установок, конечная температура водяного пара при расширении его до принятых давлений в конденсаторе ненамного отличается от температуры окружающей среды, что благоприятно для экономичности цикла. Рассмотренные свойства того и другого рабочего тела привели к мысли о создании бинарного цикла, т. е. такого цикла, в котором участвовали бы два рабочих тела, каждое из которых вносило бы в цикл свое благоприятное для термического к. п. д. СВОЙСТВО. Такой бинарный цикл получил название парогазового цикла. В нем в высокотемпературной части рабочим телом служат продукты горения топлив, а в низко-  [c.193]


В зависимости от условий эксплуатации конструкционные порошковые материалы (КПМ) подразделяют на две группы материалы, заменяющие обычные углеродистые и легированные стали, чугуны и цветные металлы материалы со специальными свойствами — износостойкие, инструментальные, жаропрочные, жаростойкие, коррозионностойкие, для атомной энергетики, с особыми физическими свойствами (магнитными, электро- и теплофизическими и др.), тяжелые сплавы, материалы для узлов трения — антифрикционные и фрикционные и др. Физико-механические свойства КПМ при прочих равных условиях определяются плотностью (или пористостью) изделий, а также условиями их получения. По степени нагруженности порошковые детали подразделяют на четыре группы (табл. 7.1).  [c.174]

Основным фактором, определяющим изменение строения и свойств металла в результате холодной пластической деформации, является накопленная энергия в деформированном металле, которая связана с изменением дислокационной структуры. Эта накопленная (скрытая) энергия деформирования определяет необратимые процессы в зерне, которые вызывают последующие изменения дислокационной структуры материала в условиях эксплуатации и определяют жаропрочные свойства стали.  [c.26]

Реальная оценка ресурса энергооборудования является одной из важных задач современного этапа эксплуатации тепловых электростанций. Расчет ресурса по принятым схемам [36] не в полной мере учитывает имеющийся разброс свойств металла, что может в значительной степени исказить точность оценки срока службы оборудования. Для деталей, работающих в условиях ползучести, достоверность оценки ресурса определяется в основном двумя факторами — точностью оценки жаропрочных свойств материала и точностью определения температурно-силовых условий работы оборудования в процессе эксплуатации. Повыщение точности оценки жаропрочных свойств может быть осуществлено, если при выборе расчетных характеристик учитывается связь между свойствами материала и его структурой.  [c.49]

При разработке технологии сварки жаропрочных материалов особую трудность представляет, как правило, выбор сварочных материалов (электродов и сварочных проволок), обеспечивающих необходимые свойства металла шва. Для работы при высоких температурах металл шва, кроме необходимого уровня механических свойств и технологической прочности, должен обеспечивать также достаточную стабильность структуры и свойств при заданных температурах, обладать необходимым сопротивлением ползучести и жаростойкостью, а также рядом других свойств в соответствии с условиями работы данного узла. При этом критерии оценки пригодности того или иного типа сварочных материалов будут существенно зависеть от назначения данного узла конструкции. Так, например, для сварных конструкций камер сгорания газовых турбин пригодность тех или иных электродов будет определяться прежде всего жаростойкостью металла шва. Ряд сварных узлов турбин (рабочие лопатки, роторы и другие) могут работать под воздействием динамических знакопеременных напряжений. Поэтому для данных сварных соединений должна быть проверена их усталостная прочность.  [c.21]


Верхняя температурная граница определяется такими свойствами металла, как жаростойкость и жаропрочность.  [c.21]

Кроме того, в исходном состоянии сварные соединения характеризуются неравномерной структурой металла шва и околошовной зоны. Этим определяется неравномерность и нестабильность их механических свойств и уровня жаропрочности.  [c.205]

Под специальными свойствами металлов и сплавов понимают их поведение в специфических условиях при повышенных и пониженных температурах, при повышенных и пониженных давлениях и т. д., а также такие свойства, которыми металлы и сплавы обычно не обладают и которые приобретают вводом специальных добавок при выплавке (например, сплавы с высоким омическим сопротивлением, немагнитные сплавы, магнитотвердые сплавы, магнитомягкие сплавы, стали с постоянным коэффициентом расширения, жаропрочные стали, износоустойчивые стали и т. д.). Специальные свойства металлов и сплавов определяют при помощи современных приборов и установок.  [c.107]

Свойства металлов И сплавов зависят от состава и структуры. Их определяют различными методами, которые нужно разделить на механические, физические, технологические, химические и специальные (определение жаропрочности, коррозионной стойкости и т. д.).  [c.81]

Способность металлов сопротивляться коррозионному воздействию газов при высоких температурах называется жаростойкостью. Другая важная характеристика поведения металлов в условиях воздействия высоких температур — жаропрочность она определяет способность материала сохранять в этих условиях высокие механические свойства. Металл может быть жаростоек, но не жаропрочен, и наоборот, — жаропрочен, но не жаростоек. Так, например, алюминиевые сплавы жаростойки, но не жаропрочны при температуре 400—450° С. Быстрорежущая вольфрамовая сталь при 600—700° С жаропрочна, но не жаростойка. Достаточно эффективное сочетание жаростойкости и жаропрочности достигается в сплавах системы никель — хром.  [c.11]

В соответствии со спецификой работы конструкций разработаны и методы испытаний металлов и сплавов, с помощью которых определяют механические свойства. Наиболее распространены испытания на статическое растяжение, на твердость и динамические испытания. В ряде случаев проводят испытания на повторность нагружений, на усталость, на износ, на жаропрочность и т. д., т. е. существует целый комплекс испытаний, которые дают более полное представление о свойствах металлов и сплавов.  [c.134]

Низкая обрабатываемость жаропрочных металлов определяется их физико-химическими свойствами. В этих условиях весьма важно раскрыть причины, влияющие на обрабатываемость этих металлов, и изыскать способы и средства увеличения производитель- ности их обработки на металлорежущих станках.  [c.3]

Из уравнений (4) и (5) следует, что предел прочности соединений определяется не только свойствами металла, но и относительной толщиной прослойки. Чем меньше х, тем больше Об- Отсюда следует, что чем больше механическая неоднородность соединений, тем более тонкие прослойки необходимы для достижения равнопрочности с основным металлом. Для жаропрочных сплавов более важной характеристикой является работоспособность соединений с мягкой прослойкой в условиях ползучести. В мягкой прослойке вследствие затрудненности ползу-  [c.174]

Таким образом, работа корпусных деталей турбин в условиях воздействия высоких температур, нагрузок от внутреннего давления и периодических термических напряжений, возникающих, при переменных режимах работы, а также наличие исходных микро- и макродефектов приводит к развитию в металле отливок эксплуатационных трещин. В этом случае время образования трещины критической величины определяется не только жаропрочными свойствами, но в значительной степени свойствами трещиностойкости металла.  [c.40]

При анализе структуры уравнений критериев прочности подчеркивается, что в исследуемые зависимости необходимо вводить специальные параметры, отражающие индивидуальные особенности материала. Особую роль такие коэффициенты приобретают при больших сроках службы, когда в процессе длительного воздействия температуры и внешних нагрузок могут изменяться как свойства материала, так и механизм развития процессов деформирования и зарождения и роста повреждений. Поэтому, планируя программу испытаний для оценки конструктивной жаропрочности, следует выявлять границы температурно-силовой области эксперимента, в которой сопротивление разрушению определяется физическими закономерностями, адекватными процессам, определяющим условия службы металла при длительной эксплуатации. В таких условиях обработка экспериментальных данных позволит получить правильные оценки коэффициентов как уравнении температурно-временной зависимости прочности, так и формул критериев длительной прочности.  [c.145]


В послевоенные годы область применения стали и вообще сплавов на основе железа суживается, они становятся преимущественно конструкционным материалом, качество которого определяется в основном прочностью. Требования к жаропрочности, окалиностойкости и физическим свойствам материалов послевоенной техники настолько повышаются, что во многих случаях для их обеспечения потребовались сплавы на других основах — никеля, кобальта, тугоплавких металлов и пр. Однако ограничение требований к качеству стали показателями прочности не означает их упрощения. Усложнение условий работы объектов современного машиностроения и повышение их ответственности исключают возможность однозначно характеризовать сталь пределом прочности, как это делалось многие годы. Требование прочности ныне входит в критерий качества материала наряду с новым для материаловедения требованием надежности.  [c.192]

Жаропрочность — способность материала выдерживать механические нагрузки без существенной деформации и разрушения при повышенных температурах. Жаропрочность определяется комплексом свойств, включающих сопротивление ползучести и длительному разрушению и жаростойкость. Жаропрочность характеризуют пределом длительной прочности, пределом ползучести и временем до разрушения при заданных напряжении, температуре и рабочей атмосфере. Жаропрочность отражает свойство стали сохранять прочность, пластичность и стабильность структуры при высоких температурах в условиях ползучести металла в течение расчетного срока службы в сочетании с высокой коррозионной стойкостью (при температурах эксплуатации не выше 585 °С и умеренном коррозионном воздействии среды)н  [c.279]

С развитием техники к материалам предъявляют все более возрас- тающие требования в отношении их прочности и жаропрочности, жаростойкости, коррозионной стойкости и других свойств. Удовлетворение этих требований определяет саму возможность создания производственных процессов, аппаратов, машин и устройств с высокими рабочими параметрами и прежде всего температурой. Сохранение требуемых свойств при повышенных температурах, часто вблизи температуры плавления металла-основы, и является характерной отличительной чертой материалов, называемых высокотемпературными. Ракетная техника и космонавтика, ядерная энергетика и химическое машиностроение, авиа- и автомобилестроение, как и десятки других отраслей техники, не могут развиваться на базе только суш ествующих в настоящее время материалов, среди которых первое место пока прочно удерживают металлы и их сплавы. Однако хорошо отработанные приемы получения новых металлических материалов методами классической металлургии уже не приводят к заметным успехам в области разработки высокотемпературных материалов.  [c.150]

Сварка коррозионно-стойких, жаропрочных сталей и сплавов. Стали и сплавы этого класса обладают хорошей свариваемостью. Однако теплофизические свойства и склонность к образованию в шве и околошовной зоне горячих трещин определяют некоторые особенности их сварки. Характерные для большинства сталей и сплавов низкая теплопроводность и высокий коэффициент линейного расширения обусловливают при прочих равных условиях (способе сварки, геометрии кромок и др.) расширение зоны проплавления и областей, нагретых до различных температур, и увеличение суммарной пластической деформации металла шва и околошовной зоны. Это увеличивает коробление конструкций. Поэтому следует применять способы и режимы сварки, характеризующиеся максимальной концентрацией тепловой энергии. Оценка возможностей дуговых способов сварки по толщине детали дана в табл. I.  [c.28]

Карбиды и нитриды, относящиеся к фазам внедрения, во многом определяют свойства коррозионно-стойких, износостойких и жаропрочных конструкционных сталей. Карбиды тугоплавких металлов служат основой порошковых твердых сплавов для режущих инструментов.  [c.41]

Многие используемые в технике сплавы металлов содержат более двух компонентов. Тройные, четверные и многокомпонентные сплавы могут обладать такими свойствами, которые нельзя получить у двухкомпонентных сплавов. Например, при помощи многокомпонентного легирования можно получить сплавы с весьма высокой жаропрочностью. Совместное влияние нескольких компонентов сплава на его свойства часто отличается от влияния каждого в отдельности. Для анализа превращений многокомпонентных сплавов используют тройные, четверные и более сложные диаграммы состояния. Для изображения однокомпонентной системы достаточно нанести точки на прямой линии, диаграмму состояния двухкомпонентной системы изображают в виде плоского графика. Диаграмму состояния сплавов с тремя компонентами изображают в пространстве. Состав сплава определяется по положению на концентрационном равностороннем треугольнике (рис. 38).  [c.57]

Работоспособность металлов при высоких температурах определяется комплексом свойств их жаропрочности и жаростойкости. Первая характеристика связана со способностью материала сопротивляться воздействию нагрузки при высоких температурах вторая обусловлена его стойкостью против химического разрушения поверхности под воздействием окружающей среды.  [c.5]

Жаропрочность определяется комплексом свойств материала при высоких температурах и зависит от большого числа факторов. Основными из них являются ползучесть, длительная прочность и пластичность. Большое влияние на жаропрочность оказывает структурное состояние металла или сплава и степень его устойчивости при данной температуре во времени.  [c.5]


Надежность работы шпилек паровой арматуры определяют свойствами применяемых сталей, конструкцией и условиями эксплуатации. Характерная особенность шпилек заключается в том, что они работают в условиях самопроизвольного снижения напряжения (в результате перехода упругой деформации в пластическую), назы ваемого релаксацией. Поэтому наряду с высоким уровнем прочностных свойств и жаропрочностью металл для шпилек должен обладать высокой релаксационной стойкостью — сопротивлением снижению напряжений, а также не быть чувствительным к резьбовым концентраторам напряжений.  [c.229]

Показанные на рис. 3.1 зависимости могут с успехом использоваться для практических целей. С их помощью представляется возможным по значениям микротвердости материала определить его свободную поверхностную энергию и, что не менее важно, зафиксировать в численном выражении ее изменение при воздействии на металл поверхностно-актив-ных веществ. Именно это и позволило предложить ускоренный метод прогнозирования жаропрочных свойств аустенитных сталей при работе в средах, содержащих поверхностно-активные вещества, и в частности в контакте с теплоизоляционными покрытиями [75].  [c.47]

Разработаны, новые материалы, представляющие собой сочетание металлической основы с дисперсными включениям тугоплавких окислов и применяющиеся как новые жаропрочные материалы, параметры которых более высокие, чем у чистых металлов и сплавов на их основе. В последнее время на основе тугоплавких металлов (ванадия, ниобия, молибдена и вольфрама) созданы сплавы, которые позволяют значительно расширить температурные интервалы применения новых жаропрочных материалов. И, наконец, следует отметить материалы с особыми физическими свойствами, которые создаются в условиях высоких и сверхвысоких давлений и температур, например искусственный алмаз, новые модификации простых веществ и различные соединения, способные в этих условиях менять характер химической связи. При исследовании ЭТИХ материалов успешно применяют новые методы, позволяющие определять строение и  [c.4]

Тип электродов регламентирует также ГОСТ 10052—75, который устанавливает требования к электродам для сварки высоколегированных сталей с особыми свойствами и распространяется на электроды для ручной дуговой сварки коррозионностойких, жаропрочных и жаростойких высоколегированных сталей мартенситного, мартенситно-ферритного, ферритного, аустенит-но-ферритного, аустенитно-мартенситного и аустенитного классов. ГОСТ 10051—75 определяет требования к электродам для ручной дуговой наплавки поверхностных слоев с особыми свойствами. Тип электродов зависит от химического состава наплавленного металла и его твердости при нормальной температуре. Система обозначения типа электродов в указанных стандартах за некоторыми изменениями аналогична системе, принятой в ГОСТ 9467—75 для теплоустойчивых сталей. В типе электродов по ГОСТ 10052—75 цифры, указывающие на содержание химического элемента, не проставляют, если элементов в наплавленном металле в среднем содержится менее 1,5 %. При среднем содержании кремния до 0,8 и марганца до 1,6 % их условные обозначения не проставляют. В ГОСТ 10051—75 буквы ЭН обозначают  [c.58]

Сварка высоколегированных коррозионностойких, жаростойких и жаропрочных сталей и сплавов. К сварным соединениям высоколегированных сталей и сплавов кроме требований по пределу прочности, а также пластичности предъявляются и другие требования, которые определяются назначением конструкции и свойствами свариваемого металла. Эти требования следующие  [c.117]

К металлам, идущим на изготовление или ремонт котлов, экономайзеров, пароперегревателей, арматуры и других устройств, работающих под давлением и высоких температурах, предъявляют особые требования. Они должны соответствовать требованиям ГОСТ и правилам Госгортехнадзора, обладать высокой механической прочностью, хорошей пластичностью, жаропрочностью и устойчивостью против коррозии. ГОСТ определяет наименование данного металла, его марку, способ выплавки, химический состав и механические свойства каждой марки, методы проверочных испытаний. На один и тот же металл может быть несколько ГОСТов, например на марку, сортамент и технические условия поставки.  [c.199]

Кроме углерода в стали и шве содержатся Мп и 5 , попадающие в металл в процессе раскисления. Для повышения прочностных характеристик и приобретения особых свойств стали (коррозионной стойкости, жаропрочности и т. п.) применяют легирование металла различными полезными элементами, которые, улучшая его свойства, вместе с тем ухудшают его свариваемость. Легированные стали разделяются в зависимости от содержания легирующих элементов на низколегированные (не более 2,5%) легированные (2,5—10 /о) и высоколегированные (более 10 %). Свариваемость стали можно приближенно определить по количеству легирующих элементов, эквивалентных (приравненных) углероду, по формуле  [c.126]

Характеристики жаропрочности наплавленного металла (или металла шва), а также сварных соединений определяются так же, как характеристики жаропрочности сталей и сплавов. При определении свойств сварных соединений обычно испытываются образцы с поперечным швом.  [c.15]

В современных сварных конструкциях нередко применяют различные по составу алюминиевые сплавы. В одних случаях это обусловлено технологическими особенностями получения используемых полуфабрикатов листов, профилей, поковок, штампованных заготовок и проволоки. В других — решающую роль при выборе сплава играют условия работы соединяемых элементов, которые определяют требования к их прочности и жаропрочности, пластичности и коррозионной стойкости, теплопроводности, электропроводимости, сопротивлению изнашиванию и др. эксплуатационным свойствам. Характерное для соединений разноименных алюминиевых сплавов существенное различие в составе металла шва, зон сплавления и термического влияния затрудняет улучшение их свойств. В результате механические, коррозионные и другие свойства соединений разноименных сплавов имеют более низкие значения, чем те же показатели соединений одноименных сплавов. Кроме того, полученный при сварке двух различных сплавов состав металла шва, как правило, обладает повышенной склон-  [c.29]

Детали, работающие в условиях высоких механических нагрузок, повышенных температур и агрессивных сред (например, лопатки газовых турбин из жаропрочных сталей и сплавов), основные рабочие поверхности которых в дальнейшем не обрабатываются режущим инструментом, подвергаются всесторонней комплексной проверке. В этом случае выполняют визуальный контроль и измерения ограниченных допусками размеров, а также определяют химический состав металла каждой плавки и механические свойства на специальных образцах, отлитых либо отдельно, либо с блоком отливок осуществляют радиографический, радиоскопический и акустический контроль для выявления внутренних дефектов, а также цветную дефектоскопию или люминесцентный контроль для обнаружения поверхностных, проникающих в отливку дефектов, не выявляемых визуально.  [c.244]

Электроды покрытые для сварки коррозионно-жаростойких и жаропрочных сталей — мартенситного, мартенситно-ферритного, ферритного, аустеиитно-ферритного и аустенитного классов. Электроды поставляются но ГОСТ 10052—75 31 тина по гарантированному химическому составу наплавленного металла и механическим свойствам металла шва и наплавленного металла (табл. 42). Полный химический состав наплавленного металла приведен в ГОСТ 10052—75. Приближенные его значения можно определить расшифровкой названий типов электродов, пользуясь данными, нриведенньши на с. 10.  [c.66]


Многообразие структур различных зон сварного соединения, а также малая ширина большинства из них, не позволяют оценить свойства различных зон в отдельности. Поэтому обычно ограничиваются тем, что дополнительно к свойствам свариваемой стали определяют лишь жаропрочные свойства металла шва. Условия же работы различных зон оценивают по результатам испытания сварного соединения в целом. В последнее время все большее развитие получают методики, с помощью которых воспроизводятся на образцах основного металла релшмы термического цикла различных зон сварного соединения и в первую очередь околошов-ной зоны. Имеются также попытки воспроизводства не только термического, но и деформационного цикла сварки.  [c.109]

Недавно был предложен метод получения мелких гранул из химически активных металлов, в том числе и титана [7], позволяющий получат], композигпые смеси любого состава, используя методы порошковой металлургии. Можно, напрпмер, взять высоколегированный жаропрочный титановый сплав (20% Nb, 8% А ), пластичность которого при комнатной температуре недостаточна, и сплав (6% А1, 4%V), имеющий хорошую пластичность, но сравнительно невысокую жаропрочность, и в виде гранул смеша1Ь оба сплава в желаемой пропорции. Затем, не доводя эту смесь до снлавления, превратить се в компактный кусок металла прессованием при повышенных температурах. Такой сплав будет иметь более высокую жаропрочность, чем его пластичный компонент, и большую пластичность, чем его жаропрочный компонент другими словами, его свойства будут определяться соотношением сплавов - компоиеитов.  [c.19]

В металле шва в процессе длительной выдержки при температуре 470—530°С количест1ЕО карбидов резко увеличивается, причем это происходит за счет образования карбидов хрома и особенно молибдена. Этот процесс в большой степени определяет жаропрочные свойства металла шва.  [c.91]

Кратковременные механические и жаропрочные свойства стали 15Х1М1Ф-ЦЛ зависят от структурного состояния металла, которое в свою очередь определяется химическим составом стали и сложной термической обработкой, включающей противофлокенный отжиг, гомогенизацию, нормализацию и высокий отпуск (см. табл. 1.3). Особенности структуры, качества и жаропрочности стали 15Х1М1Ф-ЦЛ с учетом влияния технологии центробежного литья трубных заготовок заключаются в следующем [15, 16]  [c.27]

Для сварки мартенситно-ферритных жаропрочных сталей применяются электроды марки ЦЛ-32, изготовленные на основе высокохромистой проволоки Св-10Х11ВМФН с покрытием фтористо-кальциевого типа. Структура металла шва определяется его химическим составом. Легирование металла шва осуществляется через проволоку. Трудности в создании композиции металла шва с 10—12% С заключаются в необходимости обеспечения его структуры с высокими стабильными свойствами, не склонной к снижению пластичности и ударной вязкости в исходном состоянии и к старению в процессе эксплуатации.  [c.53]

Технологическая пластичность, структура и механические свойства деформированных жаропрочных сталей и сплавов в значительной степени определяются металлургическими условиями плавки и разливки (режим кипа, температура рааплава, вид шлаков, атмосфера печи, методика раскисления и порядок введения легируюших элементов, качество исходных материалов и др.). В зависимости от условий плавки и разливки технологическую пластичность, структуру и свойства сталей и сплавов обусловливают следующие факторы вес слитка вид и протяженность столбчатой структуры слитка микроскопическая и дендритная рыхлость слитка газопасыщенность или пористость литого металла и макро- и микрохимическая неоднородность металла.  [c.87]

Большой практический интерес представляют приведенные ниже экспериментальные данные о микрогеометрии поверхности и физико-механических свойствах поверхностного слоя металла при обработке протягиванием жаропрочных и титановых материалов. Опыты производились протяжками из быстрорежущей стали Р18, имевшими задний угол а = 3° и передний угол у = 15°. Обработка осущестрлялась при скорости резания и = 1,5 м/мин со см зкой-охлаждением эмульсией с содержанием 10% эмульсола и 2% сульфофрезола. Чистота обработанной поверхности измерялась с помощью профилометра КВ7. Глубина и степень наклепа определялись на косых срезах и посредством рентгенографического анализа.  [c.384]

При выборе способа сварки плавлением аустенитных сталей необходимо обеспечить их свариваемость, т.е. предотвратить трещины различных типов в металле шва и ЗТВ как при сварке, так и при эксплуатации сварных соединений. При этом главное внимание обращают на технологическую прочность при сварке, так как ее уровень по закону технологического наследования определяет в существенной мере все другие структ)фочувствительные свойства соединений (жаропрочность, коррозионную стойкость и др.).  [c.60]


Смотреть страницы где упоминается термин Свойства металлов, определяющие жаропрочность : [c.277]    [c.43]    [c.4]    [c.262]   
Смотреть главы в:

Жаропрочность сварных соединений  -> Свойства металлов, определяющие жаропрочность



ПОИСК



1.125, 126 — Определяемые

Жаропрочность

Жаропрочность металла

Жаропрочные КЭП

Жаропрочные металлы и их свойства

Жаропрочные свойства

Металлов Свойства



© 2025 Mash-xxl.info Реклама на сайте