Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примеры получения уравнений Лагранжа

Примеры получения уравнений Лагранжа. Из предыдущего видно, что если система такова, что д,ля нее можно составить лагранжиан, т. е. если система является голономной и обладает обычным или обобщенным потенциалом, то имеется весьма удобный способ получения уравнений ее движения. Составляя эти уравнения, мы преследовали цель исключить реакции связей, но при этом получили и другие полезные результаты. Для того чтобы получить уравнения движения в виде (1.18), нужно было иметь дело со многими векторами сил и ускорений. Применяя же метод Лагранжа, мы оперируем лишь с двумя скалярными функциями Т и V, что сильно упрощает поставленную задачу. Теперь мы можем указать метод составления уравнений движения, общий для всех задач механики, к которым приложим метод Лагранжа. Согласно этому методу нужно лишь написать функции Г и У в обобщенных координатах, образовать из них лагранжиан L и, подставив его в (1.53), получить уравнения движения. При этом переход от декартовых, координат к обобщенным получается для функций Г и У с помощью уравнений преобразования (1.36) и (1.43). Так,  [c.34]


ПРИМЕРЫ ПОЛУЧЕНИЯ УРАВНЕНИЙ ЛАГРАНЖА 35  [c.35]

Полученные уравнения эквивалентны уравнениям (8.12.17) — (8.12.19), найденным ранее с помощью метода Лагранжа. Одно из приложений этих уравнений мы уже рассмотрели. В качестве второго примера определим условие устойчивости (по первому приближению) диска или обода, катящегося по прямой. При качении окружности по оси Оу с постоянной скоростью aQ  [c.232]

В примере 17.30 (17.31) при использовании первого варианта обобщенных координат находятся дифференциальные уравнения колебаний прямым (обратным) способом и дается сопоставление их с уравнениями, полученными на основе уравнений Лагранжа второго рода. Здесь же показывается инвариантность частотного уравнения по отношению к способу вывода уравнений.  [c.150]

Приведем таблицу 17.10 с уравнениями колебаний в матричной форме при получении их различными способами и покажем в этой таблице индексацию матриц, используемую в приводимых ниже примерах. Уравнения Лагранжа второго рода, учитывая, что сопротивление колебаниям принимается равным нулю, прИ обретают вид  [c.151]

В рассмотренных примерах моментные уравнения, которые имеют интегральную форму, удовлетворялись путем приравнивания к нулю подынтегральных выражений перед множителем типа ехр не равным нулю. Это соответствует достаточному условию существования решения. Если же число моментных соотношений ограничено, то для получения замкнутой системы уравнений относительно множителей Лагранжа необходимо интегральное выполнение каждого дополнительного условия. По-видимому, такой способ обеспечивает необходимые условия существования решения. Однако строгого доказательства необходимости и достаточности моментных уравнений для получения решения вариационной задачи здесь не найдено.  [c.56]

Полученные уравнения включают в себя 5 обычных уравнений Лагранжа второго ряда, содержащих силы трения, а также / соотношений для определения нормальных реакций. Законы трения замыкают систему уравнений. Покажем методику составления уравнений на примерах.  [c.40]

Выводятся три формы уравнений Лагранжа для относительного движения механических систем. Для некоторых частных случаев относительных движений полученные уравнения имеют компактный вид, удобны для составления дифференциальных уравнений движения и могут использоваться на занятиях со студентами по теоретической механике. Получены три формы уравнений Нильсена для относительного движения. Рассмотрены примеры, иллюстрирующие эффективность использования полученных уравнений.  [c.108]


Первые четыре главы книги посвящены общим уравнениям движения тел, представляющих изолированную систему, известным интегралам, основным формулам эллиптического движения и разложению различных функций в гипергеометрические ряды и по функциям Бесселя. В гл. 5 достаточно подробно излагаются уравнения Лагранжа для оскулирующих элементов, чтобы читатель мог ознакомиться с основными процессами перехода от эллиптической орбиты к возмущениям планет. В гл. 6 рассматриваются различные классы неравенств —вековые, короткопериодические и долгопериодические. Гл. 7 посвящена разложению в ряд возмущающей функции, сначала в теории Луны, а затем в теории движения планет. В гл. 8 —о канонических уравнениях — шаг за шагом излагаются различные теоретические положения и приводятся простые примеры. В гл. 9 подробно рассматривается решение уравнений эллиптического движения при помощи метода Гамильтона — Якоби. В следующих двух главах излагаются элементы теории контактных преобразований. Гл. 12 посвящена теории Луны Делонэ в ней подробно описывается основная операция и дается практический метод получения решения п желаемой форме. В следующих двух главах рассматриваются вековые  [c.7]

Пример 20.6. Применение уравнения Лагранжа для получения уравнений движения материальной точки в разных системах координат.  [c.184]

Запись системы дифференциальных уравнений движения и исключение множителей Лагранжа Л,-. Используя полученные выше коэффициенты а, и , и имея в виду полное число координат Я + /г = 5 + 2 = 7, записываем левую часть дифференциальных уравнений в форме (2.16), как в предыдущем примере. В правой части этих уравнений в соответствии с (2.20) помимо обобщенных сил Q,- стоит, сумма А h ,- +. .. Ч Л /г у.  [c.67]

Отсюда видно, что использование полного функционала Эпз(е, it) можно рассматривать как инструмент для получения общего решения уравнений равновесия, более универсальный, чем статико-геомет-рическая аналогия. Преобразование функционала Лагранжа Элз (е, ц) в Э з(е, ц, t )) привело к преобразованию условий стационарности Элэ (уравнений равновесия в деформациях) к форме, являющейся их общим решением. Этот пример показывает, какое богатство возможностей заключено в вариационных формулировках и их преобразованиях.  [c.121]

Данное пособие состоит из двух глав и приложения. В первой главе изложены методики, приведены примеры и программы получения с помощью системы аналитических вычислений REDU E, а также численных методов основных уравнений аналитической динамики (уравнений Лагранжа, Гамильтона, Рауса и др.). Рассмотрена задача вывода уравнений Эйлера - Лагранжа с использованием общих теорем динамики, а также уравнений относительного движения в обобщенных координатах.  [c.3]

Укажем еще на один класс задач, которые решаются аналитически. Это задачи акустической оптимизации машинных конструкций, являющихся соединением однородных структур. В качестве примера можно привести крутильные колебания системы валов и колес, изображенной на рис. 7.38. Пусть, например, моменты инерции колес постоянны, а площади поиеречных сечений валов Si могут изменяться. Требуется найти такие 6, , которые давали бы минимальную массу при заданной собственной частоте. Схема решения этой задачи методом Лагранжа такая же, как и выше. Однако вместо уравнений типа (7.65), (7.66), (7.73) здесь получается система трансцендентных уравнений относительно неизвестных параметров решение которой значительно проще решения системы дифференциальных уравнений. По этой причине с вычислительной точки зрения часто бывает удобнее представить непрерывную конструкцию ступенчатой, т. е. соединением однородных структур. Получающиеся при этом решения обычно быстро стремятся к точному (непрерывному) при увеличении числа ступенек. На рис. 7.39 графически изображена ошибка полученного таким образом решения в % к точному решению (7.70) в зависимости от числа разбиений  [c.265]


Остановимся кратко на содержании главы. В разд. 2,2 на основе принципа виртуальных перемещений Лагранжа выведены основные соотношения подкрепленной ребрами криволинейной панели. В разд. 22.3 выделено элементарное решение Сопротивления материалов. Преобразование исходных уравнений для плоской панели к системе разрешающих уравнений содержится в разд. 2.4. Далее в разд. 2.5 изучено напряженно-деформированное состояние симметрично подкрепленной панели. Рассмотрена панель как конечной, так и бесконечной длины. Решение представлено в виде быстросходящихся рядов, даны результаты численных расчетов и программы расчета. В разд. 2.6 изучается эффект подкрепления панели на торце дополнительным ребром, работающим только иа изгиб. В разд. 2.7, как и в разд. 2.5, рассмотрена симметрично подкрепленная панель, но при кососимметрнчиом загруженин ребер парой сил. Решение отличается от полученного в разд. 2.5, так как требуется учитывать изгиб панели в ее плоскости. Решение доведено до числа. В разд. 2.8 рассмотрены панели с двумя ребрами разной жесткости для случа.я, когда поперечное перемещение панелн равно нулю или отлично от нуля. В разд. 2.9 на примере бесконечной пластины с полубесконечным ребром дается оценка погрешности решения путем введения гипотезы отсутствия поперечной деформации пластины. Эта оценка выполнена, путем срав неиня решения на основе упомянутой гипотезы с точным решением, полученным иа основе уравнений плоской теории упругости. Результаты этого раздела опубликованы Э. И. Грнголюком и В. М. Толкачевым [5]. В этой работе дана также общая постановка задач включения на основе гипотезы отсутствия поперечной деформации, рассмотрены задачи для пластины и ребра конечных размеров, для полубесконечной пластины с полубесконечным ребром, а также задача для защемленной по боковым сторонам полубесконечной полосы, нагруженной на торце постоянной распределенной нормальной нагрузкой.  [c.68]

Как и в случае конечномерных динамических систем, в области задач об оптимальном управлении системами с распределенными параметрами сохраняют полную работоспособность усовершенствованные методы классического вариационного исчисления. При этом и здесь основное внимание было уделено составлению необходимых условий минимума для экстремальных задач со связями, трактуемыми как проблема Майера — Больца. Главным образом это было сделано для задач, связанных с уравнениями эллиптического типа. Было показано, что в таких типичных задачах, возникающих из проблем оптимального управления, необходимые условия стационарности (уравнение Эйлера и естественные граничные условия, а также условия Вейерштрасса Эрдманна) составляются при помощи обычных приемов. Критерии опираются снова на множители Лагранжа которые здесь зависят уже обычно от пространственных координат, а соответствующие дифференциальные уравнения снова конструируются исходя из подходящих форм функции Гамильтона. Условия стационарности дополняются необходимым условием Вейерштрасса сильного относительного минимума. Разумеется, это условие, которое записывается через условие экстремальности функции Гамильтона на оптимальных решениях, имеет смысл, аналогичный соответствующему условию принципа максимума. Важно, однако, заметить, что при работе с модификациями классических методов вариационного исчисления в случае уравнений с частными производными проявляются некоторые новые черты. В результате получаются условия оптимальности, более сильные, нежели известные в настоящее время обобщения принципа максимума на системы, описываемые уравнениями в частных производных. Упомянутые черты проявляются, в частности, в связи с тем обстоятельством, что приращение минимизируемого функционала при изменении объемного управления (за счет варьирования от оптимального управления) в пределах области достаточно малой меры зависит не только от вариации управления и меры области, но также существенно определяется и предельной формой области варьирования. Таким образом, получается, что при изменении формы области, определяющей вариацию, могут, получаться более или менее широкие необходимые условия экстремальности. Как отмечено выше, эффект анизотропии варьирования пока был получен только классическими методами. Причины этого, по-видимому, различны некоторые работы, посвященные принципу максимума, относятся к таким задачам, где этот эффект вообще не проявляется, в других случаях эффект анизотропии исключался вследствие ограничения при исследованиях лишь вариациями специального вида. Полезно также заметить, что описываемый эффект анизотропии расширяет возможность управления и оптимизации в обширном классе случаев независимо от типа исходных уравнений. Эффективность классических методов вариационного исчисления была проверена на конкретных типах задач. В частности, таким путем была исследована задача об оптимальном распределении проводимости электропроводной жидкости (газа) в канале магнитодинамического генератора электрической энергии. Эта задача как раз доставляет пример вариационной проблемы, где эффект анизотропии варьирования играет существенную роль. Развитию классических методов исследования посвящены работы К. А. Лурье.  [c.239]


Смотреть страницы где упоминается термин Примеры получения уравнений Лагранжа : [c.85]    [c.207]   
Смотреть главы в:

Классическая механика  -> Примеры получения уравнений Лагранжа



ПОИСК



Примеры 342—344 — Уравнения

Уравнения Лагранжа



© 2025 Mash-xxl.info Реклама на сайте