Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучение и прием акустических волн

Согласно ГОСТ 23829—79 акустические методы делят на две большие группы использующие излучение и прием акустических волн (активные методы) и основанные только на приеме волн (пассивные методы). В каждой из групп можно выделить методы, основанные на возникновении в объекте контроля бегущих и стоячих волн или колебаний (рис. 20).  [c.201]

ИЗЛУЧЕНИЕ И ПРИЕМ АКУСТИЧЕСКИХ ВОЛН  [c.55]


Излучение и прием акустических волн осуществляют с помощью электроакустических преобразователей, которые трансформируют электрическую энергию в механическую и обратно. Способы излучения и приема делят на две группы контактные и бесконтактные. При контактных способах трансформация энергии совершается в активном элементе, отделенном от объекта контроля. Передачу энергии от активного элемента к объекту контроля и обратно осуществляют с помощью контактной среды. Чаще всего ею служит жидкость.  [c.55]

Достижение максимальной чувствительности пьезопреобразователя. Цель решения задачи об излучении и приеме акустических волн — определить условия достижения максимальных значений амплитуд излученного и принятого сигналов, а главное — максимума двойного преобразования, поскольку при всех методах активного контроля применяют излучение и прием акустических волн. Кроме того, ставят задачу достижения максимальной широкополосности, что важно для сокращения длительности импульсов и возможности изменения частоты колебаний (см. подразд. 3.4).  [c.66]

ВЫВОД формул для излучения и приема акустических волн, а также определение эквивалентного электрического импеданса преобразователя. Представить преобразователь в виде пассивного электрического элемента важно для оптимизации согласования его с генератором и усилителем импульсного прибора, а также для определения экстремальных режимов работы приборов резонансного типа, поскольку именно при этих режимах измеряют резонансные частоты.  [c.63]

Измерялось рассеяние рэлеевских волн моделями по различным направлениям. Опыты проводились в импульсном режиме на частоте 2,74 МГц при длительности импульса 10 мкс. Излучение и прием рэлеевских волн осуществлялись методом клина. Излучающий клин располагался на расстоянии 225 мм от модели дефекта и посылал на нее направленный пучок рэлеевских волн. Приемный клин последовательно помещался в точки окружности радиуса 50 мм, описанной вокруг модели, причем каждое измерение амплитуды рассеянной волны тотчас же относилось к соответствующему измерению амплитуды падающей волны в некоторой точке между излучателем и моделью дефекта (удаленной от излучателя по оси на 103 мм и в сторону от оси на 25 мм). Амплитуда колебаний поверхности в этой точке однозначно связана с амплитудой колебаний поверхности непосредственно у модели (последнюю амплитуду нам необходимо было знать). Эта связь определялась экспериментально путем измерений амплитуды падающей рэлеевской волны в предполагаемом месте расположения модели и в указанной точке (для этих измерений, естественно, брался лист без моде лей дефектов). Таким образом, путем простого пересчета определялась амплитуда падающей рэлеевской волны непосредственно у модели. Приемный клин имел акустический контакт с поверхностью дюралевого листа только по кругу диаметром 3 мм, что позволяло измерять амплитуду колебаний поверхности листа в малой области (локально). Акустический контакт осуществлялся пленкой масла. Для исключения влияния изменений акустического контакта на результаты измерений каждая пара измерений (в точках окружности и между излучателем и моделью дефекта) повторялась 20 раз с последующим усреднением.  [c.161]


Хотя первые ультразвуковые исследования были выполнены ещё в прошлом веке, основы широкого практического применения ультразвука были заложены позже, в 1-й трети 20 в. Как область науки и техники ультразвук получил особенно бурное развитие в последние два-три десятилетия. Это связано с общим прогрессом акустики как науки и, в частности, со становлением и развитием таких её разделов, как нелинейная акустика и квантовая акустика, а также с развитием физики твёрдого тела, электроники и в особенности с рождением квантовой электроники. Широкое распространение ультразвуковых методов обусловлено появлением новых надёжных средств излучения и приёма акустических волн, с одной стороны, обеспечивших возможность существенного повышения излучаемой ультразвуковой мощности и увеличения чувствительности при приёме слабых сигналов, а с другой — позволивших продвинуть верхнюю границу диапазона излучаемых и принимаемых волн в область гиперзвуковых частот.  [c.5]

Основные методы акустического неразрушающего контроля. -Методы акустического контроля (АК) делят на две большие группы активные, использующие излучение и прием акустических колебаний и волн, и пассивные, основанные только на приеме колебаний и волн. В каждой группе выделяют методы, основанные на возникновении в объекте контроля бегущих и стоячих волн (или колебаний), объекта в целом или его части. На рис. В.1 приведена классификация большинства рассматриваемых в литературе методов АК. В дальнейших разделах книги более подробно рассмотрены эти методы, а также другие методы, не вошедшие в схему рис. В.1.  [c.8]

Лазерный способ излучения и приема акустических волн отличается большой широкополосностью (от 0,05 до 100 МГц). При разработке практических установок лазерный способ возбуждения сочетают с неоптическими способами бесконтактного приема, например ЭМА, отличающимися более высокой чувствительностью.  [c.73]

Большие надежды возлагают на разработку бесконтактных способов излучения и приема акустических волн. Здесь особенно перспективен лазерный способ, дающий большую амплитуду при излучении. К сожалению, его положительные качества теряются при лазерном приеме. Совмещение лазерного излучателя с ЭМА-приемником очень усложняет аппаратуру. Изыскание эффективных оптических способов приема — очень важная задача.  [c.268]

Лазерный способ излучения и приема акустических колебаний отличается большой широкополосностью — от 0,05 до 100 МГц. Этот способ возбуждения ультразвуковых колебаний весьма перспективен благодаря большой амплитуде получаемых с его помощью акустических волн. При разработке практических установок целесообразно сочетать этот способ возбуждения с неоптическими бесконтактными способами приема, например электромагнитным, отличающимся более высокой чувствительностью.  [c.69]

В предыдущих двух главах рассматривались волны и колебания конструкций, состоящих из распределенных масс и податливостей (жесткостей), без учета демпфирования — важного параметра, характеризующего затухание волн и колебаний. Этот параметр обусловлен внутренним и внешним трением, излучением и другими причинами, вызывающими убывание акустической энергии в рассматриваемой конструкции. Во многих случаях эффекты потерь пренебрежимо малы, по в некоторых случаях пренебрежение ими ведет к большим ошибкам в расчетах. Так, амплитуда вынужденных колебаний на резонансной частоте существенно зависит от потерь (см. рис. 3.14). Так же сильно зависят от потерь и отклики произвольной колебательной системы на кратковременные нагрузки. Вследствие демпфирования часть энергии колеблющейся конструкции превращается в тепло и предоставленные самим себе колебания затухают со временем. Аналогичная картина наблюдается и при распространении волны в среде. Из-за внутренних потерь часть энергии волны идет на нагревание среды и амплитуда волнового движения уменьшается с расстоянием по мере распространения волны.  [c.207]

Направленность излучения (или приема) акустических волн электроакустическим аппаратом оценивают при помощи характеристики направленности и коэффициента концентрации его акустической антенны (см. параграф 4.3).  [c.110]


В отличие от задач рассеяния при распространении в пределах прямой видимости наблюдаемая волна всегда является суперпозицией падающей и рассеянной волн, поэтому необходимо рассматривать когерентное (среднее) поле и некогерентное (флуктуационное) поле. Примерами распространения в пределах прямой видимости являются распространение микроволнового и оптического излучения в атмосферной турбулентности и распространение акустических волн в биологической среде.  [c.98]

Необходимой частью любой подводной поисковой системы является электроакустическая станция с трактами излучения и приема звуковых волн. Физическую основу генерации звуковых волн составляет преобразование энергии. Это одна из важнейших проблем акустики. Такое преобразование происходит при излучении, приеме и измерении акустических сигналов в воздухе, морской воде и твердых телах. Оно также широко используется во многих других областях науки и техники.  [c.10]

Сканирование АБ вдоль шва осуществляется вручную оператором. При перемещении АБ на каждом миллиметре пути автоматически фиксируются 16 амплитуд сигналов, которые обрабатываются микропроцессором дефектоскопа по специальному алгоритму и заносятся в память. ДП отсчитывает проконтролированное количество миллиметров, а также измеряет длину дефекта. В разъеме соединительного кабеля встроены светодиоды (зеленый и красный), которые регистрируют нарушение акустического контакта с изделием и наличие дефекта. Слежение за уровнем акустического контакта в АБ проводится автоматически путем поочередного излучения и приема ультразвуковых волн в металл ПЭП внутри одной подвески и другой, и замера уровня сигнала.  [c.140]

Основные физические закономерности, свойственные звуку, полностью применимы и для ультразвуковых волн. Наряду с этим малая длина ультразвуковых волн обусловливает и некоторые особые явления, несвойственные волнам звукового диапазона. Направленность излучения звука зависит от соотношения между размерами излучателя и длиной волны (см. 62). Чем меньше длина волны по сравнению с размерами излучателя, тем больше направленность излучения звука. С уменьшением длины волны, кроме того уменьшается также и роль дифракции в процессе распространения волн (см. 57). Поэтому ультразвуковые волны, имеющие сравнительно малую длину волны, могут быть получены в виде узких направленных пучков. В воздухе ультразвуковые волны весьма сильно затухают. Вода по своим акустическим свойствам резко отличается от воздуха. Акустическое сопротивление воды почти в 3500 раз больше, чем воздуха. Следовательно, при одинаковом звуковом давлении скорость колебания частиц воздуха в 3500 раз больше, чем частиц воды. Кинематическая вязкость воды значительно меньше, чем воздуха. Поэтому ультразвуковые волны в воде поглощаются примерно в 1000 раз слабее, чем в воздухе. Этим и объясняется то, что направленные пучки ультразвуковых волн находят широкое применение в гидроакустике для целей сигнализации и гидролокации под водой. Отметим, что использовать для этой же цели электромагнитные волны невозможно, так как их поглощение в воде очень велико. Таким образом, ультразвуковые волны являются, по-существу, единственным видом волнового процесса, который может распространяться с относительно малым поглощением в водной среде.  [c.243]

Для повышения объема информации при определении физико-механических свойств измеряют скорости ультразвуковых волн различных типов. Это достигается применением ЭМА-метода, обеспечивающего одновременно повышение точности измерения за счет устранения слоев контактной жидкости. Используя ЭМА-преобразователи, можно добиться излучения и приема одновременно трех волн — продольной и двух поперечных. Изменяя скорость и коэффициент затухания каждой волны, определяют анизотропию, упругие постоянные, главные направления кристаллографических осей. Измерив таким образом акустическую анизотропию, можно оценить некоторые технологические параметры металлических листов, например их штампуемость.  [c.286]

При углах ориентации источника 1о и приемника близких к 45°, амплитуда резко снижается. Это обусловлено тем, что плоскости поляризации отраженной волны и приемника оказываются ориентированными под углом 90°. Отмеченное обстоятельство необходимо учитывать при разработке акустических систем с раздельным излучением и приемом.  [c.33]

Па рис. 7.1 показана типичная схема теневого дефектоскопа с визуальным, изображением поля прошедшего излучения. Источник 1 УЗ-волн обычно достаточно большой, чтобы интерференционными явлениями в ближней зоне можно было пренебречь и считать с достаточной точностью поле излучения плоской однородной волной. С этой же целью его, наоборот, можно сделать малым, чтобы работать в дальней зоне, но в этом случае амплитуда поля суш,ественно снизится. УЗ-волны проходят через объект контроля 2. При наличии в объекте контроля дефекта однородность поля нарушается и позади дефекта образуется звуковая тень. Для повышения контрастности и четкости изображения прошедшие лучи обычно фокусируют ультразвуковой линзой 3. В фокальной плоскости линзы возникает акустический рельеф, т. е. определенное распределение интенсивности или амплитуды в плоскости поперечного сечения звукового пучка, соответствуюш,ее наблюдаемому дефекту. Чтобы сделать звуковой рельеф видимым, применяют различные устройства, называемые акустико-оптическими преоб-разователя.ми 4.  [c.392]

Формулировка проблемы. Первым шагом при решении задачи уменьшения шумов, порождаемых какой-либо отдельной деталью двигателя, является классификация этого шума и определение его доли в общем шуме двигателя. Обычно измерение уровня шумов проводится с полностью покрытым звукоизоляцией двигателем, и далее исследуются независимо друг от друга основные источники шума. Однако разработанные в последнее время приборы позволяют определять вклад различных источников шума с помощью измерения различных параметров на поверхности двигателя без покрытия его звукоизоляцией. Именно такие приборы для измерений интенсивности акустических колебаний здесь широко применялись. Их работа основана на измерении уровней звукового давления с помощью двух микрофонов, установленных около поверхности исследуемого узла. По результатам измерений, получаемых при помощи микрофонов, можно определить интенсивность излучения акустических волн в заданном направлении. Обследовав таким образом всю поверхность узла и просуммировав полученные результаты, можно определить мощность акустического излучения этого узла. Подобные приборы можно использовать как на работающем двигателе, так и на неработающем. В последнем случае к двигателю прикладывается сила, возбуждающая колебания, по возможности близкие тем, что возникают в работающем двигателе. Данный подход удобен для исследования влияния тех или иных внешних условий, например температуры окружающей среды, на работу демпфирующего покрытия, что будет проиллюстрировано на примере крышки клапанов.  [c.374]


СЖИМАЕМОСТЬ [есть способность вещества изменять свой объем обратимым образом под действием всестороннего внешнего давления < адиабатическая определяется при адиабатическом процессе изотермическая — при изотермическом процессе) отношением изменения объема системы к малому изменению давления и к объему, занимаемому системой] СИЛА [есть векторная величина, служащая мерой механического воздействия на тело со стороны других тел Ампера действует на проводник с электрическим током, помещенный в магнитное поле вынуждающая (возмущающая) периодически действует и вызывает вынужденные колебания системы звука — отношение мощности, переносимой акустической волной через площадку, перпендикулярную направлению ее распространения, к площади этой площадки излучения — отношение потока излучения, распространяющегося от источника излучения в некотором телесном угле, к этому углу инерции <Кориолиса действует на материальную точку только тогда, когда неинерциальная система отсчета вращается, а материальная точка движется относительно нее переносная действует на материальную точку и обусловлена переносным ускорением центробежная действует на материальную точку в системе отсчета, вращающейся относительно инерциальной  [c.274]

При действии мощного лазерного излучения на вещество появляются дополнит, механизмы оптич. генерации звука. Они связаны с возможными фазовыми переходами, и в частности с изменением агрегатного состояния вещества. Так, при облучении поверхности конденсированной среды может развиться интенсивное испарение, к-рое вследствие реактивной отдачи приводит к образованию ударной волны, переходящей по мере её распространения в акустическую. Аналогичное явление возникает и при оптич. пробое в газах (см. Оптические разряды) под действием света возникает сильно поглощающая свет плазма, к-рая быстро разогревастся до высоких темп-р, вследствие чего в окружающей среде возникает ударная волна, а затем и акустическая.  [c.341]

Эффективность воздействия внешнего излучения на сверхзвуковые струи при увеличении l/h падает. Это иллюстрируется зависимостями на рис.7.6 для плоской струи (ро = 3,4 атм, / = 18,7 кГц). Этот вывод согласуется с данными работы [7.11], согласно которой воздействие поперечного акустического облучения сверхзвуковой струи становится особенно ощутимым при акустическом облучении кромки сопла. В этой же работе указывается, что при воздействии на сверхзвуковую струю пилообразных звуковых волн ее ударно-волновая структура может разрушиться, что приводит к значительным изменениям в излучении шума. Так, показано, что при этом (М = 2, п = 0,8, fs = 8,5 кГц и /а = 11,8 кГц) в направлении максимального излучения в области частот вблизи максимума спектра излучаемой акустической мощности наблюдается снижение широкополосного шума на величину до 10 дБ.  [c.183]

При излучении и приеме акустических волн на пьезопластину в электрическом поле действуют одновременно электрические и упругие силы (тепловые и другие слабо влияющие эффекты не учитываются), поэтому термодинамическое состояние пластины определяют двумя дифференциальными уравнениями  [c.62]

Погрешность, обусловленная влиянием акустического контакта, исключается при использовании бесконтактных способов излучения и приема акустических волн. Для этой цели применяют электромагнитно-акустические преобразователи, широкополос-ность которых позволяет формировать импульсы полуволновой длительности, что важно для достижения высокой точности. ЭМА-преобразователи легче возбуждают поперечные, а не продольные волны. Это также удобно для измерения скорость распространения поперечных волн меньше, чем продольных, измеряемый интервал времени увеличивается и соответственно уменьшается погрешность Небольшая чувствительность ЭМА-преобразователей не препятствует использованию этого способа в приборах групп А и В, характеризующихся высокой амплитудой  [c.403]

В связи с цзложенным возникает необходимость характеризовать свойства ПЭП как целого узла с точки зрения эффективности излучения и приема акустических волн. Такими характеристиками служат комплексные передаточные функции, определяющие связь электрических и акустических сигналов. Передаточную функцию при излучении /Си определяют как отношение давления (механического напряжения) в излученной волне к электрическому напряжению возбуждающего генератора, а при приеме — /Сп—как отношение электрического напряжения на приемнике к давлению (напряжению) падающей акустической волны. Функции эти зависят от частоты. Вместо давления иногда используют смещение, а вместо электрического напряжения — ток. Для совмещенных ПЭП или пары раздельных ПЭП (излучателя и приемника), которыми ведут контроль методами отражения и прохождения, вводят передаточную функцию двойного преобразования /С=/Си/Сп- Ее определяют как комплексное отношение электрического напряжения эхосигнала на входе усилителя дефектоскопа к электрическому напряжению возбуждения ПЭП в функции от частоты.  [c.60]

Впервые акустические колебания с периодом, меньшим 100 ПС, были зарегистрированы в [77]. Для возбуждения и регистрации акустических волн в аморфных пленках SiOa и АзгТез использовались пикосекундные оптические импульсы (т = 1 пс) с энергией кванта hv = =2 эВ, следовавшие с большой частотой повторения Vn=0,5 МГц. Импульсы возбуждающей последовательности имели энергию нДж, зондирующие — примерно на два порядка меньшую. Эксперимент заключался в измерении прохождения через пленку и отражения зондирующих импульсов в зависимости от их задержки по отношению к возбуждающим. На фоне монотонно уменьшающегося сигнала, вызванного фотовозбуждением носителей и их релаксацией, наблюдались затухающие осцилляции коэффициентов отражения и прохождения Тпр света, связанные с модуляцией зонной структуры пленок возбужденными в них акустическими волнами (рис. 3.35). Например, сужение ширины запрещенной зоны в аморфных полупроводниках при акустической деформации вызывает увеличение поглощения зондирующего излучения и соответственно уменьшение пропускания пленки. Экспе-  [c.163]

Зыражение (3.125) относится к идеальному случаю — случаю преобразователя. работающего без потерь энергии при деформации пьезоэлектрика. В действительности, такие потери всегда имеются и, кроме того, механическая энергия теряется из-за оттока ее в систему подвески стержня и, наконец, па излучение в виде акустических волн в окружающую среду. Поэтому ток не достигает бесконечно больших значений. В эквивалентных схемах это соответствует наличию небольшого сопротивления в плече, изображающем эквивалент длинной линии. Такая исправленная картина дана на рис. 3.18. Появляется, конечно, дополнительно активная составляющая тока. пьезопреобразователя-двигателя с  [c.85]

Эти опыты проводились на частоте 2,65 МГц при длительности импульса 10 мкс (вогнутая цилиндрическая поверхность) и 5 мкс (выпуклая цилиндрическая поверхность). В опытах с в огнутыми цилиндрическими поверхностями излучение и прием волн производились методом клина. Излучающая и приемная призмы были сделаны из полистирола и имели угол наклона 53°. На наклонных гранях призм крепились квадратные пластинки яз тита-ната бария размером 9x9 мм с собственной резонансной частотой 2,5 МГц. Акустические контакты пластинок с призмами и призм с исследуемыми образцами осуществлялись с помощью масла.  [c.145]


В анизотропных средах наблюдаются весьма интересные явления, обусловленные взаимодействием упругих волн с физическими полями другой природы и не проявляющиеся в изотропной среде. Наибольшее практическое значение из них имеет пьезоэффект, используемый для преобразования электромагнитной энергии в акустическую и обратно, на чем основаны излучение и прием звука. Пьезоэффек т заключается в том, что в кристаллах определенных типов симметрии механические напряжения, возникающие при помещении тела в электрическое поле, пропорциональны его напряженности. Такие вещества назьшают пье зоэлектриками. Имеет место и обратный эффект при деформации пьезоэтектрика в нем появляется поле, пропорциональное величине деформаций. Математически это выражается равенствами [170, 17]  [c.153]

При контроле рэлеевскими волнами дефектов поверх постного слоя в изделиях и материалах с малой скоростью звука (пластмассы, резины и I д ) для излучения и приема рэлеевских волн удобно использовать метод гребенчатой структуры, подробно описанный в 2 гл. I. Гребенчатая структура проще всего может быть ррали-зована в виде пластинки гребенчатого профиля с периодическим чередованием пазов и выступов, расстояние между которыми равно шоловине длины рэлеевской волны в испытуемом материале, и излучающеи (приемной) пьезопластинки, контактирующей акустически с пластинкой гребенчатого профиля Пластинка гребенчатого профиля изготавливается обычно из металла На рис. 49, г приведены фотографии двух таких пластинок, сделанных из дюраля.  [c.141]

Предварительные замечания. В 3 рассматривалась только плоская электромагнитная волна. Здесь будет дано описание электромагнитных волн, излучаемых простейшим точечным источником—жсточншаом, размеры которого малы по сравнению с длиной волны. Мы не будем выво дить излагаемую картину из уравнений Максвелла такой вывод потре бовал бы применения математического аппарата, незнакомого еш е тем, для кого предназначена эта книга он дается в курсах электродинамики (теории электромагнитного поля) ). Мы ограничимся тем, что напишем формулы, описывающие волну, и раскроем их физический смысл. Заметим, что мы поступили аналогичным образом при рассмотрении излучения точечного источника акустических волн (гл. VI, 5).  [c.264]

ЭМА-преобразователи в настоящее время получили наибольщее распространение в качестве средства бесконтактного излучения и приема ультразвуковых волн. Это объясняется их относительно больщим коэффициентом преобразования по сравнению с другими способами бесконтактного возбуждения акустических волн (ка частотах, обычно применяемых в ультразвуковой дефектоскопии), их щирокополосностью, возможностью возбуждать волны самого различного типа, слабой зависимостью преобразования от неровностей поверхности (проверку можно вести даже при наличии окалины или краски), применимостью ЭМА-преобразователей для контроля не только холодных, но и горячих изделий. Недостатками следует считать громоздкость преобразователей из-за необходимости сильного подмагничивания и малый коэффициент преобразования по сравнению с ПЭП.  [c.70]

Возбуждение и прием высокочастотных ультразвуковых колебаний (25 МГц и более)—одна из проблем освоения высокочастотного диапазона. Для этой цели применяют очень тонкие пьезопластины, полимерные пленочные пьезопреобразователи, пьезокерамические пластины, работающие на высших гармониках, поверхностнее слои из пьезоматериалов, нанесенных на массивную задержку из кварца, сапфира бесконтактные (в особенности лазерные) способы излучения и приема. Акустический контакт пьезопреобразователи с ОК осуществляют иммерсионным способом, поскольку даже очень тонкие слои контактной жидкости оказываются соизмеримыми с длиной волны.  [c.267]

Статистические методы выделения сигналов на фоне структурных шумов представляют собою второй путь решения проблемы контроля крупнозернистых материалов. При неизменных условиях излучения и приема упругих волн помеха полностью коррелирована в одинаковые моменты времени различных периодов посылок зондирующих импульсов, что исключает возможность межпериодной обработки сигналов. Чтобы можно было воспользоваться способами обработки сигналов, предназначенными для анализа случайных временных процессов, необходимо изыскать методы создания временной зависимости эхо-сигналов в разные периоды излучения— приема. Таким образом, необходимым условием для реализации статистических методов обнаружения сигнала дефекта в присутствии структурных помех является обеспечение таких изменений в акустическом поле преобразователя, при которых помехи оказывались бы некоррелированными, а сигналы от дефекта оставались сильно коррелированными. Способы практического решения этой задачи различаются, прежде всего выбором изменяемого параметра акустического поля [35, 93].  [c.170]

В области высоких частот характеристика направленности приобретает вид кардиоиды с дополнительными боковыми лепестками, образующимися из-за взаимной интерференции между волнами, излучаемыми с большими фазовыми сдвигами разными точками поверхности диффузора. Для снижения интерференционных явлений и повышения эффективности использования энергии, излучаемой оборотной стороной диффузора, особенно в области нижних частот, иногда используют акустическое оформление в виде фазоинвертора — закрытого ящика с дополнительным отверстием на лицевой панели к нему примыкает выходня часть акустического лабиринта, например трубы, как на рис. 3.23. Энергия звуковых колебаний, концентрирующаяся во внутреннем объеме ящика, через акустический лабиринт передается в сторону прямого излучения, и при надлежащей его длине фаза звуковых колебаний изменяется на обратную. Таким образом достигается возможность синфазного сложения прямого и обратного излучений между собой.  [c.99]

Для анализа СО в ОГ применяются в основном методы инфракрасной спектроскопии (ИКС). ИКС базируется на селективном поглощении инфракрасного излучения в области длин волн 4,7 мкм. ИКС-анализаторы обладают высокой селективностью, стабильностью и надежностью показаний. Преимущественное распространение получили бездисперсионные анализаторы, работающие на полихроматическом излучении, в которых применяются оптико-акустические детекторы, заполненные анализируемым газом. Эти приборы отличают простота и надежность конструкции устойчивость к механическим и тепловым нагрузкам, что и определило их преимущественное распространение. При заполнении рабочих полостей другим газом (метаном, сернистым ангидридом, двуокисью углерода, окисью азота) и соответствующей корректировке оптической и измерительной систем ИКС-анализаторы могут быть использованы и для анализа других компонентов отработавщих газов.  [c.20]

Метод акустической эмиссии (АЭ) относится к диагностике и направлен на выяснение состояния объектов путем определения и анализа шумов, сопровождающих процесс образования и роста трещины в контролируемых объектах. Он базируется на регистрации акустических волн, возникающих в металле и сварных соединениях при нагружении в результате образования пластических деформаций, движения дислокаций, появления микро- и макротрещин. В основу метода положено явление излучения (эмиссии) упругих волн твердым телом при локальных динамических перестройках его структуры при его деформировании и локальном разрушении (пластическая деформация, скачкообразное развитие т )ещин). Метод применяется для выявления состояния предразруше-ния тяжело нагруженных конструкций сосудов высокого  [c.254]

Метод акустической эмиссии. Дан1гый метод относят к пассивным методам акустичеасого контроля. Само явление акустической эмиссии состоит в излучении материалом объекта упругих акустических волн в результате внутренней динамической перестройки локальной структуры объекта. Метод состоит в регистрации и анализе характеристик этих ВОЛН. Акустические (обычно ультразвуковые) волны возникают в процессе образования и развития трещин в объекте, а также при перестройке кристаллической структуры мате-  [c.175]


Смотреть страницы где упоминается термин Излучение и прием акустических волн : [c.112]    [c.374]    [c.140]    [c.172]    [c.555]    [c.40]   
Смотреть главы в:

Методы акустического контроля металлов  -> Излучение и прием акустических волн

Акустические методы контроля Книга 2  -> Излучение и прием акустических волн



ПОИСК



Бесконтактные способы излучения и приема акустических волн

Волна акустическая

Волнь акустические

Излучение акустическое



© 2025 Mash-xxl.info Реклама на сайте