Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбулентность атмосферная

В разд. 2.7 проводится аналитическое сравнение адаптивных к турбулентностям атмосферы приемников с неадаптивными. В результате анализа показано, что при упрощенной модели турбулентного атмосферного канала надежность работы системы связи снижается, но эти потери невелики при соответствующем управлении отношением сигнал/шум, т. е. при адаптации порога приемной системы к флуктуациям интенсивности сигнала.  [c.18]


На турбулентных атмосферных неоднородностях, обусловленных пульсациями скоростей и температуры, происходит рассеяние звука. Впервые задачу о рассеянии звука полем пульсаций скоростей рассмотрел в 1941 г. А. М. Обухов [9]. В его работе предполагалось, что распространение плоской звуковой гармонической волны описывается уравнением для потенциала ф в виде (в отличие от (2.1))  [c.182]

Возникает вопрос относительно возможности использования при исследованиях колебаний мостов (которые в натурных условиях подвергаются воздействиям турбулентных атмосферных течений) экспериментальных значений Н и А, получаемых в лабораторных условиях при ламинарном течении. Исчерпывающий ответ на этот вопрос пока не получен, однако сравнительно недавно в работе [8.31] были опубликованы некоторые результаты исследований, в которых значения Н и А установлены в условиях турбулентных потоков с 11%-ной интенсивностью турбулентности и при продольном и поперечном интегральных масштабах, соответственно равных примерно ширине моста и половине этого размера. Результаты, полученные в работе [8.31], показаны на рис. 8.21—8.25.  [c.235]

Большинство экспериментов относится к атмосферной и океанической турбулентности. Числа Рейнольдса в этих измерениях доходили до 3-10 ,  [c.206]

Подавляющее число движений, встречающихся в технике, являются турбулентными, а не ламинарными. Турбулентные течения происходят в трубах, потоках атмосферного воздуха, помещениях, в таких устройствах, как форсунки, газовые горелки, струйные аппараты, при обтекании тел н пр.  [c.147]

Если известна величина (/lД )иp, то всегда можно сказать, будет ли в данных условиях возникать турбулентный характер течения в пленке. Например, при конденсации водяного пара при атмосферном давлении на поверхности вертикальной трубы высотой Л = 2 м при температурном напоре Д =10°С величина (йд7)кр = 20 м-°С это меньше, чем (ЛД )кр=44,6 м-°С. Следовательно, турбулентное течение в пленке возникать не должно. Однако при Д =30°С на нижнем участке той же трубы должен возникать турбулентный режим течения, так как теперь hAt=60 м-°С, что больше критического значения (ЛД/)н .  [c.138]

Наиболее простые ситуации моделирования роста трещины без учета эффекта взаимодействия нагрузок, рассмотренные выше, являются частными случаями эксплуатационного нагружения некоторых элементов конструкции, для которых переходы от одних уровней нагружения к другим определяются, как правило, условиями функционирования. В то же время конструктивные элементы планера ВС подвергаются случайному эксплуатационному нагружению, сопровождающемуся резким изменением нагрузок, например, на посадке и при воздействии атмосферной турбулентности (известно, что в полете возможно появление порывов воздуха, способных создавать перегрузки в 2 раза и более).  [c.425]


Концентрация загрязнения меняется в значительной степени под воздействием ветра и атмосферных осадков. При этом движение составных частей атмосферы носит обычно турбулентный характер. Под влиянием вихревых  [c.7]

Одно из первых экспериментальных исследований теплообмена в газообразной четырехокиси азота выполнено В. Шоттом [3.17]. Теплообмен изучался при течении в обогреваемой трубе с Z)bh=H,2 мм и атмосферном давлении в узких интервалах температур (7 с = 295— 373 °К, 7 о = 375—393°К) и числах Re= (1,1—20) 10 . Было получено четыре опытные точки при турбулентном течении и пять при ламинарном.  [c.56]

В начале процесс горения смеси горючий газ - кислород протекает со сравнительно небольшой скоростью. Горение горючих газов под атмосферным давлением в окислительной среде (воздухе или кислороде) в ламинарном или турбулентном режиме сопровождается как непрерывным расширением и перемещением его продуктов со скоростью до  [c.368]

Определение совокупности переменных нагрузок, действующих на конструкцию, проводится применительно к нагрузкам функционирования, обусловленных массой самолета, топлива, полезного груза, скоростью и высотой полета, и к дополнительным нагрузкам, вызываемых маневрированием, атмосферной турбулентностью, неровностями поверхности аэродромов и др. При проектировании переменные нагрузки определяются расчетом с использованием статистических данных. На этапе эксплуатации проводят прямые измерения переменных нагрузок.  [c.409]

Хэй Дж. С., Пасквилл Ф. Диффузия от непрерывного источника в зависимости от спектра и масштаба турбулентности // Атмосферная диффузия и загрязнение воздуха. М. ИЛ, 1962.  [c.417]

Авторы выражают глубокую благодарность профессору В.П. Кандидову, доценту С.АШленову и доценту С. С. Чеснокову за любезно предоставленные результаты численного моделирования формирования изображения гаавного здания МГУ с учетом турбулентных атмосферных искажений, доценту М. В. Семенову за внимательное прочтение рукописи и ценные замечания, а также КБ.Бегун, М.П.Виноградову и А.А.Якуте за подготовку рукописи к изданию.  [c.3]

Метод фейнмановсках диаграмм, пригодный для анализа взаимодействий между волнами случайных волновых полей, обобщается с целью учета некоп-сервативных взаимодействий между волновыми полями и внешними полями. Интерпретация с помощью частиц здесь не приложима, тем не менее выражения переноса можно компактно представить диаграммами переноса , которые соответствуют диаграммам столкновения в картине частиц. Метод применяется к случаю взаимодействия гравитационных волн с турбулентным атмосферным пограничным слоем. Полный набор диаграмм переноса низшего порядка включает в себя механизмы Филлипса и Майлса образования волн и одну добавочную группу взаимодействий турбулентности с волнами, которая ранее не рассматривалась.  [c.106]

Шульц-Грунов свидетельствует о противоположном осевом перемещении периферийно расположенных масс газа и масс газа, находящихся в приосевой области камер энергоразделения. В этом случае на фанице раздела потоков, движущихся противоположно, возникает свободная турбулентность. Пристенная турбулентность во вращающихся потоках газа проявляется значительно интенсивнее, чем при прямолинейном течении, но в процессе энергоразделения ей отводится меньщая роль. Шульц-Грунов, ссылаясь на Ричардсона [249], считает, что частицы газа, расположенные на более высоких радиальных позициях, в процессе турбулентного движения могут перемещаться к оси, а приосевые перескакивать на более высокие радиальные позиции. Частицы, перемещающиеся к центру, должны произвести работу против центробежных сил, так как они плотней приосевых. Частицы, перемещающиеся к периферии, должны произвести работу против сил, вызванных фадиентом давления. Эта механическая работа осуществляется в центробежном поле за счет кинетической энергии турбулентности, которая в свою очередь входит в общую кинетическую энергию направленного течения, т. е. элементы газа, перемещающиеся за счет радиальной составляющей пульса-ционного движения с одной радиальной позиции на другую, могут рассматриваться как рабочее тело холодильной машины, обеспечивающей под действием турбулентности перекачку энергии от приосевых слоев к периферийным. Физический процесс энергоразделения имеет аналог среди атмосферных явлений. Шмидт [256] показал, что в атмосфере тепло переносится от бо-  [c.161]


Рассмотрим турбулентное течение воздуха с частицами углерода диаметром 5 и 50 мк при колшатной температуре и атмосферном давлении. Исходные физические параметры имеют следующие значения V = 0,157 см сек, р = 1,18-10 г см , Рр = 2,25 г см , что дает для частиц меньшего и большего размеров соответственно а = 7,52-10 и а = 7,52-10 сек- р = 0,00079. Лауфер 14701 показал, что при полностью развитом турбулентном течении воздуха в трубе диаметром 254 мм и Не == 5-10 турбулентность на оси трубы практически изотропна и ее интенсивность равна 85,5 см сек, что соответствует примерно 2,8% скорости на оси, или 80% скорости трения. На фиг. 2.7,а представлены данные работы [4701 по энергетическому спектру турбулентности. Включение этих данных в используемую здесь лагранжеву систему осуществлено по методу Майкельсона [24, 537]. На фиг. 2.1,а приведены две кривые, характеризующие изменение в зависи-  [c.55]

Представляет интерес движение по трубе смеси газ — твердые частицы. Если труба — проводник или диэлектрик с равномерно распределенным зарядом, то, согласно закону Гаусса, электрического поля внутри трубы не будет. Если частицы равномерно заряжены и осесимметрично распределены по трубе, то частица, возможно, осядет на стенку, если поток нетурбулентен. Согласно уравнению (10.157), мелкие стеклянные шарики в атмосферном воздухе при концентрации 1 кг частицЫг воздуха на расстоянии 1 см от оси будут иметь в 10 раз большее ускорение, чем под действием силы тяжести даже при отношении заряда к массе, равном 0,002 к1кг. Радиальная составляющая интенсивности турбулентного движения частиц в соответствии с приближением oy [721] составляет 10 м сек для частиц диаметром 100 мк. Этот эффект может полностью компенсировать действие силы тяжести на смесь газ — твердые частицы в горизонтальной трубе и стать одной из возможных причин большой разницы между поперечной и продольной интенсивностями турбулентного движения частиц (разд. 2.8). Распределение плотности, данное oy [726], можно приписать дрейфовой скорости, обусловленной главным образом электрическим зарядом частиц.  [c.485]

Быстрые турбулентные перемещения масс воздуха различной плотности в атмосфере порождают непрерывные колебания величины атмосферной реффакции, вследствие чего изображения звезд в телескопах дрожат и изменяют яркость. Такого рода явления называются мерцаниями. Неоднородные изменения температуры атмосферы по высоте, имеющие место над поверхностью разогретой земли или над морем, вызывают мираж.  [c.113]

Прямое влияние на уровень загрязнения атмосферы в городе оказывают направленность переноса воздушных масс, характер стратификации атмосферы, в том числе инверсия (повышение температуры с высотой), которая характеризует устойчивое состояние атмосферы в отличие от неустойчивого, когда температура с высотой понижается более чем на 1 град/100 м. Инверсия затрудняет вертикальный турбулентный обмен. Если слой ирииоднятой над земной поверхностью инверсии располагается выше точки выброса, то он ограничивает подъем дымовых газов и способствует накоплению загрязнений у земли. Если слой инверсии расположен ниже точки выброса, то он препятствует пх поступлению к земной поверхности (рис. 11.3). Высота слоя, в котором при этом возможно вертикальное иеремеши-вание атмосферных загрязнений, влияет на уровень концентрации примесей и определяется устойчивостью (например, наличием инверсий) или неустойчивостью атмосферы.  [c.239]

Распространение загрязнений в воздухе происходит в результате атмосферной диффузии, теоретические основы которой интенсивно развиваются в последние годы в связи с глобальной проблемой охраны окружающей среды [1, 6]. Имеется несколько групп факторов, определяющих пространственное поле концентраций загрязнений атмосферы [7]. К ним относятся такие характеристики источников загрязнений, как расположение их по поверхности земли, мощность и режим инжектирования примесей в атмосферу, физико-химических параметры загрязнений при выходе их из источников (например, скорость и температура выбрасываемых газов). Загрязнения переносятся воздушными течениями и путем диффузии, обусловленной турбулентными пульсациями воздуха. Для описания переноса загрязнений ветром необходимо иметь сведения о вертикальном профиле ветра при различных метеорологических условиях.  [c.18]

Как видим, зависимость Gr от Р является линейной при прочих равных условиях. Для данного случая она изображена на рис. 5-7. Эксиериментальные исследования, выпо.дненные на ЦТА при различных скоростях газа, размерах сопел, сопротивлениях и давлениях в аппарате, показывают, что уже при давлении Р 0,75-Ю Па процесс в аппарате близок к теоретическому (кривая 2 на рис. 5-7). При этом давление воздуха на входе в аппарат было атмосферным, т. е, весь перепад практически использовался ( срабатывался ) в соплах, а турбины в установке не было. С увеличением давления удельный расход воздуха g возрастает в большей степени, чем давление, так как условий тепло-и массообмена в аппарате, в частности турбулентности и скорости газа, видимо, недостаточно для дробления жидкости на мелкие частицы (т. е. для образования соответствующей поверхности контакта и уменьшения тепловых и диффузионных сопротивлений в пограничных слоях, чтобы процесс тепло- и массообмена стал близок к идеальному). Таким образом, отклонение от идеального объясняется недостаточной интенсивностью процесса тепло- и массообмена.  [c.139]

Многочисленными исследованиями достоверности этого соотнощения для атмосферных охладителей установлено, что при турбулентном потоке воздуха Le 1. Поэтому можно считать, что в этом случае требование соотнощения Меркеля выполняется. На действующих охладителях и экспериментальных установках, как правило, не возникает проблем в определении температуры воды на входе в охладитель и выходе из него, температуры и влажности наружного воздуха, производительности. Приближенность соотношения Меркеля связана с правой частью уравнения, где движущая сила представлена разностью энтальпий воздуха, определить которую имеющимися средствами с достаточной точностью не удается. В особенности это утверждение справедливо для брызгального бассейна. Большую сложность представляют определение температуры и влажности в выносимом тепловлажностном факеле и измерение расхода воздуха, участвующего в охлаждении. Даже размеры области, занятой капельным потоком, с учетом воздушных коридоров и сносимой под влиянием ветра части расхода воды в виде капель, определить весьма затруднительно. Критерий испарения К применим для оценки качества охладителя только в тех случаях, когда измерен расход воздуха.  [c.22]


Достоинством И. и. является его малая чувствительность к флуктуациям разности фаз, вызванных меха-нпч. вибрациями, атмосферной турбулентностью, ]1сста-бильностью частоты гетеродина (в радиоинтерферометре)  [c.173]

На г да 20—30 км иногда образуются т. н, перламутровые облака, состоящие, по видимому, из кристалликов льДа иля переохлаждённых капель воды. Нижняя С. на г до 20—25 км отличается повыш. содержанием аэрозольных частиц, особейаЬ сульфатных, заносимых сюда при вулканич. извержениях Они сохраняются здесь дольше, чем в тропосфере, из-за слабости турбулентного обмена в С. и отсутствия вымывания осадками. Аэрозоли, увеличивая атмосферное альбедо, вызывают понижение темп-ры у земной поверхности, особенно сильное после больших извержеяий лканов.  [c.701]

Есть основания полагать, что в условиях турбулентного режима гидродинамический критерий Re и диффузионный критерий Рг не оказывают влияния на протяженность первой части факела, где происходят турбулентное смешение и воспламенение образовавшейся смеси. Безразмерная длина этой части свободного факела L f,lda зависит только от стехиометриче-ского критерия Кои/С,,, т. е. от потребности горящего газа в притоке кислорода и от концентрации кислорода в среде, окружающей факел (для атмосферного воздуха С,,=,0,2С9).  [c.78]

В качестве сублимирующего вещества он использовал Н О. После него зачастую пользовались нафталином, который остается твердым при температуре атмосферного воздуха и обладает в то же время значительной упругостью паров. К примеру, применяя нафталин,. Уиндинг и Чинни (1948) изучали проводимость в газовой фазе при обтекании пучков труб. Согин (1958) исследовал поперечное обтекание-дисков воздухом, а Крейт, Тэйлор и Чонг (1959) исследовали ламинарные и турбулентные пограничные слои на вращающихся дисках. Для иллюстрации метода рас-  [c.159]

Определение размеров труб. Весьма ответственным устройством в системе охраны биосферы от вредных выбросов ТЭС являются газоотводящие устройства — дымовые трубы. Для того чтобы не были превышены концентрации вредностей на уровне дыхания, соответствующие значениям, приведенным в табл. 17.2, требуется уменьшение концентраций вредностей в дымовых газах на четыре порядка (примерно в 10 тыс. раз). Такую степень очистки дымовых газов по оксидам серы, в частности, нельзя обеспечить ни одним известным способом лучшие сероулавливающие установки могут обеспечить снижение концентрации лишь в 10—20 раз. Поэтому природоохранные мероприятия в отношении уменьшения концентраций токсичных веществ включают две обязательные стадии — очистка в возмол<сных пределах дымовых газов в газоочистных устройствах ТЭС и последующее рассеивание остаточных вредностей за счет турбулентной диффузии в больших объемах атмосферного воздуха.  [c.259]

Кроме перечисленных рассматривают вынужденные колебания ЛА в полете. Источники их возбуждения периодические воздействия за счет срыва потока (баф-тинг), атмосферная турбулентность, работа двигателей. Згдача о вынужденных колебаниях прн гармоническом возбуждении от органов управления и ветрового порыва решается с целью определения амплитудно-фазовых частотных характеристик, необходимых при анализе колебаний в замкнутом контуре конструкция — система управления.  [c.478]

Стохастические модели. Математическая формулировка и исследование стохастических моделей основаны на методах теории вероятностей, теории случайных функций и математической статистики. Многие задачи прикладной теории колебаний могут быть удовлетворительно сформулированы и решены лишь с использованием стохастических моделей. К ним относятся прежде всего задачи о колебаниях систем, возбуждаемых случайными нагрузками. Примером служат нагрузки от атмосферной турбулентности, пульсаций в пограничном слое, акустического излучения работающих двигателей, морского волнения, транспортировки по неровной дороге и т. п. Многие технологические процессы также сопровождаются случайным изменением динамических нагрузок (например, нагрузки, действующие на элементы горнодобывающих и горнообрабатывающих машин). Случайные факторы помимо нагрузок могут войти в вибрационные расчеты также через парамегры системы. Так, случайный разброс собственных частот или коэ( х))ициентов демпфирования Может оказать сильное влияние на выводы о виброустойчивости.  [c.268]

Эта переменная нагрузка, действующая с частотой порядка 10 Гц, называется нахруз-кой функционирования, так как она неизбежно сопутствует функционированию самолета и предопределяет его назначение как летательного аппарата. К переменным нагрузкам относятся также дополнительные, в определенном смысле паразитные нахрузки, реально возникающие из-за воздействия атмосферной турбулентности и неровностей аэродромов. Частота этих нахрузок находится в диапазоне от десятых долей до единиц герц. Наконец, промежуточное положение между нагрузками функционирования и дополнительными нагрузками занимают маневренные нагрузки. Некоторые из них являются неизбежными гфи выполнении полета, другая же часть связана с управлением самолетом в процессе воздействия атмосферной турбулентности. На практике для пассажирских самолетов маневренные нагрузки на крыло и нагрузки от воздействия турбулентности рассматриваются совместно.  [c.411]

Как видно из рис. 2, так назьтаемый цикл нагружения крыла земля-воздух-земля представляет собой сумму размаха нагрузки функционирования и добавок, связанных с воздействием атмосферной турбулентности и неровностей аэродромов.  [c.412]

Для упрощения эксперимента лабораторные испытания на усталость обычно проводятся с циклической нагрузкой постоянной амплитуды, в то время как на (практике обычно прикладываемая нагрузка нерегулярна, она изменяется случайным образом. Случайное нагрулсение имеет место во всех видах транспорта— в самолетах из-за атмосферной турбулентности, в дорожных или рельсовых экипажах — из-за неровностей дороги или рельсов, на кораблях — из-за изгибающих моментов, создаваемых волнами, и можно привести много других примеров, когда конструкция нагружается случайным образом.  [c.405]


Смотреть страницы где упоминается термин Турбулентность атмосферная : [c.558]    [c.162]    [c.213]    [c.133]    [c.26]    [c.241]    [c.33]    [c.426]    [c.136]    [c.113]    [c.240]    [c.142]    [c.310]    [c.537]    [c.267]    [c.168]    [c.661]    [c.293]   
Тепломассообмен (1972) -- [ c.87 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте