Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетический момент и кинетическая энергия тела во вращательном движении

Следовательно, кинетическая энергия тела при вращательном движении вокруг неподвижной оси равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости тела.  [c.323]

Кинетическая энергия тела в его вращательном движении вокруг центра тяжести согласно формуле (205) равна J(il 2, где J — момент инерции тела относительно оси, проходящей через центр тяжести тела перпендикулярно плоскости его движения.  [c.227]


Половину произведения момента инерции тела J относительно некоторой неподвижной оси г на квадрат угловой скорости называют кинетической энергией тела во вращательном движении в данный момент времени.  [c.231]

Сферическое движение твердого тела. Скорости точек твердого тела при сферическом движении в каждый момент можно рассматривать как вращательные вокруг мгновенной оси вращения (рис. 155). Поэтому кинетическая энергия тела, совершающего сферическое движение в данный момент, онреде-ляется по формуле  [c.181]

Если тело совершает сложное движение в плоскости, то это движение в каждый момент времени можно представить как поступательное движение тела со скоростью его центра масс щ и вращательное движение вокруг оси, проходящей через центр масс с угловой скоростью со. Тогда кинетическая энергия тела в этом движении будет суммой кинетической энергии поступательного и вращательного движения относительно центра масс  [c.386]

Сравнив эту формулу с выражением кинетической энергии абсолютно твердого тела при поступательном движении (I. 105), видим, что момент инерции при вращательных движениях заменяет массу в выражении кинетической энергии при поступательном движении. Это снова подтверждает высказанное выше представление о моменте инерции, как о физической величине, характеризующей инертность тела при вращательных движениях.  [c.91]

Другой путь решения этой задачи состоит в том, что катящееся тело можно рассматривать как тело, вращающееся в каждый данный момент времени вокруг точки контакта. Точка контакта катящегося тела всегда находится в покое. С этой точки зрения полная кинетическая энергия представляет собой кинетическую энергию вращательного движения вокруг точки контакта, при котором I = 7/5)MR , как это видно из формулы  [c.257]

Кинетический момент и кинетическая энергия тела во вращательном движении. Пусть абсолютно твердое тело вращается с некоторой (вообще говоря, переменной) угловой скоростью (О вокруг неподвижной оси Oz под действием заданных активных внешних сил Fi,F ,...,F (рис. 21.7). Вычислим две величины, характеризующие вращательное движение тела кинетический момент Kt относительно оси Oz и кинетическую энергию Т.  [c.378]


Кинетический момент н кинетическая энергия тела, имеющего неподвижную точку. Согласно теореме Шаля произвольное перемещение твердого тела можно разбить на поступательное и вращательное. Таким образом, эта теорема указывает на возможность разделения задачи о движении твердого тела на две отдельные части, одна из которых касается только поступательного движения, а другая — только вращательного. В том случае, когда одна точка тела неподвижна, такое разделение является очевидным, так как в этом случае имеется только одно вращательное движение вокруг неподвижной точки, а поступательное движение отсутствует. Однако и в более общих случаях движения такое разделение часто оказывается возможным. Шесть координат, описывающих движение тела в соответствии с таким разделением, уже были нами рассмотрены. Это —три декартовы координаты некоторой фиксированной точки твердого тела (они описывают посту-пательное движение) и, например, три угла Эйлера, служащие для описания движения тела вокруг этой точки. Если начало подвижной системы выбрать в центре масс тела, то согласно уравнению (1.26) полный кинетический момент его распадается на две части одну  [c.163]

Потенциальную энергию тоже часто удается разделить на две подобные части, из которых одна содержит только координаты, соответствующие поступательному движению, а другая — только угловые координаты. Так, например, гравитационная потенциальная энергия зависит только от вертикальной декартовой координаты центра тяжести ). Аналогично, если сила вызывается однородным полем В, действующим на диполь с магнитным моментом М, то потенциал пропорционален произведению M B, зависящему только от ориентации тела. Вообще почти все практически встречающиеся задачи допускают такое разложение. В этом случае рассматриваемая задача распадается на две, так как лагранжиан L — T—V разбивается при этом на две части, одна из которых содержит только поступательные координаты, а другая — только угловые. Эти две группы координат будут тогда полностью разделены, и задачи о поступательном и о вращательном движении можно решать независимо друг от друга. Поэтому важно получить выражения для кинетического момента и кинетической энергии тела, имеющего неподвижную точку.  [c.164]

В формулах, выражающих кинетическую энергию твердого тела при поступательном и вращательном движении, имеется некоторая аналогия. Так, в формуле кинетической энергии для вращательного движения линейная скорость заменена угловой скоростью ш, а масса т заменена моментом инерции I. Момент инерции / в динамике вращательного движения твердого тела играет ту же роль, какую играет масса в динамике поступательного движения. Если в поступательном движении масса является мерой инертности тела (для большей массы требуется приложить большую силу, чтобы сообщить телу заданное ускорение), то мерой инертности во вращательном движении служит момент инерции. Момент инерции тела изменяется в зависимости от положения оси вращения данного тела Масса же тела остается величиной постоянной. В этом их основное различие. Момент инерции твердого тела удобно выражать в виде  [c.127]

На кафедре теоретической механики Ленинградского механического института разработан безмашинный программированный контроль знаний студентов по девяти темам курса теоретической механики. Контроль проводился в течение четырех лет по двум темам статики (условия равновесия плоской и пространственной систем сил) и четырем темам кинематики (кинематика точки, вращательное и плоскопараллельное движения твердого тела, относительное движение точки). По трем темам динамики (колебательное движение материальной точки, теоремы об изменении кинетического момента и кинетической энергии системы материальных точек) программированный контроль внедрен в учебный процесс в качестве допуска к повторному написанию студентом контрольной работы по соответствующей теме динамики. Таким образом, программированный контроль по статике и кинематике охватывает всех студентов, по динамике — тех, кто получил неудовлетворительную оценку за контрольную работу. По указанным девяти темам разработаны карточки программированного контроля, содержащие чертеж и условия задачи. При этом мы отказались от распространенного выборочного метода, состоящего в том, что студенту предлагается выбрать правиль-  [c.13]


Рассмотрим влияние начальных условий углового движения, которые реализуются при входе тела в атмосферу, на характер его движения относительно центра масс при спуске. Будем считать, что начальные условия задаются в разреженных слоях атмосферы, где влиянием аэродинамических моментов можно пренебречь. Будем также считать, что кинетическая энергия вращения тела существенно больше работы возмущающих сил, обусловленных влиянием светового давления Солнца, гравитационного и магнитного полей планеты. Рассмотрим случай, когда тело динамически осесимметрично. Тогда его вращательное движение представляет собой регулярную прецессию, при которой продольная ось, проходящая через центр масс, описывает круговой конус относительно неизменного в пространстве направления вектора кинетического момента Qq. Угол полураствора этого конуса обозначим через 2, угол между осью конуса — вектором кинетического момента, и вектором скорости центра масс тела через (р, а угол прецессии, отсчитываемый в плоскости, перпендикулярной оси прецессии, через 993 (рис. 1.7). Последний следует отличать от угла прецессии 7 , который характеризует прецессию тела относительно вектора поступательной скорости при движении в атмосфере.  [c.43]

При вращательном движении твердого тела относительно неподвижной оси кинетическая энергия равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости вращения.  [c.198]

Но полученная формула для кинетической энергии вращательного движения твердого тела (18.2) может быть использована для вычисления только в случае, когда вектор угловой скорости не изменяет своего направления при движении тела (например, при вращении тела вокруг неподвижной оси). Если это условие не выполняется, момент инерции Is становится переменной величиной и формула практически оказывается непригодной для использования. В этом случае выражаем момент инерции /j относительно мгновенной оси вращения через главные моменты инерции по формуле (16.7) и замечаем, что wot = со -, соР = соу, wv = есть проекции угловой скорости на подвижные оси. Тогда для кинетической энергии вращательного движения получается следующее выражение  [c.163]

Теорема об изменении кинетической энергии при вращательном движении формулируется так изменение кинетической энергии при вращении твердого тела вокруг неподвижной оси г за некоторый промежуток времени равно работе моментов сил, приложенных к телу, на соотжтствующем угловом перемещении ф, т. е.  [c.231]

Кинетическая энергия тела при вращательном движении равна половине произведения момента инерции тела относительно оси вращения на квадрат его углоюй скорости  [c.80]

После введения углов Эйлера выводятся два уравнения движения твердого тела одно —описывающее его поступательное движение, другое — его вращательное движение. Получено выражение для кинетической энергии твердого тела, записанное через его моменты инерции и угловые скорости, отнесенные к главным осям тела. Выведены уравиенпя Эйлера и прилагаются к рассмотре-н по твердых тел, на которые не действуют внешние силы, и к рассмотрению тяжелого симметричного волчка. Обсуждается прецессия и нутация земной оси, обусловленная солнечными и лунными силами тяготения. В последнем параграфе рассматриваются силы Кориолиса и их влияние на свободное падение тел и движение сферического маятника (маятник Фуко).  [c.98]

ЗАКОН сохранения [количества движения ( при любом взаимодействии между телами, образующими замкнутую систему, скорость движения центра инерции этой системы не изменяется в электромагнитном поле в замкнутом объеме, ограниченном поверхностью, остается неизменным механический импульс и импульс электромагнитного поля ) массы масса (вес) веществ, вступающих в реакцию, равна массе (весу) веществ, образующихся в результате реакции материи в изолированной системе сумма масс и энергий постоянна момента углового если на систему не действуют моменты внешних сил (замкнутая система), то ее полный угловой момент остается постоянным по величине и направлению магнитного потока магнитный поток связан с частицами среды и перемещается вместе с ними массы масса тела не зависит от скорости его движения, а масса изолированной системы тел не изменяется при любых происходящих в ней процессах даркуляции скорости при движении идеальной жидкости баротронной в потенциальном поле массовых сил циркуляция скорости вдоль произвольного контура, проведенного через одни и те же частицы жидкости, не изменяется с течением времени энергии ( энергия не может исчезать бесследно или возникать из ничего механической в замкнутой механической системе сумма механических видов энергии (потенциальной и кинетической, включая энергию вращательного движения) остается неизменной ) и превращения энергии при любых процессах, происходящих в изолированной системе, ее полная энергия не изменяется энергии электромагнитного поля убыль энергии  [c.237]

ТЕОРЕМА [Остроградского — Карно кинетическая энергия, теряемая системой при ударе, равна доле кинетической энергии системы, соответствующей потерянным скоростям о параллельном переносе силы силу, приложенную к абсолютно твердому телу, можно, не изменяя оказываемого действия, переносить параллельно ей самой в любую точку тела, прибавляя при этом пару с моментом, равным моменту переносимой силы относительно точки, куда сила переносится о проекции производной вектора проекция производной от вектора на какую-нибудь неподвижную ось равна производной от проекции дифференцируемого вектора на ту же ось о проекциях скоростей двух точек тела проекции скоростей двух точек твердого тела на прямую, соединяющую эти точки, равны друг другу Пуансо при движении твердого тела вокруг неподвижной точки подвижный аксоид катится по неподвижному аксоиду без скольжения Ривальса ускорение точек твердого тела, имеющего одну неподвижную точку, равно векторной сумме вращательного и осестремительного ускорений Робертса одна и та же шатунная кривая шарнирного четырехзвенника может быть воспроизведена тремя различными шарнирными четырехзвенниками  [c.284]


В случае отсутствия внешних моментов твердое тело будет устойчиво вращаться вокруг оси максимального или минимального момента инерции. Вращение вокруг промежуточной оси представляет собой состояние неустойчивого равновесия. При вращении твердого тела ось вращения меняет свое положение в теле. Геометрическое место пересечений мгновенных осей вращения с эллипсоидом инерции называется полодией. Согласно геометрической интерпретации Пуансо, неподвижная точка эллипсоида находится выше некоторой фиксированной плоскости на расстоянии, пропорциональном квадратному корню из кинетической энергии, и сама плоскость перпендикулярна вектору кинетического момента. Вектор угловой скорости, а следовательно, и ось вращения направлены из неподвижной точки в точку касания фиксированной плоскости сэллипсоидом инерции. Вид полодий (рис. 25) показывает, что вращение в окрестности промежуточных осей, где полодии расходятся, будет неустойчивым. Это можно легко продемонстрировать, если бросить книгу в воздух, одновременно придав ей вращательное движение (неустойчивость вращения будет более заметна, если книга не перевязана лентой).  [c.219]

В приведенных уравнениях можно ясно наблюдать две различные угловые частоты собственную угловую скорость ф тела, посредством которого приложенный момент сил передается системе, и частоту HolAg, представляющую собой частоту нутации всей системы. Нутация служит мерой избытка кинетической энергии вращательного движения системы, или, математически, нутация есть мера несовпадения векторов кинетического момента и угловой скорости ). Если на систему не действуют никакие внешние моменты, то вектор кинетического момента сохраняет неизменное направление в инерциальном пространстве и остается постоянным по величине. Если система движется с нутацией, то имеет место избыток кинетической энергии, и этот избыток можно рассеять пассивными средствами, т. е. путем преобразования избыточной энергии в тепло при помощи трения, и тогда тело будет вращаться без нутации около оси, совпадающей с линией действия вектора кинетического момента. Таким образом, всякой системе с рассеянием энергии присуще рассеяние энергии нутации, и при этом система стремится к состоянию с наименьшим значением энергии, соответствующим ее кинетическому моменту.  [c.15]


Смотреть страницы где упоминается термин Кинетический момент и кинетическая энергия тела во вращательном движении : [c.302]    [c.370]    [c.382]    [c.256]    [c.329]    [c.183]    [c.179]   
Смотреть главы в:

Теоретическая механика  -> Кинетический момент и кинетическая энергия тела во вращательном движении



ПОИСК



Вращательное движение тела относительно оси. (Кинематика. Момент импульса вращающегося тела. Уравнение движения для вращения тела относительно оси (уравнение моментов). Вычисление моментов инерции. Кинетическая энергия вращающегося тела. Центр тяжести. Прецессия гироскопа

Движение вращательное

Движение вращательное вращательное

Движение тела вращательное

Кинетическая энергия вращательного движения

Кинетическая энергия тела. Кинетический момент

Кинетическая энергия—см. Энергия

Момент вращательный

Момент кинетический

Энергия вращательная

Энергия вращательного движения

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия тела кинетическая



© 2025 Mash-xxl.info Реклама на сайте