Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы решения задач прикладной теории упругости

В пособии изложены методы решения задач прикладной теории упругости, приведены расчеты плоской гибкой нити, сплошного стержня, тонкостенного стержня открытого профиля, тонких пластинок и оболочек, толстых плит, призматических пространственных рам, массивных тел и непрерывных сред. Каждая глава содержит общие положения, принятые рабочие гипотезы, расчетные уравнения на прочность, устойчивость и ко-  [c.351]


В первой главе излагаются методы решения задач прикладной теории упругости, при этом основное внимание уделяется вариационным и прямым методам.  [c.6]

МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПРИКЛАДНОЙ ТЕОРИИ УПРУГОСТИ  [c.8]

Точное решение в аналитической форме уравнений теории упругости при соблюдении граничных условий, что составляет так называемую краевую задачу, возможно лишь в некоторых частных случаях нагружения тел и условий их закрепления. Поэтому для инженерной практики имеют особо важное значение приближенные, но достаточно общ,ие методы решения задач прикладной теории упругости.  [c.228]

Многие методы решения задач прикладной теории упругости, например, такие, как прямые вариационные методы, о которых более подробно будет сказано далее, в основе своей опираются на принципы Лагранжа и Кастильяно.  [c.49]

ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПРИКЛАДНОЙ ТЕОРИИ УПРУГОСТИ  [c.189]

При решении задач прикладной теории упругости может быть удобно совместное использование приближенных методов всех трех групп, что приводит к большому разнообразию приемов решения технических задач.  [c.9]

Этот метод позволяет получить в отличие от МКР не числового а аналитическое приближенное решение краевой задачи для данного дифференциального уравнения. Его идея была высказана кораблестроителем проф. И. Г. Бубновым в отзыве на работы С. П. Тимошенко, опубликованном в 1913 г. Независимо от него этот метод в 1915 г. был широко использован академиком Б.Г. Галеркиным в решении задач прикладной теории упругости.  [c.249]

В последние годы большое количество решений задач прикладной теории упругости получено с помощью метода конечных элементов.  [c.189]

Отметим некоторые преимущества смешанной вариационной формулировки задачи (1.82), (1.83) по сравнению с классическим методом перемещений. При решении задач прикладной теории упругости и строительной механики методом конечных элементов сходимость решений в ряде случаев определяется реакцией элемента на смещения как жесткого целого и геометрической изотропией (когда не отдается предпочтение какому-либо направлению) аппроксимации деформаций. Плохая сходимость решений, в первую очередь, характерна для криволинейных элементов оболочечного типа, поскольку аппроксимация перемещений полиномами низкой степени является грубой для описания смещений как жесткого целого. Такие элементы могут накапливать ложную деформацию и вносить существенные погрешности в решение задач. При учете деформаций поперечных сдвигов и обжатия в многослойных оболочечных элементах учет смещения как жесткого целого становится особенно важным, поскольку при уменьшении параметра тонкостенности (A/i ) указанные деформации стремятся к нулю, а коэффициенты их вклада в общую потенциальную энергию стремятся к бесконечности. Таким образом, погрешности в вычислении деформаций усиливаются и могут дать значительную ложную энергию, превосходящую энергию изгиба или энергию мембранных деформаций. Независимая аппроксимация полей деформаций в пределах конечного элемента при использовании смешанного метода позволяет обеспечить минимальную энергию ложных деформаций и требуемый ранг матрицы жесткости.  [c.23]


Эти методы можно разделить па две группы. Первая составляет методы приближенного решения краевых задач для дифференциальных уравнений, к которым сводятся те или иные задачи прикладной теории упругости. Из числа этих методов прежде всего рассмотрим метод конечных разностей (МКР) и особенности его применения в плоской задаче и в задачах изгиба пластин. Далее излагаются метод Бубнова — Галеркина и метод Канторовича — Власова.  [c.228]

Для решения различных задач прикладной теории упругости и строительной механики методом конечных элементов создано большое количество стандартных программ. Составление таких программ представляет значительные трудности, несмотря на то, что в своей основе этот метод достаточно прост и универсален.  [c.227]

Расчет массивных тел методами математической теории упругости связан со значительными математическими трудностями ввиду разнообразия форм, краевых условий и условий нагружения. Поэтому для решения пространственных задач применяют прямые и вариационные методы прикладной теории упругости.  [c.351]

Предложенная структура пособия принципиально отличается от принятой в учебной литературе, где классификация осуществляется по самим задачам теории упругости (изгиб и кручение стержней, плоская задача, пространственная задача и т. д.), а не по математическим методам их решения. Обратный подход, явившийся одним из основных побудительных мотивов написания этой книги, позволяет сосредоточить внимание читателя на самих методах решения задач, что в большей степени соответствует взгляду на теорию упругости как на специальный прикладной раздел математической физики.  [c.8]

Из других задач, решенных в конце XIX в,, нужно отметить работы X. С. Головина (1844—1904), произведшего методами теории упругости точный расчет кривого бруса, что дало возможность определить степень точности приближенных решений. Не меньшее значение имеют работы Ф. С. Ясинского (1856—1899), который занимался вопросами прикладной теории упругости и, в частности, вопросами устойчивости сжатых стержней.  [c.6]

В работах [228, 229] излагаются основные концепции, лежащие в основе формулировок и методов решения плоских контактных задач статической теории упругости. Описаны две методики решения плоских контактных задач, одна из которых применима при отсутствии сил трения, а другая — при их наличии. Рассматривается контакт двух тел, причем каждое из них независимо. Учет условий контакта позволяет связать две системы уравнений в одну. Для нахождения зоны контакта нагрузка прикладывается малыми приращениями, после каждого из которых зоны сцепления и проскальзывания определяются итерационным способом. В созданном программном обеспечении использовались простейшие кусочно-постоянные граничные элементы. Предложенный алгоритм демонстрировался на ряде конкретных задач. Однако рассмотрение контакта только двух тел и использование граничных элементов низкого порядка аппроксимации вводит существенные ограничения на класс и точность рассматриваемых прикладных задач, на воз можность расчета НДС различных реальных конструкций.  [c.13]

Весь цикл научных дисциплин, относящихся к механике деформируемого тела и связанных с разработкой вопросов прочности (жесткости, устойчивости) конструкций, часто называют строительной механикой в широком смысле слова. Строительной механикой (в узком смысле слова) называют статику и динамику сооружений. Границы между отдельными ветвями науки о прочности конструкций определяются как объектами, так и методами исследования, но зачастую эти границы точно указаны быть не могут. Так, прикладная теория упругости занимается в основном расчетом пластин, оболочек и некоторыми сложными задачами расчета брусьев (понятия о брусе, пластинке и оболочке даны в 1.2), привлекая для решения соответствующих задач более сложный математический аппарат, чем сопротивление материалов, но не-  [c.10]


В научных трудах П. Ф. Папковича дано решение обширного круга задач математической и прикладной теории упругости, теории устойчивости и колебаний в них разработаны методы расчёта пластин и оболочек, плоских и пространственных стержневых систем и т. д.  [c.147]

В этой главе будет рассмотрено равновесие упругого слоя, т. е. упругой среды, ограниченной двумя параллельными плоскостями (торцевыми плоскостями). Эта задача, являющаяся развитием и продолжением рассмотренной в предшествующей главе задачи о равновесии упругого полупространства, представляет интерес в нескольких отношениях. Во-первых, результаты решения некоторых частных случаев, например случая упругого слоя, покоящегося на жёстком основании, имеют непосредственное прикладное значение в строительной механике и фундаментостроении. Во-вторых, она интересна и по методу решения, так как даёт применение интеграла Фурье к нетривиальной задаче пространственной теории упругости. В-третьих, она имеет непосредственную связь с важной задачей о деформации толстой плиты, представляющей часть упругого слоя, ограниченного цилиндрической поверхностью с образующими, перпендикулярными к торцам слоя.  [c.146]

Поэтому развитию теории кручения стержней с удлиненными и тонкостенными профилями, а также разработке эффективных методов решения конкретных задач посвящено много исследований как теоретического, так и экспериментального характера. Главные из этих работ приведены в монографии [1]. Приближенные методы расчета на кручение стержней с удлиненными и тонкостенными профилями изложены в современных курсах по прикладной теории упругости и сопротивления материалов [6, 7, 9, 16, 17, 20, 23].  [c.269]

Изложены основы теории упругости после ознакомления с основополагающими понятиями приводятся анализ напряженного и деформированного состояния, вывод основных уравнений, плоская и температурная задачи, элементы теории пластин и оболочек. Особое внимание уделено численным методам решения прикладных задач теории упругости помимо достаточно распространенных вариационных и разностных методов подробно освещается сравнительно новый структурный метод, хорошо зарекомендовавший себя при исследовав НИИ объектов сложной формы. Для понимания затронутых вопросов достаточно знаний обычного курса математики технического вуза.  [c.40]

При строгой постановке задач теории упругости встречаются значительные математические трудности и решение может быть доведено до расчетных формул, пригодных для технических приложений, в ограниченном числе случаев. Поэтому широкое применение находят различные приближенные методы решения краевой задачи прикладной (технической) теории упругости, которым и посвящается настоящая глава.  [c.7]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

Настоящее пособие посвящено решению задач прикладной теории упругости. Поглавно материал расположен в порядке возрастающей сложности — от методов расчета плоской гибкой нити до расчета пространственных систем внутри глав изложение дано от общего к частному.  [c.6]

Прикладная теория упругости отличается от математической тем, что для решения задач помимо закона Гука применяются некоторые дополнительные гипотезы деформационного характера (гипотеза плоских сечений для стержней, прямых нормалей для тонких пластин и оболочек и т. и.). При решении задач прикладной теории упругости наряду с точными методами решения соответствующих уравнений могут применяться и приближенные методы. Между прикладной теорией упругости, тесно связанной с запросами практики, и сопротивлением материалов нет четкой границы. Некоторые, наиболее цростые задачи, относящиеся к этому разделу, рассматриваются также и в курсах сопротивления материалов.  [c.8]

В настоящей главе будут рассмотрены лишь наиболее часто применяемые при решении задач прикладной теории упругости вариационные и другие приблиншнные методы (методы Ритца, Бубнова — Галеркина, Канторовича — Власова, сеток, конечных элементов).  [c.189]

В 1915 г. было опубликовано классическое сочинение Б. Г. Галеркина Стержни и пластинки , в котором им изложен эффективный метод приближённого решения задач прикладной теории упругости, ранее указанный И. Г. Бубновым. Этот метод был впоследствии применён к решению самых разнообраз-.ы.ч задач математической физики и послужил основой для многочисленных научных работ как в Советском Союзе,так и за границей. Приложение этого метода дало результаты первостепенной важности для расчётов на прочность, устойчивость и колебания в области самолётостроения, кораблестроения, инженерных сооружений и г. д.  [c.137]


Метод конечных элементов применяется не только при решении двумерных задач прикладной теории упругости (пластины, оболочки и конструкции, составленные из пластинчатых и оболочечных элементов), но и объемных (трехмерных) задач теории упругости. Для лучшей аппроксима-цпи сложной формы копструкцип применяются наряду с прямоугольными конечными элементами также конечные элементы других форм. Этот метод может применяться не только в форме метода перемещений, когда за неизвестные принимаются узловые перемещения и определяются они из уравнений равновесия, но и в форме метода сил, когда за неизвестные принимаются узловые внутренние усилия а определяются они из условия совместности перемещений в узловых точках.  [c.228]

Методы расчета гибких брусьев, пластинок, оболочек и массивных тел рассматриваются в курсе Прикладная теория упругости , свободном от тех упрощающих гипотез, которые вводятся в курсе Сопротивление материалов . Методы теории упругости позволяют получить как точные решения задач, рассматри-вающихея в курсе Сопротивление материалов , так и решения более сложных задач, где нельзя высказать приемлемые упрощающие гипотезы.  [c.7]

В настоящей книге в соответствии с ее названием Приложение методов теории упругости и пластичности к решеник> инженерных задач авторы пытались в небольшом объеме привести основные сведения об исходных уравнениях и соотношениях теорий упругости и прикладной теории пластичности, сосредоточить основное внимание на рассмотрении их физического, геометрического или статического смысла, представить запись отдельных методов решения этих уравнений с помощьк> теории матриц, разобрать отдельные методы решения задач с ориентацией на привлечение быстродействующих цифровых машин и охарактеризовать результаты решения некоторых сложных, но практически интересных задач. Этот краткий курс имеет целью в наиболее доступной форме ознакомить читателя с основными принципами, методами и некоторыми задачами теории упругости и прикладной теории пластичности и подготовить его к самостоятельному изучению полных курсов и специальных исследований в отмеченных областях.  [c.4]

В теории упругости и пластичности применяют и приближенные методы. В связи с этим различают математическую и прикладную теорию упругости и пластичности, причем в последнем случае решение задач базирхется на ряде дополнительных допущений.  [c.4]

Ч О. Хуторянский Н. М. Граничные свойства. производных потенциалов теории упругости для аинзотроиного тела и формулы регушяриого представле-ння их граничных значений. — Прикладные проблемы прочности и пластичности. Методы решения задач упругости и пластичности. Всесоюз. межвуз, сб./ Горьк. ун-т, 1985, о. 2в—36.  [c.291]

Однако при проектировании современных машин часто приходится pa мafpивaть деформацию деталей за пределами упругости. В этом случае законы и уравнения теории упругости не могут быть применены, так как принятые ранее допущения об упругости материала не выполняются. Такие задачи решаются методами теории пластичности. Решение многих задач методами математической теории пластичности из-за сложностей чисто математического характера практически получить невозможно. Поэтому, наряду с развитием математической теории пластичности, занимающейся изысканием методов точного решения задач механики твердого тела, деформируемого за пределами упругости, разрабатываются упрощенные методы. Такие методы решения задач с помощью введения дополнительных гипотез и допущений излагаются в прикладной теории пластичности. Основные законы и уравнения математической и прикладной теории пластичности изложены в трудах Н. И. Безухова, А. А. Ильюшина, С. Г. Михлина, А. Надаи, Г. А. Смирнова-Аляева, В. В. Соколовского, Р. Хилла, В. Прагера, Н. Н. Малинина, Д. Д. Ивлева, Л. С. Лейбензона и др.  [c.11]

ЧемерисВ. С., О методе приближенного решения первой основной задачи осесимметричной теории упругости. Прикладная механика, 1969, т. 5, вып. 5, стр. 58—62.  [c.460]

Эта формула имеет не только теоретическое но и практическое значение. Она щироко используется при решении прикладных задач динамической теории упругости и является основой метода граничных элементов и положена в основу методов, используемых нами при решении эадач динамической механики разрушения.  [c.203]

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ, наука, которая охватывает теорию деформаций, общие сведения о материалах, гл. обр. о металлах, и указывает также общие методы расчета мащин и сооружений. С. м. служит вводной наукой во всех областях инженерного образования в строительной технике С. м. вводит в статику сооружений, в машиностроении С. м. предваряет все расчетные курсы—двигателей,станков, грузоиодъемных устройств, котлов и пр. в других отраслях техники, в архитектуре и художественной деятельности С. м. формирует и рационализирует внешние вырая ения творческих идей и композиций. В настоящее время теория С. м. разделяется на три основные части а) С. м. (в элементарном изложении), б) прикладная теория упругости и в) теория упругости. Предмет ведения, объем вопросов и глубина их изложения распределены между С. м., теорией упругости и прикладной теорией упругости недостаточно определенно. Наблюдается постоянное перемещение материала из одной части в другую и взаимное влияние их методологии. Все же следует принять, что С. м. представляет первый концентр познаний инг/кенера относительно общих свойств материалов и наиболее простых методов изучения их работы в конструкциях. Прикладная теория упругости вклкЛает в свой объем у ке более сложные проблемы и, отказываясь во мыощх случаях от строгой формы их изложения, стремится дать практич. применение решений в различных отраслях техники. Теория упругости развивается как отдел физико-математических наук и содержит решение наиболее сложных задач относительно упругого и пластического состоя-  [c.203]

Важным прикладным методом решения пространственных задач теории упругости является метод, предложенный М. М. Фило-ненко-Вородичем [142], позволяющий с помощью теоремы Ка-стильяно и функций в виде косинусов-биномов  [c.351]


Смотреть страницы где упоминается термин Методы решения задач прикладной теории упругости : [c.156]    [c.10]    [c.291]    [c.11]    [c.393]    [c.15]   
Смотреть главы в:

Руководство к решению задач прикладной теории упругости  -> Методы решения задач прикладной теории упругости

Руководство к решению задач прикладной теории упругости  -> Методы решения задач прикладной теории упругости



ПОИСК



Задача и метод

Задача упругости

Задачи и методы их решения

Задачи теории упругости

К упругих решений

Метод решения задач теории упругости

Метод теории решений

Метод упругих решений

Приближенные методы решения задач прикладной теории упругости

Прикладные задачи

Развитие аналитических методов решения задач прикладной теории упругих колебаний

Решение задачи упругости

Решение прикладных задач

Решения метод

Теория Метод сил

Теория Методы решения задач

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте