Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приближенные методы решения задач прикладной теории упругости

ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПРИКЛАДНОЙ ТЕОРИИ УПРУГОСТИ  [c.189]

Точное решение в аналитической форме уравнений теории упругости при соблюдении граничных условий, что составляет так называемую краевую задачу, возможно лишь в некоторых частных случаях нагружения тел и условий их закрепления. Поэтому для инженерной практики имеют особо важное значение приближенные, но достаточно общ,ие методы решения задач прикладной теории упругости.  [c.228]


При решении задач прикладной теории упругости может быть удобно совместное использование приближенных методов всех трех групп, что приводит к большому разнообразию приемов решения технических задач.  [c.9]

Этот метод позволяет получить в отличие от МКР не числового а аналитическое приближенное решение краевой задачи для данного дифференциального уравнения. Его идея была высказана кораблестроителем проф. И. Г. Бубновым в отзыве на работы С. П. Тимошенко, опубликованном в 1913 г. Независимо от него этот метод в 1915 г. был широко использован академиком Б.Г. Галеркиным в решении задач прикладной теории упругости.  [c.249]

Эти методы можно разделить па две группы. Первая составляет методы приближенного решения краевых задач для дифференциальных уравнений, к которым сводятся те или иные задачи прикладной теории упругости. Из числа этих методов прежде всего рассмотрим метод конечных разностей (МКР) и особенности его применения в плоской задаче и в задачах изгиба пластин. Далее излагаются метод Бубнова — Галеркина и метод Канторовича — Власова.  [c.228]

При строгой постановке задач теории упругости встречаются значительные математические трудности и решение может быть доведено до расчетных формул, пригодных для технических приложений, в ограниченном числе случаев. Поэтому широкое применение находят различные приближенные методы решения краевой задачи прикладной (технической) теории упругости, которым и посвящается настоящая глава.  [c.7]

Из других задач, решенных в конце XIX в,, нужно отметить работы X. С. Головина (1844—1904), произведшего методами теории упругости точный расчет кривого бруса, что дало возможность определить степень точности приближенных решений. Не меньшее значение имеют работы Ф. С. Ясинского (1856—1899), который занимался вопросами прикладной теории упругости и, в частности, вопросами устойчивости сжатых стержней.  [c.6]

Поэтому развитию теории кручения стержней с удлиненными и тонкостенными профилями, а также разработке эффективных методов решения конкретных задач посвящено много исследований как теоретического, так и экспериментального характера. Главные из этих работ приведены в монографии [1]. Приближенные методы расчета на кручение стержней с удлиненными и тонкостенными профилями изложены в современных курсах по прикладной теории упругости и сопротивления материалов [6, 7, 9, 16, 17, 20, 23].  [c.269]


Метод упругих решений в различных разновидностях широко применяется для решения различных прикладных задач теории малых упруго-пластических деформаций. Обычно достаточно нескольких приближений, чтобы получить достаточную для целей практики точность.  [c.290]

В теории упругости выдающиеся результаты были получены при разработке общих методов интегрирования дифференциальных уравнений равновесия упругого тела, приближенных методов их решения и в исследовании многочисленных частных задач. Это было продолжением и расширением исследований русских механиков дореволюционного периода. Но сложились также новые школы и направления. Систематически велись исследования по плоской задаче теории упругости с помощью методов теории функций комплексного переменного, большая группа ученых работала по теории пластинок и оболочек, приобретавшей все большее значение для техники. Меньше внимания уделялось контактным задачам, но гг они стали постоянным предметом исследований. Впервые после трудов Остроградского значительные результаты были получены в теории распространения упругих волн, которая разрабатывалась в связи с запросами сейсмологии. К этому списку надо добавить исследование устойчивости упругих систем, теорию стержневых систем, графические методы. Тут мы находимся на стыке теории упругости п таких прикладных дисциплин, как строительная механика и сопротивление материалов.  [c.291]

С использованием методов последовательных приближений для решения граничного интегрального уравнения в работах [92, 167, 168] решен ряд прикладных задач оценки прочности деталей прокатных станов. Подробно рассмотрены вопросы численной реализации для случая второй основной задачи теории упругости. Исследованы задачи о прессовой посадке составных цилиндров с учетом температурного воздействия, волочении проволоки из квадратного прута и т. д. Решение поставленных задач сводится к рассмотрению последовательности смешанных задач теории упругости.  [c.14]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

Прикладная теория упругости отличается от математической тем, что для решения задач помимо закона Гука применяются некоторые дополнительные гипотезы деформационного характера (гипотеза плоских сечений для стержней, прямых нормалей для тонких пластин и оболочек и т. и.). При решении задач прикладной теории упругости наряду с точными методами решения соответствующих уравнений могут применяться и приближенные методы. Между прикладной теорией упругости, тесно связанной с запросами практики, и сопротивлением материалов нет четкой границы. Некоторые, наиболее цростые задачи, относящиеся к этому разделу, рассматриваются также и в курсах сопротивления материалов.  [c.8]


В теории упругости и пластичности применяют и приближенные методы. В связи с этим различают математическую и прикладную теорию упругости и пластичности, причем в последнем случае решение задач базирхется на ряде дополнительных допущений.  [c.4]

ЧемерисВ. С., О методе приближенного решения первой основной задачи осесимметричной теории упругости. Прикладная механика, 1969, т. 5, вып. 5, стр. 58—62.  [c.460]

Вариационные принципы теории упругости позволяют свести проблему определения напряженно-деформированного состояния тела к эадкче отыскания минимума того или иного функционала. На этом основаны различные прикладные методы расчета, в которых удается получить приближенное решение задачи, не прибегая к интегрированию системы дифференциальных уравнений теории упругости. Вариационные принципы составляют теоретический фундамент н метода конечных элементов, позволяя, в частности, обосновать его сходимость к точному решению.  [c.27]

Лучевая асимптотика ). Фронт распространяющейся волны представляет собой поверхность разрыва для производных некоторого порядка от смещений. В силу этого в окрестности фронта изменение поля смещений в направлении нормали к фронту значительно более интенсивно, чем такое же изменение вдоль фронта. Это позволяет рассматривать окрестность каждой точки фронта как локально-плоскую волну. На этой идее построен асимптотический метод изучения окрестности фронтов (для неподвижного наблюдателя — окрестности первого вступления некоторой волны). Этот метод давно известен в акустике и оптике. Перенос его в теорию упругости был впервые осуществлен в работе М. Л. Левина и С. М. Рытова (1956). В дальнейшем он подвергался разработке и использовался как средство приближенного решения задач отражения и преломления. Описание поля в окрестности фронта можно строить с разной степенью точности в прикладных задачах обычно пользуются первым приближением, но есть случаи, когда оно принципиально недостаточна (Г. С. Подъяпольский, 1959). Лучевой подход, с одной стороны, обладает большой общностью, например, он применим без особых осложнений к неоднородным средам. С другой стороны, есть исключительные ситуации, где он не работает или требует существенной перестройки, например в окрестности начальных точек головных волн (и вообще точек пересечения фронтов), в окрестности каустики и др. (В. М. Бабич, 1961 Ю. Л. Газарян, 1961 Б. Т. Яновская, 1964).  [c.297]

Задачи устойчивости типичны для тонких и тонкостенных тел. Решения этих задач для стержней, пластин и оболочек строятся обычно на основе приближенных уравнений, в которых используются некоторые кинематические и динамические гипотезы. Имеется несколько путей для получения этих уравнений. Первый, наиболее ранний способ состоит в непосредственном рассмотрении форм движения (равновесия), смежных с невозмущенным. При этом ищется некоторая приведенная нагрузка, которая вводится в уравнение невозмущенного движения. Все рассуждения носят наглядный характер однако в достаточно сложных задачах эта наглядность оказывается обманчивой. Другой путь состоит в использовании нелинейных уравнений соответствующих прикладных теорий. Линеаризуя последние в окрестности невозмущенного движения, получим искомые уравнения. В теории оболочек этот путь использовался X. М. Муштари (1939), Н. А. Алумяэ (1949), X. М. Муштари и К. 3. Галимовым (1957), Н. А. Кильчевским (1963), В. М. Даревским (1963) и другими авторами. Однако в нелинейной теории имеется еще меньше единства взглядов на то, как должны записываться основные уравнения. Следо вательно, идя по этому пути, мы лишь смещаем все трудности в другую, еще менее согласованную область. Третий путь состоит в использовании общих уравнений теории упругой устойчивости (В. В. Новожилов, 1940, 1948). Метод, основанный на соответствующем вариационном принципе, был применен  [c.332]

В трудах советских ученых А. А. Ильюшина [34], [35], В. В. Соколовского [78] и зарубежных исследователей получили решение многие актуальные и интересные задачи, однако наряду с более или менее строгими решениями в теории пластичности находят приложение и прикладные инженерные методы, успешно разрабатываемые А. А. Гвоздевым [26], А. Р. Ржаницыным [74], А. А. Чирасом [85] и др. Большой вклад в развитие приближенных решений внесен Н. И. Безуховым. Одна из первых его работ [9] по расчету конструкций из материалов, не следующих закону Гука, по глубине обобщений и по достигнутым результатам стала классическим исследованием, наложившим существенный отпечаток на развитие прикладных методов теории пластичности. Большой интерес представляет также и работа [10], в которой был предложен эффективный прием определения деформаций стержней при упруго-пластическом изгибе.  [c.172]


Смотреть страницы где упоминается термин Приближенные методы решения задач прикладной теории упругости : [c.10]    [c.10]    [c.267]    [c.5]   
Смотреть главы в:

Основы теории упругости и пластичности  -> Приближенные методы решения задач прикладной теории упругости



ПОИСК



Задача и метод

Задача упругости

Задачи и методы их решения

Задачи теории упругости

К упругих решений

Метод решения задач теории упругости

Метод теории решений

Метод упругих решений

Методы приближенные

Методы решения задач прикладной теории упругости

Приближенная теория

Приближенные методы решения

Приближенные методы решения задач

Приближенные методы решения задач теории упругости

Прикладные задачи

Решение задачи упругости

Решение прикладных задач

Решения метод

Решения приближенные

Теория Метод сил

Теория Методы решения задач

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте