Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные типы полей разрушения

Основные типы полей разрушения  [c.60]

Обозначим через qi и 2 главные скорости кривизн поля разрушения оптимальной решетки и через Qi и Qj соответствующие изгибающие моменты и выберем главные направления таким образом, чтобы il=<7o- В зависимости от того, будет ли I 21 < 7о или <721 = <7о> мы будем различать следующие основные типы областей в поле разрушения  [c.61]

Согласно этим концепциям важным параметром является коэффициент интенсивности напряжений, который связывает поле напряжений около вершины трещины с приложенной нагрузкой. Когда приложенная нагрузка достигает разрушающего значения, коэффициент К получает критическое значение Кс- В пределах упругости между приложенной нагрузкой и соответствующим ей значением К всегда существует линейная зависимость. Коэффициент К может быть трех основных типов, каждый из которых связан с определенным характером деформации или перемещений в окрестностях вершины трещины. Одно из перемещений носит характер нормального раскрытия трещины. Он свойствен разрушению в условиях плоской деформации и имеет индекс I, т. е. Къ Критическое значение, которое коэффициент К приобретает в момент разрушения, обозначается через К с. Критическое значение коэффициента интенсивности напряжений обычно называют вязкостью разрушения материала.  [c.109]


Обзор Ирвина состоит из пяти разделов 1) сопротивление разрыву в жидкостях 2) соотношения для напряжений и усилий при разрушениях 3) образование и распространение трещин 4) поле напряжений, скорость и ветвление распространяющейся трещины 5) влияние размеров на разрушение. К теме настоящего обзора непосредственно относится второй раздел, где формулируются основные результаты теории квазихрупкого разрушения. В разделе освещаются основные этапы развития теории. Далее отмечается, что напряженное состояние в общем случае вблизи края трещины может быть представлено как наложение трех основных типов поперечного (разрывающего или открывающего), связанного с сГу, и двух сдвиговых, связанных с т у, Ту2 (рис. 12) ).  [c.387]

При кажущейся внешней простоте механизм деформации и разрушения металлов весьма своеобразен и сложен, а потому требует подробного рассмотрения. Под действием нагрузки в деталях создаются сложные поля деформации, которые, однако, всегда можно разложить на три основных типа сдвиг, растяжение и сжатие. Поэтому начинать изучение процессов деформации нужно с этих простейших типов, имея в виду, что выявленные закономерности в значительной степени можно распространить и на более сложные случаи.  [c.32]

РАЗРЯД (искровой имеет вид прерывистых зигзагообразных разветвляющихся нитей, быстро прекращающихся после пробоя разрядного промежутка уменьшения напряжения, вызванного самим разрядом кистевой относится к разновидности коронного разряда, сопровождающегося появлением искр вблизи острия коронный — высоковольтный самостоятельный разряд, возникающий в резко неоднородном электрическом поле вблизи электродов с большой кривизной поверхности (острие, проволока) лавинный электрический разряд в газе, в котором возникающие при ионизации электроны сами производят дальнейшую ионизацию несамостоятельный— газовый разряд, существующий при ионизации газа внешним ионизатором самостоятельный не требует для своего поддержания внешнего ионизатора тлеющий происходит самостоятельно в газе при низкой температуре катода, сравнительно малой плотности тока и пониженном по сравнению с атмосферным давлении газа электрический — прохождение электрического тока через вещество, сопровождающееся изменением состояния вещества под действием электрического поля) РАЗУПРОЧНЕНИЕ — понижение прочности и повышение пластичности предварительно упрочненных материалов, РАКЕТОДИНАМИКА — наука о движении летательных аппаратов, снабженных реактивными двигателями РАСПАД радиоактивный (альфа состоит в испускании тяжелыми ядрами некоторых химических элементов альфа-частиц бета обозначает три типа ядерных превращений электронный и позитронный распады, а также электронный захват гамма является жестким электромагнитным излучением, энергия которого испускается при переходах ядер из возбужденных энергетических состояний в основное или менее возбужденное состояние, а также при ядерных реакциях) РАСПЫЛЕНИЕ катодное — разрушение твердых тел при  [c.269]


Решение комплексной задачи повышение эффективности безаварийной работы технического ресурса разветвленных подземных трубопроводных сетей различного назначения требует применения специальных и разнообразных методических подходов. Это связано с тем, что трубопроводы (водопроводы, газопроводы и теплопроводы) испытывают различные режимы эксплуатации и подвергаются соответственно различным видам коррозионного разрушения. Традиционно основным путем защиты от наружной (почвенной, грунтовой) коррозии трубопроводов в городских условиях является катодная защита, а для резервуаров НПЗ и сельских районах, особенно на большом удалении от источника электроэнергии др., преимущественно - протекторная. Трубопроводы городского водоснабжения защищаются от коррозии в основном путем использования катодной электродренажной защиты. В теплопроводах подземной канальной прокладки в основном используется защитное покрытие. В этих сетях наиболее коррозионно-чувствительными является являются компенсаторы тепловых перемещений, которые в настоящее время изготовляются в виде гибкой металлической оболочки из коррозионно-стойкой аустенитной хромоникелевой сталей типа 18-10. Они подвергаются специфическому воздействию паровоздушной среды, насыщенной хлор-ионами и могут быть подвержены так же как и водоводы и газопроводы полю действия блуждающих токов, изменяющемуся по величине и знаку поляризационного потенциала.  [c.37]

Возможность имитации полей термических напряжений, а также условий термоусталостного разрушения различных типов лопаток ГТД путем подбора геометрии модели показана в работах [75, 102]. Для элементов клиновидной формы (см. рис. 1.16, е) градиент температур и конструктивная форма детали определят неравномерность распределения термоупругих осевых напряжений. Примерно одна треть объема материала, прилегающего к кромке лопатки, находится в линейном напряженном состоянии, а массивная часть клина — в объемном напряженном состоянии. Некоторые результаты исследований [102] по моделированию термонапряженного состояния кромок лопаток клиновидной модели представлены-на рис. 1.17. Путем варьирования основных геометрических параметров клина (радиус закругления кромки, угол раствора клина q>  [c.31]

В развитии механики разрушения и, в частности, в исследовании динамического распространения трещины концепция упругого коэффициента интенсивности напряжений сыграла фундаментальную и консолидирующую роль. В этом параграфе приводится формальное определение динамического коэффициента интенсивности напряжений через характеристики поля в окрестности вершины трещины, преобладающего в номинально упругом теле в процессе роста трещины. Вблизи любой точки края трещины, за исключением точек пересечения трещины с поверхностью твердого тела и угловых точек края, локальное распределение деформаций является в основном двумерным, и поля в окрестности вершины представляют собой комбинацию трещин типа 1 (плоское раскрытие трещины), типа 2 (плоский сдвиг) и типа 3 (антиплоский сдвиг). С целью ограничить исследование рассмотрением полей с конечной энергией (в конечных областях) вводится требование интегрируемости энергии деформации в любой подобласти. Кроме того, для решения поставленных задач предполагается, что ни скорость, ни направление трещины резко не меняются.  [c.84]

Анализ перераспределения напряжений и деформаций в зонах трещин позволяет количественно описать поле упругопластических деформаций и заменить в расчетах коэффициенты интенсивности напряжений на коэффициенты интенсивности деформаций. Деформационные параметры нелинейной механики разрушения дают возможность выполнить расчеты прочности на стадии проектирования. При этом используют упомянутые выше фундаментальные характеристики механических свойств, в которых учтено влияние основных конструктивных, технологических и эксплуатационных факторов и дефектов типа трещин.  [c.7]


Что же касается активности кремнезема в флюсе с повышением индекса основности, то в этом случае картина совершенно противоположная. Действительно, с ее увеличением происходит разрушение сложных комплексных соединений, образованных с участием 5102. В результате уменьшается концентрация слабых кремнекислородных анионов типа 51 0 , которые легко расщепляются под воздействием силового поля поверхности жидкого металла на ионы кремния и кислорода 0 . Уменьшение же содержания катионов 51 + и анионов О " в поверхностном слое флюса-шлака приводит к торможению кремний-восстановительного процесса.  [c.189]

Сверхпроводники второго рода. У сверхпроводников I и II рода основной механизм сверхпроводимости одинаков и представляет собой взаимодействие типа электрон — фонон — электрон. Сверхпроводники I и И рода имеют подобные тепловые свойства при переходе из сверхпроводящего состояния в нормальное и обратно в нулевом магнитном поле. Однако эффект Мейснера в сверхпроводниках I и II рода (см. рис. 12.6) совершенно различен. Чистый сверхпроводник I рода выталкивает магнитное поле вплоть до момента скачкообразного и полного разрушения сверхпроводящего состояния, и лишь после этого поле полностью проникает в образец. Чистый сверхпроводник II рода полностью выталкивает магнитное поле только при  [c.453]

Штурмовая авиация как вид военно-воздушных сил появилась в СССР еще в 30-х годах, однако по своему значению она тогда не могла равняться с истребителями и бомбардировщиками. Своему как бы второму рождению она обязана созданному в предвоенные годы бронированному штурмовику Ил-2, который стал основным и единственным (до 1944 г.) типом самолета такого класса, состоявшим на вооружении авиационных частей. Опыт использования Ил-2 в военных действиях показал, что этот самолет способен выполнять широкий круг боевых задач. В Наставлениях (1944 г.) по боевым действиям штурмовой авиации , вобравших в себя богатый опыт первых двух периодов Великой Отечественной войны, отмечалось [1], что основным назначением штурмовой авиации является непосредственная авиационная поддержка сухопутных войск на поле боя и в тактической глубине обороны противника. Ее основные задачи подавление и уничтожение танков, артиллерии, минометов, других технических средств и живой силы противника на поле боя противодействие подходу к полю боя тактических и оперативных резервов противника уничтожение и разрушение органов управления, средств связи и полевых складов нарушение железнодорожных, автомобильных, воздушных и водных перевозок противника подавление и уничтожение авиации противника на аэродромах и активная борьба с его транспортной и бомбардировочной авиацией в воздухе уничтожение боевых и транспортных судов морского и речного флота воздушная разведка в интересах авиационного и общевойскового командования [2].  [c.130]

Экспериментальное определение - одной из основных характеристик сопротивления материалов хрупкому разрушению - связано с существенными трудностями результаты испытаний тонколистовых конструкционных материалов нестабильны. Это объясняется сильным влиянием зон пластичности, возникающих у краев трещины при нагружении лабораторного образца. Коэффициент интенсивности напряжений - характеристика, имеющая ясный смысл в линейной механике разрушения упругого тела. Использование этой характеристики для упругопластического тела оправдано лишь в том случае, когда соответствующая асимптотика поля напряжений (типа квадратного корня) достаточно явно реализуется в некоторой окрестности края трещины. Но для этого необходимо, чтобы размер пластической области был мал по сравнению с длиной трещины (и с расстоянием от трещины до края образца). На образцах малых размеров (имеется в виду плоский образец с центральной сквозной трещиной, нагруженный нормально к плоскости трещины), обычно используемых при лабораторных испытаниях  [c.172]

В этих условиях деформационные и прочностные свойства материала покрытия малоизвестны, что практически исключает возможность расчета прочности покрытия на основе метода, который предполагает знание деформационных и прочностных свойств металла во всех точках системы покрытие - основной металл. Для решения этой задачи в методике [293] используется аппарат, требующий задания по возможности минимального количества параметров. В качестве такого аппарата принята структурная модель циклически стабильного материала [31]. Существенным ее преимуществом является наличие всего лишь двух определяющих функций реологической, определяющей физические свойства подэлементов, и функции неоднородности распределения характеристик между подэлементами. Эти функции находят по результатам изотермических испытаний стандартного типа на растяжение при различных значениях температуры. Исходными данными для назначения параметров модели являются изотермические диаграммы деформирования и кривые ползучести материала в стабильных циклах. В методике использована несколько измененная структурная модель материала для исследования кинетики деформирования многослойной системы покрытие - переходная зона - основной металл. В ней приняты следующие предположения признаком разрушения лопатки считается появление трещины в покрытии покрытие в силу своей малой толщины не влияет на поле напряжений и деформаций в лопатке и по всей толщине работает в условиях жесткого нагружения при тех деформациях, которые имеет лопатка в области нанесенного покрытия используется критерий разрушения [294]  [c.476]


Необходимость расчета на сопротивление хрупкому разрушению определяется существованием хрупких или квазихрупких состояний у элементов конструкций. Основным фактором, определяющим возникновение таких состояний для сплавов на основе железа в связи с присущим им свойством хладноломкости, является температура. На рис. 3.1 показаны области основных типов сопротивления разрушению в зависимости от температуры. При температуре, превышающей первую критическую Гкрь для сплавов, обладающих хладноломкостью, а также для материалов (сплавы на основе магния, алюминия, титана), не обладающих хладноломкостью, в диапазоне рабочей температуры имеют место вязкие состояния. В этом случае предельные состояния наступают лишь после значительной пластической деформации и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих вязких трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность в этих условиях рассматривают на основе представлений о предельных упругопластических состояниях, анализируемых на основе методов сопротивления материалов и теории пластичности. Позднее возникновение и медленное прорастание трещин при оценке несущей способности, как правило, не учитываются.  [c.60]

Необходимость расчета на сопротивление хрупкому разрушению связана с тем, что в условиях работы элементы конструкций могут находиться в хрупких или квазихрупких состояниях (17, 28, 29). Основным фактором возникновения таких состояний для сплавов на основе железа в связи с присущими им свойствами хладноломкости является температура. На схеме (рис. 6) показаны области основных типов сопротивления разрушению в зависимости от температуры. В области температур, превышающих первую критическую Ткр1 для сплавов, обладающих хладноломкостью, а также для материалов, не обладающих хладноломкостью в диапазоне температур работы конструкций (сплавы на основе магния, алюминия, титана), имеют место вязкие состояния. В этом случае предельные состояния наступают после возникновения значительных пластических деформаций и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность при таких состояниях рассмотрены в гл. 2.  [c.246]

Обычно структура материалов типа металлов упорядочивается по элементам атом — кристалл (блок мозаики) — зерно. Дефекты в твердых телах можно разделить на две группы 1) искажения в атомно-молекулярной структуре в виде вакансий, замещения, внедрения, дислокации и т. п. 2) трещины — разрывы сплошности. Эти дефекты — локальные искажения однородности — совместно со сложностями структуры создают концентрацию напряжений. Что касается трещин, то их условно по размерам разделяют на три разновидности мельчайшие (субмикроскопические), микроскопические и макроскопические (магистральные). Вопросы взаимодействия локальных дефектов между собой и их роль в образовании субмнкроскопических и микроскопических трещин более относятся к физике твердого тела и являются одним из основных направлений физики разрушения. Не останавливаясь на детальном описании этих специальных вопросов, отметим, что в результате приложения внешних нагрузок в теле возникают дополнительные к силам межатомного взаимодействия силовые поля, приводящие в движение различные дефекты, которые, сливаясь, образуют субмикроскопические, а в последующем и микроскопические трещины.  [c.182]

Можно видеть, что коэффициент интенсивности напряжений К является основной характеристикой, необходимой для определения уровня поля напряжений у вершины трещины. Основные типы разрушения показаны на рис. 2, причем для каждого из них, как установили Тетельман и Мак-Ивли [48], а также Парис и Си [36], существуют соотношения, аналогичные уравнению (2).  [c.270]

Согласно зависимости (5.1) это значение в условиях распространения трещины для плоского деформированного состояния должно достигать кри-тической величины К с — V 2Еур. Эта величина характеризует сопротивление материала разрушению в зоне распространения трещины и рассматривается как вязкость разрушения. Конечность кривизны на конце трещины и малое ее влияние на распределение напряжений уже на расстояниях от ее края 0,25—0,5 радиуса кривизны, составляющего доли миллиметра, позволяет использовать упругие решения для большей части поля напряженного и деформированного состояния. В соответствующих выражениях для напряжений коэффициент интенсивности является множителем. Поля напряжений и значения /С определяются основными типами деформированных состояний, представленными на рис. 1, при которых развивается трещина.  [c.229]

Основным свойством неупорядоченной среды, исследуемым теорией перколяции, является степень связности или кластеризации определенных элементов системы либо связанных с ними полей. В последнем случае степень связности зависит как от концентрации источников поля, так и от радиуса сферы влияния. В случае постоянного радиуса единственной переменной для хаотической перко.ляции остается концентрация элементов определенного типа, например поврежденных. Но степень связности поврежденных элементов и интенсивность нагрузки и определяют характер разрушения тела. Сходство физических моделей дисперсного разрушения, кинетической концепции прочности и теории перколяции послужило толчком к разработке перколяционных моделей разрушения [48].  [c.33]

Ниже рассматриваются подвижные поверхности разрыва типа трещин в неупругих сплошных средах ). Основное внимание будет уделено изучению поля напряжений и деформаций на фронте таких поверхностей в условиях монотонного нагружения. Излагаются общефункциональный и энергетический подходы, служащие для формулировки локальных критериев разрушения. Всюду (за исключением 8) трещина считается  [c.220]

Подход, в некоторой степени сходный с методом работы [15], был независимо развит в [16] для задач с заданным распределением поверхностных нагрузок и будет распространен в настоящей статье на смешанные задачи ). Этот подход, так же как и метод работы [15], в большей степени основан на интуитивных физических соображениях, чем отмеченный вначале более формальный подход, и в действительности приводит к несколько отличной записи основных соотношений. Для всех типов задач в качестве неизвестного вектора выбирается вектор фиктивных нагрузок. Если его значения известны, то прля напряжений и перемеш ений внутри тела определяются рым образом и очень точно при помощи интегрирования 1спределения фиктивных нагрузок. Непосредственное и оди-гаково точное определение поля напряжений в произвольной внутренней точке (при этом не требуется интерполяция, необ- содимая при решении методами конечных элементов или конечных разностей) делает этот метод весьма привлекательным длй определения зарождения и последующего развития разрушения.  [c.154]

По-видимому, наибольшее число работ в теории приспособляемости связано со стержневыми конструкциями (балки, рамы, фермы) строительного типа [38, 40, 53, 70, 88, 107, 108, 116, 119, 123, 132, 138, 141, 148, 153, 183, 208 и др.]. Исследования в этой области были наиболее ранними (на простых стержне-. вых системах уяснялись основные эффекты [10, 140, 201, 217]).. Их поток не прекращается и сейчас [38, 86, 89, 144, 215] как в связи с дальнейшим углубленным изучением эффектов и совершенствованием частных методик расчета, так и в связи с расширением круга приложений теории (применительно, например, к теплообменным аппаратам [144], аркам [93] и другим объектам). Следует заметить, что в задачах данного типа минимальные нагрузки, приводящие к прогрессирующему разрушению, иногда мало отличаются от предельных (мгновенное пластическое разрушение). Это, естественно, вызвало разочарование у некоторых авторов [142], однако позднее были обнаружены примеры стержневых систем, испытывающих механическое нагружение, в которых различие между предельными нагрузками, отвечающими мгновенному и прогрессирующему разрушениям, оказывается более существенным [117, 135]. Исходя из результатов, полученных в разд. 2, 4, можно сделать вывод, что такое различие характерно, в частности, для подвижных нагрузок, причем оно увеличивается по мере приближения поля упругих напряжений к квазистационар-ному полю по отношению к соответствующей (подвижной) системе координат [63, 64, 117]. В качестве конкретных приложений рассматривались конструкции мостов [93, 106, 122].  [c.41]


Для оценки сопротивляемости сварных соединений разрушению в агрессивных средах в условиях напряженного состояния разработан ряд методик. Напряжения в образце могут быть вызваны собственным полем остаточных напряжений за счет сварки, путем приложения внешней нагрузки или суммарным действием обоих факторов. Напряженное состояние в образцах может быть одноосным или двухосным. Испытания при одноосном нагружении внешней нагрузкой следует рассматривать как сравнительные, поскольку они не полностью воспроизводят напряженное состояние конструкций типа оболочек. Тем не менее они могут быть успешно использованы для сравнительной оценки стойкости против коррозионного растрескивания основного металла, а также влияния различных факторов неоднородности сварных соединений. Одноосные напряжения могут быть созданы постоянной нагрузкой. Статические растягивающие одноосные напряжения в образцах с заданной начальной деформацией могут быть созданы изгибом или растяжением. Для сварных соединений широко используют образцы в виде скоб (рис. 101). Различные начальные напряжения в них можно создавать, изменяя с помощью винта величину стрелы прогиба. Для выявления стойкости определенной зоны сварного соединения целесообразно использовать одноопорную схему, так как в зоне приложения нагрузки создаются максимальные напряжения. При двухопорной схеме более равномерное распределение напряжений позволяет сразу выявить слабую зону. Подготовленные таким образом образцы помещают в агрессивную среду и, если через заданное время образец не разрушился, его испытывают на растяжение. Считается, что сварное соединение может работать в условиях напрялсенного состояния, если изменение свойств не превышает 5... 10 %.  [c.174]

Что же касается активности кремнезема во флюсе с повышением основности последнего, то в этом случае картина совершенно противоположная. С увеличением основности происходи разрушение сложных комплексных соединений, образованных с участием кремнезема. В результате уменьшается концентрация слабых кремнекислородных анионов типа SixO , которые легко расщепляются под воздействием силового поля поверхности жидкого металла на сильные ионы Si + и О - [14]. Уменьшение же содержания катионов Si + и анионоа в поверхностном слое флюса—шлака приводит к торможению кремневосстановительного процесса и наоборот.  [c.100]


Смотреть страницы где упоминается термин Основные типы полей разрушения : [c.397]    [c.160]    [c.108]   
Смотреть главы в:

Основы теории оптимального проектирования конструкций  -> Основные типы полей разрушения



ПОИСК



33, 229, 249, 251 — Основные типы

Два основных типа разрушения

Разрушение по типу



© 2025 Mash-xxl.info Реклама на сайте