Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химическая реакция, влияние сталь

Однако, как следует из анализа экспериментальных данных, прочность высокоуглеродистых сталей в отожженном состоянии выше, чем малоуглеродистых. Следовательно, встает вопрос о дополнительном влиянии углерода на свойства сталей. Попытаемся решить эту задачу с учетом изменения энергии системы за счет протекающих в ней химических реакций.  [c.180]

Окисление-а. обезуглероживание— дефекты, являющиеся результатом химических реакций, происходящих при нагреве стали между поверхностным слоем металла и кислородом окружающей среды. Эти процессы оказывают отрицательное влияние на конструк-  [c.212]


В качестве флюсов применяется обожженная известь. Под влиянием высокой температуры шихта нагревается и плавится. В результате происходящих химических реакций в процессе плавления шихты получается сталь и шлак, который как более легкий располагается над жидким металлом.  [c.19]

Металлургические реакции. Процесс электрошлакового переплава ведут под шлаковым покрывалом в воздушной или какой-нибудь другой газовой среде. Взаимодействие между расплавленным металлом, шлаком и газовой средой делает процесс более сложным, чем в условиях вакуумно-дугового переплава. Так, конечный продукт возникает при более активном воздействии внешних факторов. Надо учитывать это потенциальное взаимодействие и в том числе такие факторы, как химический состав шлака и его физические характеристики, — вязкость, удельное электросопротивление, теплопроводность тогда станет ясно, что процесс электрошлакового переплава гораздо сложнее вакуумно-дугового, и, стремясь получить продукт удовлетворительного качества, следует тщательно соблюдать все необходимые правила и требования. Это предостережение особенно уместно в случае переплава никелевых суперсплавов, упрочняемых старением. Однако этот процесс не только более сложный, но и более гибкий, "податливый". Для выплавки суперсплавов твердорастворного типа и различных сталей имеется широкий выбор шлаков различного состава, а также параметров самого процесса переплава. По сравнению с вакуумно-дуговым переплавом процесс электрошлакового переплава оказывает влияние на большее количество элементов и более сильное. Наибольшая разница в этом влиянии относится к элементам, отличающимся высоким сродством к кислороду, таким как А1, Ti и 81.Только в результате самого тщательного управления процессом удается получать слиток, по всему объему которого содержание этих элементов соответствовало бы заданному  [c.145]

Исследование кинетики анодной реакции ионизации металла методом гальваностатической поляризации в буферном электролите (pH = 9) показало, что при добавке 1 г/л вольфрамата наблюдается сильная анодная поляризация стали (рис. 5,13). Малые концентрации ингибитора, хотя и смещают потенциал в положительную сторону, однако не оказывают существенного влияния на анодную поляризуемость стали. Это подтверждает вывод, сделанный при изучении этого же вопроса методом химической пассивации, о преимущественном влиянии малых концентраций ингибитора на эффективность катодного процесса.  [c.168]

Влияние величины предварительного напряжения арматуры. При лимитирующей стадии химической либо электрохимической реакции на поверхности стали кинетика процесса в значительной степени зависела бы от состояния. металла, т. е. коррозия протекала бы с тем большей скоростью, чем выше степень напряжения ар-  [c.138]


Большая скорость подачи тепла сварочной дугой и его отвода в основной металл и в атмосферу влияет на характер кристаллизации ванны. В отличие от основного металла шов имеет структуру литой стали. По химическому составу он может отличаться от основного металла, так как образуется в результате перемешивания основного и электродного металла и под влиянием реакций, происходящих между металлом, газом и шлаком в процессе сварки. Термический цикл, который претерпевает сварное соединение, оказывает существенное влияние на структуру шва и прилегающие к нему зоны основного металла.  [c.114]

Степень появления вспучиваний или охрупчивания зависит от количества адсорбированного водорода, которое зависит от площади поверхности металла, покрытой слоем Наде. Многие изменяемые факторы, включающие pH, температуру, природу анионов и состояние стали, оказывают заметное влияние на абсорбцию водорода [2]. К тому же определенные элементы или химические соединения, присутствующие в растворе в ничтожных количествах (следы), например 5, Р, Аз, 5е (называемые отравителями ), имеют способность замедлять (или отравлять ) реакцию химической десорбции и, таким образо.м, увеличивают площадь, покрытую водородом и соответственно абсорбцию. Прн травлении присутствие указанных элементов может привести к заметному увеличению площади, покрытой Наде, даже если при этом понижается ско-  [c.264]

В химическом машиностроении серебро применяется при изготовлении теплообменной аппаратуры для производства монохлоруксусной кислоты, уксусного ангидрида, химических чистых едких щелочей, чистых органических препаратов, фенола и т. п. Известны ректификационные колонны, изготовленные из серебра или из углеродистой стали, плакированные серебром. Серебро применяется и может найти применение тогда, когда ионы никеля, железа, хрома и других металлов, а также их соли оказывают вредное влияние на ход реакции и качество продуктов.  [c.75]

Химические свойства металлов — это свойства их и металлических сплавов вступать в реакцию с различными веществами. Под влиянием химического воздействия кислорода воздуха и влаги металлы подвергаются коррозии чугун ржавеет, бронза покрывается зеленым слоем окиси, сталь при нагреве в закалочных печах без защитной атмосферы окисляется, превращаясь в окалину, а в кислотах растворяется. Металлы и сплавы, способные противостоять коррозии, делятся на нержавеющие, кислотостойкие (кислотоупорные) и жаростойкие (окалиностойкие). Последние применяются для изготовления различных деталей топок, труб паровых котлов, сильно нагревающихся деталей автомобилей и др.  [c.11]

Графитовые детали, узлы, изделия входят в состав металлических конструкций, применяются в композиции с самыми различными металлами. Тщательный анализ известных механизмов удаления окислов при нагреве металла в вакууме и серия экспериментов показали, что испарение и диссоциация окислов железа в условиях высоких температур и степени разрежения, обычно применяемых при диффузионной сварке, — процессы малозначительные или не имеют места. Однако положение может изменить, если металл нагревать в присутствии графита. В этих условиях возможны процессы диссоциации окислов, поскольку углерод связывает кислород в СО и СОа, в результате чего парциальное давление кислорода становится намного ниже равновесного. Возможно, что данные процессы имеют место только на начальной стадии сварки графита со сталями, иначе протекание их сопровождалось бы увеличением толщины твердых продуктов на графите, чего не наблюдалось. Скорость процесса восстановления зависит от многих факторов. Кроме внешних условий (температуры, давления, характера восстановления), на скорость реакции оказывают влияние и физико-химические свойства самого восстанавливаемого вещества, его минералогический состав, структура, состояние поверхности и т. д. Учесть одновременно все эти факторы и дать единое математическое выражение скорости пока не удалось. При исследовании сварки графита с титаном применяли титан ВТ1 и графит с пористостью до 80%. Для получения равнопрочного соединения графита с титаном необходима степень разрежения 1-10 Па и давление не выше 4,9 МПа При этом давлении наблюдалась деформация со стороны титана. Для ее устранения давление снижено до 2,9 МПа. Наличие органического связующего материала в графита затрудняло процесс сварки его  [c.239]


Разрушение защитных пленок может также наступить при химическом воздействии на них концентрированных едкого натра или кислых солей при упаривании воды. При этом едкий натр наиболее опасен для металла, так как он не упаривается досуха вследствие того, что при 320 °С переходит в расплав, обладающий весьма высокой коррозионной агрессивностью. При оценке влияния солей на устойчивость пленок необходимо иметь в виду, что в результате испарения на поверхности нагрева возникает тонкий пленочный слой воды с большой концентрацией веществ, находящихся в растворенном и нерастворенном состоянии в воде всего объема котла. Естественно, что температура в граничном слое выше температуры всего объема воды. Протекание всех водно-химических реакций и коррозионного процесса завершается в данном слое. В граничном слое могут образовываться отложения веществ, хотя концентрация их в объеме воды далека от предела растворимости. Поэтому на поверхности металла при испарении воды могут осаждаться легкорастворимые в воде соли, концентрация которых быстро достигает предела растворимости при испарении воды в граничном слое. Эти соли затем снова переходят в раствор, т. е. в ядерный слой воды всего объема котла при его остановке. Явлению хайд аута наиболее сильно подвержены МззР04 и другие фосфаты натрия, растворимость которых при 340 С снижается до 0,2 %, (25—30 % при комнатной температуре). Под слоем соединений фосфатов, выпадающих на поверхности стали, может развиваться пароводяная коррозия с образованием бороздок, что обусловлено разрушающим действием отложений на защитные пленки. В реакции с железом принимает участие как кислый фосфат, так и концентрат щелочи — продукты гидролиза тринатрийфосфата. Продуктом хайд аута является НагНР04, который разъедает металл.  [c.180]

Исследование тепловых эффектов химических процессов во второй пол овине XIX в. (П. Э. М.Берт-ло, X. П. Ю. Томсен, Н. Н. Бекетов и др.) на основе открытого Г. И. Гессом закона постоянства сумм тепла химической реакции привело к созданию термохимии, которая, в свою очередь, оказала большое влияние на формирование-химической термодинамики [16]. Успехи, достигнутые в области химической термодинамики в конце ХТХ в., дали возможность осуществить ряд крупных открытий в области химического синтеза. К ним относится и уже упоминавшийся каталитический синтез аммиака. Разрешить эту важнейшук> научную проблему удалось в результате раскрытия закономерностей, которым подчиняется химическое равновесие. Синтез аммиака, как известно, требует особых термодинамических условий, связанных с резким уменьшением объема получаемого продукта по сравнению с объемом исходных азота и водорода. Общие принципы химического равновесия в зависимости от температуры высказал в 1884 г. Я. Вант-Гофф. В том же году А. Ле Шателье сформулировал общий закон химического равновесия, который затем (1887 г.) с позиций термодинамики был обоснован К. Брауном. Последующие работы принадлежат немецким ученым В. Нерпсту и Ф. Габеру, которые в 1905—1906 гг. сделали необходимые термодинамические расчеты химического равновесия реакции образования аммиака при высоких температурах и давлениях, дав тем самым конкретные рекомендапии для осуществления (1913 г.) промышленного синтеза [17]. Достижения химии стали оказывать всевозрастающее влияние на прогресс химической технологии, области применения которой непрерывно расширялись. Установление закономерностей управления химическими процессами вооружило технологию теорией и методами для более активного-преобразования вещества природы. Если главной задачей технологии предыдущего периода было получение исходных веществ для производства других уже известных химических соединений и продуктов (серная кислота, сода, щелочи и др.), составлявших область основной химической промышленности, то технология конца XIX — начала XX в. решала бо-  [c.142]

После определения конструкции композита - выбора компонентов и распределения их функций, приступают к решению наиболее сложной задачи изготовлению композиционного материала, вк.тючающему выбор геометрии армирования (например, различного рода плетения) и наиболее эффективного технологического метода соединения компонентов композита друг с другом (например, золь-гель методы, методы порошковой металлургии, методы осаждения-напыления и другие). Однако основная сложность заключается не в сборке отдельных компонентов композита, а в образовании между ними прочного и специфического соединения. При этом большую роль играет предварительный анализ фаничных процессов, происходящих в системе. Межфазное взаимодействие оказывает влияние на прочность связи компонентов, возможность химических реакций на границе и образование новых фаз, формируя такие характеристики композита, как термостойкость, устойчивость к действию агрессивных сред, гфочность и дру гие важные экс-штуатационные характеристики нового материала. Осуществление кон-тpOJ я не только за составом, но и за структурой требует развития теории, которая позволила бы предсказать, как будет влиять то или иное изменение на свойства композита. Когда стало расти число возможных комбинаций матрицы и армирующих волокон, а простое слоистое армирование начало уст пать место армированию сложными переплетениями, исследователи стали искать пути, позволяющие избежать чисто эмпирического подхода. Задача состоит в том, чтобы по характеристикам волокна (частиц и др.), матрицы и по их компоновке заранее предсказать поведение композита.  [c.12]

Вопрос (Уоддамс). В течение 1950—1951 гг. Эванс и его сотрудники в Кэмбридже доказали влияние ионных дефектов в пленках из окиси железа на их способность вступать в химические реакции. В частности, было показано, что пассивные пленки содержали в себе минимум анионных дефектов. В какой мере Коломбье полагает, что легирующие элементы и элементы, входящие в состав примесей, влияют на концентрацию этих дефектов в окисных пленках на нержавеющей стали и воздействуют на их защитные свойства До сих пор не было опуб-182  [c.182]


При контакте с водой сероводород, содержащийся в газе, растворяется в ней и диссоциирует, образуя слабокислую среду. Получившийся электролит вступает в электрохимическую реакцию с металлом трубопровода. Одним из продуктов взаимодействия является водород, часть которого проникает в металл [4, 34, 40]. Количество водорода, поступающего в металл, в процессе взаимодействия с сероводородсодержащей средой значительно превосходит уровень металлургического водорода, который присутствует в исходном состоянии стали. Повьпиая концентрацию водорода в стали другими методами, многие исследователи наблюдали явления трещинообразо-вания и охрупчивания, подобные тем, которые происходят в контакте с сероводородом. Наличие такого сходства, видимо, 1 вляется причиной общепринятого мнения, что основным внешним, по отношению к металлу, разрушающим агентом, является водород, попадающий в сталь в результате взаимодействия последней с сероводородом и продуктами соответствующих химических реакций [39, 84, 91, 131]. Имеются другие мнения о разрушающих агентах в сероводороде например, считают, что отрицательное влияние на работоспособность стали оказывает сера, диффундирующая в металл, ответственным за разрушение считают и локализованный анодный процесс [15, 45]. Однако точка зрения о доминирующей роли водорода является преобладающей.  [c.7]

Поверхностно-активные вещества пластифицируют лишь тончайший поверхностный слой металла, который сам начинает играть роль смазки, препятствующей глубокому наклепу металла и прилипанию его к инструменту. В результате значительно улучшается качество поверхности (рис. 23.7) и уменьшается работа, затрачиваемая на изменение формы, что позволяет давать большее обжатие за один цикл обработки, экономить рабочее время, энергию и инструмент. Очень широко применяют поверх-ностно-активные вещества в процессах обработки металлов резанием. Смазочно-охлаждающие жидкости с активными присадками (сульфофрезол, мыла, триэтаноламин и т. д.) препятствуют налипанию стружки на режущую кромку резцов и фрез, а также уменьшают засаливание шлифовальных кругов продуктами шлифования. В тех случаях, когда адсорбция сопровождается химической реакцией (хемосорбция), возможно очень большое облегчение обработки (например, использование олеиновой кислоты при сверлении и точении хромоникелевой стали). В их присутствии при сверлении стали 12Х18Н9Т и закаленной стали У8 скорость сверления увеличивается примерно в 10 раз по сравнению с обработкой в присутствии неполярного минерального масла без присадок и в 2—3 раза — по сравнению с применением олеиновой кислоты. Следует подчеркнуть, что условия резания нужно выбирать так, чтобы обрабатываемый материал понижал свою прочность в контакте с расплавом, а материал инструмента не испытывал заметного влияния среды.  [c.244]

Необходимо обратить внимание па следующие в , жные обстоятельства. Как уже отмечалось в гл. 1, с развитием энергетики существенно изменялись виды и особенности коррозионных повреждений, причем наибольшее влияние на эти изменения оказали рост параметров, интенсификация теплопередачи, новые методы водоподготовки, качество металла. Так, рост температуры рабочей среды привел к интенсификации коррозионных процессов, поскольку в соответствии с известным положением Вант-Гоффа при повышении температуры на каждые 10°С скорость химической реакции увеличивается примерно в 2—4 раза. Кроме того, с ростом температуры возрастает степень диссоциации воды и облегчаются коррозионные процессы в связи с образованием повышенных концентраций ионов водорода [1]. Увеличение температуры среды приводит также к снижению растворимости ряда веществ, присутствующих в котловой воде (например, карбонатов и сульфатов кальция и фосфатов натрия и др.), способных ускорять процессы коррозии. Приведем характерный пример, отражающий роль температуры среды в изменении характера внутрн-котловой коррозии водородное охрупчивание металла экранных труб, не отмечавшееся на котлах среднего давления, проявилось на котлах высокого и особенно сверхвысокого давления, поскольку для протекания процесса водородной коррозии углеродистой стали в котловой воде требуется, в частности, температурный уровень более 300 °С.  [c.31]

Температура воды влияет на скорость коррозии несколькими путями. Во-первых, скорость коррозии, как и всех химических реакций, увеличивается при повышении температуры. Во-вторых, более важно влияние температуры на природу и растворимость продуктов коррозии. Например, возрастание температуры часто приводит к разрушению карбонатной окалииы, а кроме того, ускоряет диффузию кислорода через воду, правда, понижая при этом растворимость его в воде. Некоторые из перечисленных эффектов антагонистичны, вследствие чего при определенных лабораторных условиях кривая температурной зависимости скорости коррозии стали в воде проходит через максимум до температуры кипения. Например, в экспериментах Фриенда [30] максимум достигался при 80° С.  [c.14]

По влиянию на стойкость инструментов из- быстрорежущих сталей особое место занимают химически активные жидкости, создающие химические пленки. Эти жидкости, значительно уменьшающие адгезионное взаимодействие инструментального и обрабатываемого материалов, уменьшают размеры и устойчивость нароста и заторможенного слоя, выполняющих защитные функции по отношению к передней и задней поверхностям. Поэтому, несмотря на снижение температуры резания, стойкость инструмента при применении химически активных жидкостей умень- шается. Этому также способствуют химические реакции, происходящие между быстрорежущей сталью и химически активной жидкостью.  [c.300]

Биогенность. Наиболее характерные случаи ускорения коррозии железа под влиянием жизнедеятельности бактерий наблюдаются в анаэробных условиях, т.е. при отсутствии кислорода. Образование кислорода, необходимого для протекания катодного процесса при коррозии в нейтральных средах, в анаэробных условиях, происходит за счет жизнедеятельности сульфатредуцирующих бактерий, восстанавливающих содержащиеся в почве соли серной кислоты по реаквдш + 20j, а ион серы участвует во вторичной реакции образования продуктов коррозии железа по реакции Fe + -> FeS. Это подтверждается результатами химического анализа продуктов анаэробной коррозии стали, в которых присутствует наряду с гидратами закиси и окиси железа также большое количество сернистого железа.  [c.46]

Анализ коррозионно-электрохимических свойств карбидов на основе хрома показывает, что в области активно-пассивного перехода возможно их растворение с высокими скоростями. Однако возможность избирательного растворения карбида из структуры стали во многом должна зависеть от химического состава стали и карбида, а также от соотношения потенциостатических характеристик указанных материалов в рассматриваемой области потенциалов. Например, в случае хромистой стали Х28 при ее растворении в активном состоянии установлено накопление на поверхности карбида (Сг, Fe) 2зСб, приводящее к самопассивации стали вследствие ускорения катодной и торможения анодной реакций [6]. Следовательно, в этом случае сталь растворяется с большей скоростью, чем карбид. Однако, при растворении хромоникелевых сталей в активном состоянии и при учете, что никель оказывает здесь сильное тормозящее влияние на скорость растворения, а содержание его в карбидах хрома меньше, чем в стали, возможно избирательное растворение указанных карбидов. По-видимому, этим можно объяснить локальные разрушения по границам зерен, наблюдаемые на отпущенных хромоникелевых сталях в активном состоянии [97, 1,001.  [c.45]


Теоретически производительность ЭХО находится в прямой зависимости от величины анодной плотности тока, что следует из закона Фарадея. Однако эта зависимость в реальных условиях нелинейна, так как величина выхода по току т) ф onst, что обусловлено характером пассивации, накоплением продуктов реакций, образованием пленок. Как показывают результаты многочисленных исследований, т] зависит от свойств обрабатываемого материала, вида электролита, его температуры, скорости потока, концентрации и pH, величины межэлектродного зазора и ряда других факторов. Существенное влияние на производительность ЭХО оказывают химический состав и структура обрабатываемого материала. Труднее обрабатываются стали с высоким содержанием элементов с резко отличающейся растворимостью [33, 791. Обнаружено снижение выхода по току при увеличении содержания углерода в углеродистой стали соответствующая эмпирическая зависимость имеет вид  [c.40]

Процесс взаимодействия расплавленного эмалевого покрытия с коррозионностойкими, легированными сталями, сплавами на основе никеля, титана, ниобия, хрома осложняется сильным влиянием продуктов взаимодействия на свойства покрытий. Имеют значение природа сплава, механизм его окисления и характер образующихся продуктов реакций, растворение в кристаллической решетке сплавов элементов внедрения, а также изменение состава и свойств покрытий в результате растворения в них продуктов реакций, протекающих на границе раздела фаз. Например, при нагреве до 1100° С заготовок из обычных углеродистых сталей в ванне расплавленного щелочного стекла, обеспечивается получение металла со светлой неокисленной поверхностью, тогда как обеспечить защиту этих сталей силикатными покрытиями идентичного с расплавами химического состава часто не удается. При высоких температурах многие составы силикатных покрытий защищают титан от образования окалины. Однако глубина газонасыщенного слоя титана может превышать 0,1—0,5 мм.  [c.126]

Влияние легирующих элементов стали на наводороживание сказывается в том, что водород вступает в химическое взаимодействие с примесями, содержащимися в металле [41]. При больших температурах и давлениях водород в атомарном виде реагирует с углеродом, находящимся в растворе, по реакции 4Н+С=СН4 или с углеродом, находящимся в карбидах, по реакции 4Н+РезС=ЗРе-1---I- H4. В результате сталь обезуглероживается. Образующийся метан располагается преимущественно по границам зерен [15].  [c.118]

I По достижении хорошо известной границы содержания хрома в 12% на стали образуется защитная пассивная пленка. Характерным для этой пленки является то, что она разрушается в отдельных местах поверхности стали главным образом ионами хлора. Это ведет к точечной коррозии (например, в морской воде). И хотя приток кислорода как деполяризатора еще оказывает решающее влияние на скорость точечной коррозии, локализация этого вида разрушения i зависит и от химической и структурной неоднородности, т. е. от гетерогенности стали. Соответственно нержавеющие стали, не являющиеся гомогенными (например, в результате медленной кристаллизации в слитке или термообработки в области температур от 400 до 900° С), проявляют гораздо большую склонность к точечной коррозии, чем гомогенные стали. Если же скорость коррозии упра-вляется реакциями, протекающими непосредственно на поверхности металла, то и состав и структура оказывают значительное влияние, проявляющееся и при небольшом различии в составе или металлургической истории стали. Классическая нержавеющая сталь 1Х18Н9, если ее быстро охладить от температуры растворяющего отжига (от 1050 до 1150° С), представляет собой однофазный гомогенный сплав с гранецентрированной кубической решеткой аустенита. Если такую сталь с низким содержанием углерода подвергнуть нагреву в течение нескольких часов при 600° С, аустенит частично превратится в феррит с объемноцентрированной кубической решеткой. Феррит, образующийся в результате такого диффузионного превращения, богаче хромом и беднее никелем по сравнению с аустенитом. Это способствует развитию большей склонности стали к структур-  [c.24]

Например, средневзвешенные значения кажущейся энергии активации Q образования феррита составляют 700—600, верхнего бейнита 650—390, нижнего бейн1 та 400—100, мартенсита 70 кДж/моль. Влияние химического состава, размера зерна и состояния аустенита перед прекращением и скорости охлаждения на Q при данном типе структурной реакции невелико. Например, для стали 09Г2С при увеличении скорости охлаждения от 6 до 18°С/с % = 5 с т" == 15 с) кажущаяся энергия активации образования феррита снижается на 30 кДж/моль, а для мартенсита возрастает на 30 кДж/моль, для бейнита она остается практически постоянной. Таким образом, по уровню кажущейся энергии активации можно определить тип структурных составляющих и характер фазовых превращений аустенита.  [c.91]

Формирование эмалевых покрытий основано на реакциях взаимодействия металла с эмалью и диффузии на границе раздела. Качество этих покрытий определяется свойствами эмали и в первую очередь смачиваемостью, зависящей от вязкости и поверхностного натяжения структурой и рельефом поверхности — составом и строением поверхностных пленок. Поэтому металлические изделия перед эмалированием приводят в равновесное состояние, а поверхность подвергают специальной подготовке. Сюда относится очистка и обезжиривание, придание поверхности определенного рельефа путем травления или дробеструйной обработки, создание окисных или иных (никелевых, фосфатных) пленок химической или термической обработкой и т. п. В процессе взаимодействия эмали с металлом происходит дальнейшее изменение состояния поверхности, оказывающее влияние на прочность сцепления металла с эмалью. Без предварительной подготовки такого металла, как сталь типа 08кп, сцепление с эмалью либо отсутствует совсем, либо очень слабое.  [c.22]

Свойства сварных соединений зависят от металла шва и свойств различных зон термического влияния. Для подавляющего большинства сталей удается получить такой химический состав металла шва и его структуру, которые обеспечивают прочность и пластичность металла шва не ниже, а во многих случаях и выше тех же характеристик основного металла. Как правило, этого удается достигнуть непосредственно после сварки, а в некоторых случаях — после термической обработки сварной конструкции. Свойства околошовной зоны в основном зависят от реакции основного металла на термический цикл сварки на них крайне мало влияет состав металла шва. В большинстве случаев, в особенности для сложнолегированных сталей, чувствительных к термическому циклу сварки, задача обеспечения необходимых механических свойств сварных соединений сводится к достижению необходимых свойств металла в зо-  [c.99]

Окислительное свечение паров фосфора изучалось также К. Бертоле, X. Тенаром, А. Грэхмом. Тормозящее влияние примесей на окислительные реакции по предложению К. Бертоле получило название отрицательного катализа, а ингибиторы, вызываюш,ие торможение, стали называться отрицательными катализаторами. С современной точки зрения, конечно, нельзя считать катализаторами вещества, химически изменяющиеся в ходе реакции, однако многие авторы до сих пор широко используют эту терминологию в литературе, посвященной окислительным процессам.  [c.13]


Смотреть страницы где упоминается термин Химическая реакция, влияние сталь : [c.167]    [c.284]    [c.139]    [c.72]    [c.269]   
Поверхности раздела в металлических композитах Том 1 (1978) -- [ c.176 , c.179 ]



ПОИСК



Сталь Влияние

Химическая реакция, влияние

Химические реакции



© 2025 Mash-xxl.info Реклама на сайте