Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реакции на поверхностях раздела, влияние

Если эффективная прочность упрочнителя в композите снижается в результате реакции на поверхности раздела, то дальнейшим объектом исследования должно служить изменение распределения прочности отдельных волокон. Розен [31] показал, что предел прочности композита зависит и от среднего значения, и от коэффициента вариации прочности волокон. Он пришел к выводу что при одинаковой средней прочности волокон распределение с большим коэффициентом вариации отвечает большей прочности композита. Иными словами, коэффициент вариации в определенной степени характеризует способность более прочных волокон принимать на себя нагрузку, высвобождаемую при разрушении более слабых волокон. Кроме того, увеличение коэффициента вариации может привести к росту энергии разрушения, поскольку увеличивается вероятность того, что дефектное место волокна перед развивающейся трещиной удалено от плоскости трещины.. Эта ситуация приводит либо к отклонению трещины в направлении места потенциального разрушения следующего волокна, либо к вытягиванию волокна из матрицы в обоих случаях энергия разрушения растет. Таким образом, характер влияния реакции между матрицей и волокном на механические свойства зависит как от среднего значения, так и от коэффициента вариации прочности волокон по завершении реакции.  [c.27]


Как и при испарении воды, в данных условиях имеют место процессы теплопроводности и диффузии, на которые в большинстве случаев оказывают влияние характер изменения скорости движущейся газовой фазы и ее турбулентность. Однако горение твердого углерода сопровождается химическими реакциями двух видов гомогенной (т. е. в газовой фазе) и гетерогенной (т. е. на поверхности раздела). Известно, что химические реакции не могут протекать с конечной скоростью в отсутствие конечного отклонения от термодинамического равновесия. Более того, при низких температурах эти отклонения могут быть весьма значительными. Следовательно, нельзя полагать, как в примере с водой и паровоздушными смесями, что S- и L-состояния равновесны.  [c.42]

Вопрос (Мур). По теории Зволинского и Эйринга допускается, что теплота реакции полностью расходуется на нагрев поверхности раздела металл — окись. Но в реакции окисления, где реагенты должны проходить через слой окиси, участки, которые нагреваются за счет выделения теплоты реакции, могут быть также на поверхности раздела окись — газ, а иногда даже в окисном слое. Всегда ли учитывается влияние места выделения реакционного тепла на воспламенение  [c.93]

Влияние массообмена на 2С///С/ и г. В этом и следующем пунктах рассматривается влияние массы, вводимой в турбулентный пограничный слой на поверхности раздела газового слоя и жидкого или твердого вещества, на поверхностное трение и теплопередачу. Мы предположим, что вводимая масса является газом того же состава, что и газ в пограничном слое, так что диффузионный перенос массы является несущественным. Диффузионный перенос массы будет учитываться в п. 8.4, в котором рассматривается самый общий случай. Кроме того, мы предположим, что не происходят никакие химические реакции. Так же как и в случае ламинарного пограничного слоя, рассмотренного в гл. 5, можно ожидать, что вдув будет уменьшать теплопередачу и поверхностное трение, а отсос даст противоположный эффект. Как и в случае ламинарного пограничного слоя, наши результаты подтвердят интуитивные соображения.  [c.277]

Общий результат взаимодействия между матрицей и волокном будет зависеть от влияния данной реакции на характер разрушения волокна, отслаивание, прочность поверхности раздела при сдвиге и многие другие характеристики. Неудивительно поэтому, что пока роль этих многочисленных факторов полностью не выяснена ни для одной конкретной композитной системы.  [c.27]


Характер влияния реакции на свойства композита с пластич-нмм и непластичным упрочнителем различен во многих отношениях. К сожалению, результаты систематических исследований взаимосвязи между состоянием поверхности раздела и прочностью данной системы при растяжении отсутствуют. Предметом исследования были другие механические характеристики, например усталостная прочность, прочность при изгибе, поперечная прочность эти данные включены в настоящий раздел с тем, чтобы развить по возможности общую картину поверхности раздела.  [c.176]

Отсутствие влияния содержания в смеси N0 и О2 на интенсивность теплообмена при конденсации объясняется двумя факторами снижением концентрации этих компонентов у поверхности раздела фаз в связи с протеканием реакции рекомбинации, так как химические реакции сглаживают профили концентраций, а также выделяющейся теплотой реакции.  [c.194]

Разъедание материала при горячей коррозии происходит вследствие изменения типа химических реакций, протекающих между сплавом и окружающей газовой средой, под влиянием осажденного на поверхности этого сплава слоя соли. Характер изменения типа реакций в каждом конкретном случае во многом зависит от состояния осажденного слоя. Как правило, наиболее эффективным в смысле стимуляции коррозионного разъедания является жидкий осажденный слой (см. рис. 12.6), хотя это вовсе и не обязательно для проявления разъедания при горячей коррозии. Даже твердые осажденные слои с очень высокой плотностью могут вызывать заметные изменения химических потенциалов реагирующих веществ на границе раздела между сплавом и осажденным слоем по сравнению с их значениями в объеме газа [17] и, следовательно, стимулировать проявление вполне определенных механизмов коррозионного разъедания сплава.  [c.63]

Механизм развития горячей коррозии зависит, в первую очередь, от особенностей химического взаимодействия между расплавом осажденной соли и данным сплавом. В частности, именно присутствие соли является причиной появления на поверхности сплава продуктов такого взаимодействия, не обладающих защитными свойствами. Химические реакции могут быть вызваны изменением растворимости одних фаз в областях стабильности оксидов или образованием других фаз вне этих областей. При обсуждении возможных механизмов развития горячей коррозии удобно разделить их на две группы. В первую можно включить все механизмы, имеющие ту общую особенность, что образование продуктов химических реакций, не обладающих защитными свойствами, происходит в них вследствие некоторого "флюсования" сплава расплавом соли. Другая группа механизмов отличается тем, что в процессах образования продуктов химических реакций, не обладающих защитными свойствами, главную роль играют некоторые компоненты, входящие в состав осажденной соли (например, S или С1). Иногда влияние осажденного слоя на реакции в системе сплав-газ может быть и незначительным. В таких случаях осадок на поверхности сплавов часто формируется в виде пористой твердой фазы. Механизм развития  [c.68]

Кроме изложенных выше соображений при выводе кинетических уравнений реакции выделения водорода необходимо также иметь в виду, что на скорость реакции, протекающей на границе раздела фаз металл — электролит, в условиях, когда на электроде имеется определенный заряд, большое влияние оказывает электростатическое взаимодействие между этим зарядом и разряжающимся ионом. Прямым следствием указанного взаимодействия является изменение концентрации реагирующих частиц на поверхности металла, а следовательно, и изменение скорости самой электрохимической реакции.  [c.109]

Характер зависимости скорости коррозии от времени можно объяснить, сопоставив скорость подземной коррозии со скоростью подвода кислорода к объекту в грунте с учетом влияния начальных условий и вторичных явлений. Влияние начальных условий заключается в том, что в первый момент после укладки трубопровода в грунт слои последнего, непосредственно прилегающие к поверхности трубы, будут насыщены кислородом так же, как слои грунта у границы раздела земля — воздух (концентрация равна Кн). На поверхности трубы (металла) в результате реакции металла с кислородом концентрация кислорода предполагается равной нулю. В начальный момент вблизи поверхности металла возникают большой градиент концентрации и пропорциональные ему поток д кислорода и скорость коррозии К. В прилегающем тонком слое грунта содержание кислорода невелико. При большом д с течением времени оно быстро уменьшается начинает потребляться кислород, содержащийся в более удаленных слоях. С течением времени 9 и /С будут уменьшаться до тех пор, пока не установится стационарный поток кислорода от поверхности грунта к внешней поверхности подземного трубопровода.  [c.43]


Изученные закономерности перемещения жидкого расплава показывают, что обменные процессы между ним и газовой фазой могут происходить не только за счет диффузии, как это имеет место при ламинарном потоке. Нельзя исключить возможность влияния турбулентных процессов перемешивания, которые играют двоякую роль. С одной стороны, они способствуют повышению скорости протекания обменных реакций кислорода в жидкой фазе в результате увеличения поверхности раздела между ними. С дру-ной стороны, чрезмерный рост турбулентности может привести к возникновению вихрей на поверхности жидкой пленки и местных возмущений в газовом потоке, препятствующих равномерному н беспрепятственному протеканию струи кислорода через разрез.  [c.35]

Разделить различные эффекты действия смазочно-охлаждаю-щих жидкостей весьма затруднительно. Их действие проявляется одновременно по различным направлениям. Как было показано выше, действие СОЖ уменьшается с нарастанием скорости и толщины среза. Наибольшее значение при низких скоростях резания имеют эффекты снижения трения и напряжения сдвига. При увеличении скорости, в связи с уменьшением времени химической реакции или ограниченного проникновения жидкости, эти эффекты снижаются. Охлаждение может играть значительную роль при высоких скоростях. Практической выгодой от эффектов снижения трения и напряжений является уменьшение силы резания и наростообразования, которое отражается на улучшении качества поверхности. Эти улучшения процесса резания наиболее важны для операций, характеризующихся низкой скоростью и большими усилиями резания, таких как протягивание или резьбо-нарезание. Охлаждающее действие жидкости имеет наибольшее влияние на стойкость инструмента и на погрешности обрабатываемой детали, вызываемые термическими воздействиями. Повышение стойкости инструмента главным образом зависит от снижения температуры резания. Охлаждение оказывает влияние на температуру резания при работе со скоростью менее 150 м/мин. При более высокой скорости резания СОЖ могут быть использованы лишь для стабилизации температуры обрабатываемой детали, а не для воздействия на процесс резания.  [c.93]

Способ изготовления композита заметно влияет на характеристики поверхности раздела. Композиты алюминий — бор, полученные путем пропитки расплавленным алюминием, принадлежат к третьему классу им присущи неравномерная коррозия волокна и неравномерный рост борида алюминия (рис. 6). Напротив, в композитах, изготовленных по оптимальной технологии диффузионной сварки, не происходит реакции на поверхности раздела на рис. 7 виден лишь один случайный кристалл борида. Для выяснения причин этого различия следует рассмотреть механизм диффузионной сварки. Такое рассмотрение послужит поводом для более общего анализа влияния технологии изготовления- 1 омиозита на характеристики поверхности раздела.  [c.30]

Рис. 9. Влияние реакции на поверхности раздела на прочность сварного О бразца никель —сапфир [34]. Рис. 9. Влияние реакции на <a href="/info/26134">поверхности раздела</a> на <a href="/info/451004">прочность сварного</a> О бразца никель —сапфир [34].
В последнее время были проведены детальные исследования процесса изготовления композитов с матрицей Ti-6A1-4V, содержащих от 45 до 50 об.% волокон B/Si диаметром 140 М1ш [5]. Хотя корреляция параметров изготовления со структурой поверхности раздела была неполной, последовательное увеличение температуры горячего прессования приводило к росту толщины слоя продукта реакции на поверхности раздела. Продолжительность прессования была постоянной (30 мин), а давление выбирали таким, чтобы при каждой температуре обеспечить прочную диффузионную сварку композита. На каждом режиме обрабатывали четыре образца усредненные результаты этих испытаний, а также результаты некоторых многократных испытаний на поперечную прочность приведены на рис. 14. Хотя в испытаниях на поперечную прочность влияние поверхности раздела непосредственно не оценивалось, их результаты приведены потому, что значения деформации разрушения разупрочненных композитов, полученных пре ссованием при 1144 К и 1172 К, совпадают со значениями, предсказанными для поверхности раздела титан— карбид кремния.  [c.167]

Известно, что чем меньше радиус частицы, тем выше химический потенциал ее атомов и, следовательно, выше растворимость, подчиняющаяся уравнению Томсона—Фрейндлиха [104 ]. Однако этот эффект, обусловленный свободной энергией на поверхности раздела, имеет значение только для тел с большой удельной поверхностью. Расчет по указанному уравнению для типичного материала с. атомной массой 50, плотностью 10 г/см и свободной поверхностной энергией 5 <10 Дж/см показывает, что влияние размера частиц на растворимость начинает существенно проявляться только при радиусах кривизны менее 5 А. Сказанное полностью относится к растворению микровыступов на поверхности металла преимущественное растворение их относительно гладкой поверхности возможно только в случае очень острых микронеровностей, радиус закругления которых не превышает 5 А. Очевидно, в общий баланс гетерогенной реакции такие субмикровыступы не внесут заметного вклада, так как растворятся в первую очередь при очень малом материальном выходе.  [c.171]


При испытаниях в нейтральной среде скорость коррозии низколегированных сталей в начальный период времени уменьшается во времени, однако через 80—100 суток она становится неизменной. Д. Л. Дуглас и Ф. К. Цицес [111, 12] считают, что к этому моменту пленка достигает предельной толщины, становится пористой, и скорость диффузии ионов железа через нее поддерживается на постоянном уровне. Поскольку, по данным тех же авторов, наличие на поверхности металла окисной пленки, образовавшейся в процессе отжига при температуре 800° С, не изменило скорости коррозии железа, измеренной по количеству выделившегося водорода, очевидно, диффузия через окисную пленку не является стадией, полностью определяющей эффективность коррозионного процесса в этом случае. Скорость катодного процесса на образцах с окисной пленкой, полученной при оксидировании и образовавшейся при окислении на воздухе, и на образцах без искусственной пленки, почти что одинакова, а это также свидетельствует о том, что диффузия через окисную пленку не влияет на скорость коррозии. При температуре ниже 200° С эффективность коррозионного процесса железа определяется скоростью реакции, протекающей на поверхности раздела металл — вода. Однако, по мнению этих авторов, скорость диффузии ионов железа через окисную пленку и в этом случае оказывает некоторое (но не определяющее) влияние на скорость коррозионного процесса.  [c.101]

Химическая реакция. Эта реакция включает образование различных соединений за счет реакции между основным металлом и расплавленным металлом или солью. Если соединения образуют адгезивный, сплошной слой на поверхности раздела, то оня приводят к ингибированию (замедлению) происходящей реакции. Если они или ие обладают адгезией, нли растворяются в жидкой фазе, они не будут оказывать защитных свойств. В некоторых случаях соединения образуются в матрице сплава, например соединения интерметаллидов по границам зереи, н приводят к вредному влиянию несмотря на то, что при этом прямых коррозионных потерь может не наблюдаться.  [c.584]

Известно, что достаточно быстрая химическая реакция, протекающая на поверхности пленки жидкости, обтекаемой потоком газа, часто вызывает увеличение температуры поверхности и, следовательно, увеличение потока теплоты через поверхность раздела газ—жидкость. Рассмотрим задачу о влиянии химической реакции первого порядка на процесс тепломассопереноса в турбулентной пленке жидкости. Для описания процесса массопере-носа в такой пленке воспользуемся результатами решения аналогичной задачи, полученными в разд. 7.3 без учета теплопереноса. Сформулируем основные предположения. Будем считать, что скорость стекания пленки жидкости и является постоянной вели-  [c.328]

Контакт воды с металлической поверхностью приводит к коррозии металлов, протекающей по электрохимическому механизму. Величина водонефтяного соотношения, характерного для конкретного месторождения, при котором система нефть — вода становится неустойчивой, может быть использована в качестве параметра для прогнозирования скорости коррозионного разрушения оборудования. Углеводороды практически не вызывают коррозию металлов. Однако неполярная фаза в системе нефть — вода оказывает значительное влияние на коррозионную активность водонефтяной системы в целом, повышая или понижая ее. Повышение защитного действия углеводородной составляющей в эмульсионной системе вода — нефть связано в основном с ингибирующими свойствами ПАВ, входящими в природную нефть. Наиболее активные ПАВ — нафтеновые н алифатические кислоты и асфальтосмолистые вещества. Содержание ПАВ в нефтях различных месторождений колеблется в широких пределах. Молекулы нафтеновых и алифатических кислот состоят из неполярной части — углеводородного радикала и полярной части карбоксильной группы, что обусловливает их способность адсорбироваться на границе раздела фаз. Соли нафтеновых кислог более полярны, чем сами кислоты, и более поверхностно-активны. Величина поверхностного натяжения на границе раздела вода — очищенная фракция нефти (например, вазелиновое масло или очищенный керосин) составляет 50—55 мН/м, в то время как поверхностное натяжение на границе раздела вода — сырая нефть не превышает 20—25 мН/м. Это свидетельствует об адсорбции поверхностно-активных компонентов нефти на границе раздела сырая нефть—вода. В щелочной пластовой воде происходит реакция взаимодействия нафтеновой кислоты с ионом щелочного металла. Образующееся соединение более поверхностно-активно, чем нафтеновые кислоты.  [c.122]

Аналогичные теории и представления о прочности поверхности раздела при растяжении и сдвиге были развиты применительно к композитам первого класса. Приведенные Купером и Келли примеры композитов (таких, как медь — вольфрам) подтверждают справедливость выполненного ими анализа поведения систем с металлической матрицей. В системах второго и третьего классов на границе волокно — матрица появляется зона конечной ширины, отличающаяся по свойствам как от матрицы, так и от волокна. Анализ систем второго класса был начат Эбертом и др. [16]. Они использовали дифференциальные методы для оценки влияния диффузии в зоне раздела на механические свойства компонентов. Эта работа является одновременно и первым анализом немодельных систем, хотя она и была ограничена лишь системами с химическим континуумом, т. е. непрерывным изменением состава (см. гл. 2). В системах третьего класса наличие продукта реакции приводит к химическому дисконтинууму — прерывистому измене-  [c.19]

Необходимость воспроизведения радиусов кривизны, обусловленная рядом причин. К ним относятся влияние радиуса на растворимость (соотношение Томсона—Фрейндлиха), изменения объема в результате реакции, влияние фиксированного положения поверхности раздела на образование пустот по Киркендаллу и влияние радиуса на градиенты концентрации. Эти эффекты обсуждаются в гл. 3, однако скорее с точки зрения физической химии, а не постановки экспериментов.  [c.39]

С точки зрения представлений об окисной связи работа [45] достойна упоминания, так как в предложенной модели композита сапфир — никелевый сплав авторы обусловили химическим взаимодействием прочность связи. Они предположили, что прочность связи возрастает по мере увеличения степени взаимодействия. Однако эффективная сила связи может и уменьшаться, если избыточное взаимодействие ослабляет упрочиитель. Прочностные аспекты этой теории обсуждаются более подробно в гл. 4, посвященной влиянию поверхностей раздела на продольную прочность композитов. Там отмечается, что наблюдаемая прочность связи очень мало изменяется с ростом толщины зоны взаимодействия от 0,1 до 5 мкм. Этот результат может означать, что для образования весьма прочной связи достаточно совсем небольшого взаимодействия. Последнее объяснение лучше согласуется с тем влиянием реакции на (Прочность связи, которое наблюдается в системах других типов, например титан — бор.  [c.85]


B. Влияние реакции в композитах алюминий — нержавеющая сталь 176 V. Влияние поверхности раздела на прочность стстем второго класса 179  [c.137]

Химическая реакция, влияние на прочность и характеристики поверхности раздела в системах псевдопервого класса 179 ------при продольном нагружении систем лсевдопервого кла.сса  [c.436]

Для того чтобы понять рассмотренные выше закономерностиЪо влиянию состава электролита на водородное перенапряжение, а также другие экспериментальные наблюденные факты, необходимо учесть и специфическое строение двойного слоя, на которое впервые указал Фрумкин, разработавший теорию замедленного разряда в современном ее понимании (24). Дело в том, что,, используя теорию замедленного разряда в ее первоначальном виде для вывода основных кинетических уравнений реакции разряда ионов водорода, не учитывали специфические особенности электрохимических реакций. На реакцию, протекаюш,ую на границе раздела двух фаз металл — электролит в условиях, когда на электроде имеется определенный заряд,, оказывает большое влияние электростатическое взаимодействие между этим зарядом и ионами. Прямым следствием указанного взаимодействия является изменение концентрации реагирующих частиц на поверхности металла, а следовательно, и изменение скорости самой электрохимической реакции. Силы электростатического взаимодействия между электродом и ионами, в свою очередь, зависят от плотности заряда, т. е. потенциала электрода и строения двойного слоя.  [c.28]

Процесс взаимодействия расплавленного эмалевого покрытия с коррозионностойкими, легированными сталями, сплавами на основе никеля, титана, ниобия, хрома осложняется сильным влиянием продуктов взаимодействия на свойства покрытий. Имеют значение природа сплава, механизм его окисления и характер образующихся продуктов реакций, растворение в кристаллической решетке сплавов элементов внедрения, а также изменение состава и свойств покрытий в результате растворения в них продуктов реакций, протекающих на границе раздела фаз. Например, при нагреве до 1100° С заготовок из обычных углеродистых сталей в ванне расплавленного щелочного стекла, обеспечивается получение металла со светлой неокисленной поверхностью, тогда как обеспечить защиту этих сталей силикатными покрытиями идентичного с расплавами химического состава часто не удается. При высоких температурах многие составы силикатных покрытий защищают титан от образования окалины. Однако глубина газонасыщенного слоя титана может превышать 0,1—0,5 мм.  [c.126]

Рассмотрим влияние сплошной пленки на процесс химической коррозии во времени. Ири контакте с твердой поверхностью атомы жидкой среды адсорбируются па поверхности твердого тела (в случае смачивания твердой поверхности жидкой).. Лдсорбировавшиеся атомы жидкости диффундируют в твердый материал, образуя моно.молекулярный слой продуктов реакции. При образовании тонкой пленки дальнейшее взаимодействие жидкой и твердой фаз определяется ее свойствами, точнее — коэффициентами диффузии атомов жидкой среды и твердого материала через пленку Толщина пленки может увеличиваться вследствие образования новых слоев продуктов реакции на границе с жидкой средой или твердым материалом и, наконец, в центральных частях начальной пленки в зависимости от соотношения коэффициентов диффузии. Если коэффициент диффузии атомов твердого материала значительно меньше коэффициента диффузии атомов жидкой среды, то последние будут быстрее достигать поверхности раздела слой новообразований — твердый материал. Где при определенной концентрации их решетка будет перестраиваться с образованием новых соедниеннй. При обратном сооттю-шепни коэффициентов диффузии образование этих продуктов происходит на границе с жидкой средой.  [c.37]

В. Гарди, Ф. Боудена, Д. Тейбора, A. . Ахматова, В. Дерягина, P.M. Матвеевского, И.А. Буяновского и др. Показатели совместимости трибосистем при использовании различных смазочных сред и материалов поверхностей рассмотрены P.M. Матвеевским, И.А. Буянов-ским и О.В. Лазовской [32]. В условиях граничной смазки наибольщее влияние на изменение режима трения оказывает температура в контакте сопряженных поверхностей. При достижении критической температуры происходит десорбция молекул масла на поверхностях трения, смазочный слой теряет свою способность разделять поверхности трения, увеличиваются коэффициент трения и износ. Дальнейшее повышение температуры может привести к задиру, но иногда химические реакции активных компонентов присадки к маслу с поверхностными слоями приводят к снижению трения, что подробно рассмотрено Г. Хайнике [54] (см. гл. 6 и 7).  [c.320]

Когда две различные фазы, например жидкость и газ или две жидкости с разными свойствами, соприкасаются друг с другом, на каждую единицу площади поверхности раздела приходится определенное количество энергии. Эта энергия имеет ту же размерность, что и сила, приходящаяся на единицу длины, и, хотя здесь нет физического подобия, все же будет удобнее в дальнейшем пользоваться последней величиной. Когда поверхность раздела находится между жидкостью и газом, она называется свободной поверхностью, а сила — поверхностным натяжением, размерность которого динЫсм. Свободные поверхности не оказывают влияния на свойства жидкостей в гидравлических системах, если наблюдается явление вспенивания [28, 29]. Пена представляет собой эмульсию пузырьков газа в жидкости при некоторых условиях эта эмульсия может быть очень устойчивой. По своей природе пена гораздо более сжимаема, чем сама жидкость, и если она засасывается насосом и попадает в гидросистему, то работа системы может нарушиться. Кроме того, из-за большой площади поверхности раздела между жидкостью и газом процесс окисления и другие химические реакции в пене значительно ускоряются.  [c.48]

Формирование эмалевых покрытий основано на реакциях взаимодействия металла с эмалью и диффузии на границе раздела. Качество этих покрытий определяется свойствами эмали и в первую очередь смачиваемостью, зависящей от вязкости и поверхностного натяжения структурой и рельефом поверхности — составом и строением поверхностных пленок. Поэтому металлические изделия перед эмалированием приводят в равновесное состояние, а поверхность подвергают специальной подготовке. Сюда относится очистка и обезжиривание, придание поверхности определенного рельефа путем травления или дробеструйной обработки, создание окисных или иных (никелевых, фосфатных) пленок химической или термической обработкой и т. п. В процессе взаимодействия эмали с металлом происходит дальнейшее изменение состояния поверхности, оказывающее влияние на прочность сцепления металла с эмалью. Без предварительной подготовки такого металла, как сталь типа 08кп, сцепление с эмалью либо отсутствует совсем, либо очень слабое.  [c.22]

Процесс химического растворения можно разделить на три периода. Вначале происходит растворение окисной пленки, имевшейся на поверхности металла, причем растворение это, как правило, протекает медленно. Далее накопляются газообразные продукты реакции на поверхносги металла (обычно водород). На образование газообразных продуктов значительное влияние оказывает состояние поверхности. Серьезную роль играет и накопление числа катодов местных элементов на поверхности металла за счет разъедания металла и обна-  [c.105]

Таким образом, ингибиторы по их влиянию на щелевую коррозию можно разделить на две группы одна из них при концентрациях, достаточных для защиты открытой поверхности от коррозии, приводит к интенсивной жоррозии металла в щели другая — уменьщает коррозию металла в щелях при любых концентрациях, так же как и на открытой поверхности. К первой группе относятся нитрит натрия, бихромат калия, двузамещенный фосфат и любые другие ингибиторы, которые защищают металл -благодаря частичной пассивации электрода. Ко второй группе относятся сульфат цинка, нитрат кальция и другие ингибиторы, защищающие металлы от коррозии благодаря замедлению скорости катодной реакции. К этой группе ингибиторов можно, очевидно, отнести и такие анодные ингибиторы, механизм действия которых не связан с частичной пассивацией электрода, а обусловлен лишь уменьшением скорости анодной реакции, например, метаванадат натрия.  [c.105]

Два фактора определяют в основном анодное поведение — это потенциал и отношение концентраций анионов молекул и воды в слое, примыкающем к поверхности металла. Это отношение может yiue TBeHHO отличаться от соответствующего отношения в объеме раствора. Влияние [137] этих двух переменных на широкую гамму возможных реакций представлено на фиг. 89. Диаграмма разделена на четыре области, относительные размеры которых, зависят от металла и участвующих анионов. Это— пассивная, активная.  [c.211]


И Рг—изменения свободной энергии при первичной и вторичной реакциях. Термодинамически необходимо условие 1>0. Наоборот, м. б. и положительным и отрицательным, соответственно чему все С. р. могут быть разделены на два класса I класс— г>0, когда индуцирующее влияние первого процесса сказывается только на скорости достижения равновесия вторичной реакции И класс—Е,<0, когда вторичная реакция частично усваивает свободную энергию первичной реакции и смещает свое состояние равновесия относительно того, к-рое задается параметрами системы (<°, давлением и пр.). До сих пор с достоверностью не найдено ни одной пары чисто химич. С. р., к-рые протекали бы по написанной общей схеме. Можно впрочем указать ряд случаев сопряжения химич. и физич. процессов, подпадающих под эту схему, напр, появление электронной эмиссии при превращении активного азота в нормальную форму на металлич. поверхностях первичный ЗГакт. вторичный Ме- Ме +0 сюда же, с известной оговоркой, можно отнести случаи сенсибилизированной диссоциации, например Hg - Hg (первичный) или Хе - Хе (первичный) и Нг->2Н (вторичный). Типичная химич. индукция известна в более частной форме, именно когда один из компонентов сопряженного процесса является общим для первичной и вторичной реакций (напр. С). Применительно к этому типичному случаю химич. индукции была установлена номенклатура [ ] компонент А, общий для обоих процессов, на-  [c.224]


Смотреть страницы где упоминается термин Реакции на поверхностях раздела, влияние : [c.215]    [c.337]    [c.155]    [c.556]    [c.220]    [c.364]    [c.133]    [c.139]    [c.187]    [c.186]    [c.15]    [c.271]    [c.59]   
Поверхности раздела в металлических композитах Том 1 (1978) -- [ c.0 ]



ПОИСК



Поверхность влияния

Поверхность раздела

Реакция поверхности

Химическая реакция, влияние прочность и характеристики Поверхности раздела в системах



© 2025 Mash-xxl.info Реклама на сайте