Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметры геометрические инструмента рабочие

Параметры геометрические инструмента рабочие 34, 41  [c.340]

Зона максимальной запыленности при обработке хрупких материалов определяется в зависимости от характера обработки, геометрических параметров режущего инструмента и режимов резания. В ряде случаев она совпадает с зоной дыхания станочника, а иногда проходит через соседние рабочие места.  [c.32]

Конструктивное оформление УПШ выполняется по двум схемам без сменного инструмента и со сменным инструментом. В первом случае при неизменных рабочих частях штампа изменение технологических параметров (размеров штампуемых элементов) достигается за счет соответствующих перемещений упорных линеек, упоров и других составляющих наладки штампа. Во втором — кроме указанных перемещений производится замена рабочих частей (сменного инструмента) штампа. Если в первом случае для штамповки данного элемента используется некоторая геометрическая часть рабочих деталей штампа, то во втором, как правило, для каждого данного элемента используется полный профиль (контур) того или иного сменного рабочего инструмента.  [c.162]


У некоторых инструментов различие в величинах инструментальных, статических и кинематических геометрических параметров незначительно, но у некоторых это различие большое, и его необходимо учитывать при назначении инструментальных геометрических параметров. Их пересчитывают с учетом угла скорости резания Т1 — угла в рабочей плоскости между направлениями скоростей результирующего движения резания Уе и главного движения V резания угла подачи ц, — угла между направлениями скоростей движения подачи Vs и главного движения V резания, а также с учетом параметров установки инструмента — угла установки  [c.12]

Поскольку при многокоординатной обработке сложных поверхностей деталей величины кинематических геометрических параметров фасонного инструмента переменны как во времени, так и по периметру режущих кромок, текущие их значения могут ограничивать параметры рабочих движений инструмента (движений подачи, движений ориентирования инструмента и др.). Поэтому необходимо уметь определять допустимые пределы изменения геометрических параметров, в частности, с учетом ограничений, накладываемых параметрами относительных движений ориентирования инструмента. Исследование зависимости величин кинематических геометрических параметров режущих кромок от значений параметров кинематики формообразования позволяет выявить неиспользованные резервы кинематики резания и формообразования, например, установить те параметры процесса формообразования, которые для повышения эффективности обработки предпочтительнее изменять в первую очередь.  [c.347]

Сверление отверстий. Сверло является более сложным инструментом, чем резец. Оно имеет пять лезвий два главных а—Ь и с—d, два вспомогательных Ь—е, d—/ и лезвие перемычки а—с (рис. 9.10). Вспомогательные лезвия представляют собой винтовую кромку, идущую вдоль всей рабочей поверхности сверла. Передняя поверхность является винтовой. Задняя поверхность, в зависимости от способа заточки, может быть конической, винтовой, цилиндрической или плоской. В главной секущей плоскости сверло имеет форму резца с присущими ему геометрическими параметрами.  [c.139]

Изучение процесса резания необходимо начинать с рассмотрения геометрических параметров инструмента и их изменения в процессе работы, т. е. в процессе относительного движения инструмента. Такими параметрами являются угол заострения инструмента, образованный рабочими гранями.  [c.9]


Этап И — проведение наблюдений и измерений. Он включает 1) измерения параметров работоспособности линии и ее элементов в периоды нормального функционирования (время отдельных рабочих и холостых ходов и степень их совмещения во времени технологические режимы скорость, равномерность и стабильность перемещений механизмов температуру рабочих жидкостей и газов и др.) 2) фотографию работы оборудования на протяжении 12—14 рабочих смен, хронометраж простоев отдельных видов и т. д. 3) измерения обрабатываемых деталей, их геометрической точности, определение шероховатости поверхности и других характеристик качества. На этом же этапе могут выполняться и другие измерения износ инструментов, занятость операторов и наладчиков и др.  [c.196]

Рентабельность режима резания достигается правильным выбором конструкции инструмента, геометрических параметров его рабочей части, материала инструмента, качественной заточкой и доводкой, правильной установкой и креплением инструмента и заготовки вполне исправным состоянием станка, целесообразной конструкцией технологической оснастки.  [c.501]

Геометрические параметры режущей части инструмента (рис. 1—2, табл. 1) разделяют на рабочие углы (углы движения) и статические углы (углы заточки).  [c.140]

Методы и средства адаптации первоначально нашли применение в сборочном центре , разработанном в 1960-х годах в Московском станкоинструментальном институте, С помощью датчиков измерялись геометрические параметры сопрягаемой и установочной поверхностей базовой и присоединяемой детали, а также определялось их относительное положение. По этим данным адаптивная система управления изменяла относительное положение деталей до тех пор, пока они не занимали нужное для сборки положение. Для увеличения производительности сборочного центра система управления обеспечивала ускоренный подвод рабочего инструмента с деталью для ее установки на поворотном столе или на базовой детали [1 ].  [c.176]

Таким образом, автоматическое измерение геометрических параметров деталей и инструментов осуществляется прямо в рабочей зоне без снятия их со станка.  [c.275]

Автоколебания (незатухающие само-поддерживающиеся) технологической системы создаются силами, возникающими в процессе резания. Возмущающая сила создается и управляется процессом резания и после прекращения его исчезает. Причины автоколебаний изменения сил резания, трения на рабочих поверхностях инструмента и площади поперечного сечения срезаемого слоя металла образование наростов упругие деформации заготовки и инструмента. Автоколебания могут быть низкочастотными (f= 50. .. 500 Гц) и высокочастотными (f= 800. .. 6000 Гц). Первые вызывают на обработанной поверхности заготовки волнистость, вторые - мелкую рябь. Возникновение автоколебаний можно предупредить, изменяя режим резания и геометрические параметры инструмента, правильно устанавливая заготовку и инструмент на станке, а также  [c.315]

Качественная и своевременная заточка и доводка инструмента позволяет не только восстановить его геометрические параметры, но и способствует улучшению качества обрабатываемых деталей, повышению производительности труда рабочих-станочников основного производства, позволяет сократить расход инструмента, способствует ритмичной и бесперебойной работе металлорежущих станков.  [c.40]

Контроль. После заточки и доводки фрезы подвергают контролю биение зубьев, геометрические параметры, размеры рабочей части инструмента и шероховатость поверхностей должны удовлетворять соответствующим техническим требованиям. В табл.  [c.61]

После заточки и доводки у фрезы контролируют биение режущих кромок, размеры рабочей части инструмента, геометрические параметры и чистоту режущих поверхностей. Допустимое радиальное биение зубьев фрез приведено в табл. 20. Допустимые отклонения углов заточки а, и у до 10° находятся в пределах 1°, а при их значениях, равных 10—20°, 2°, отклонение угла в плане ф (2—3°), фо 2° и вспомогательного угла в плане ф( (0°30 —1°).  [c.398]


Алгоритм проектирования включает в себя следующие этапы выбор исходной заготовки, выбор варианта технологического процесса, определение геометрических параметров переходов штамповки и исполнительных размеров рабочего инструмента, расчет силовых параметров штамповки. В алгоритме использованы характерные для холодной объемной штамповки правила построения технологического процесса, имеющиеся в справочниках, руководящих технических материалах, а также известные из производственного опыта.  [c.363]

Геометрия токарного резца. Форма режущих инструментов создавалась многолетней практикой. Производственный рабочий должен выбрать геометрические параметры инструмента и заточить его в соответствии с требуемой формой, поэтому обозначения углов резца на чертеже в первую очередь должны обеспечить легкость заточки.  [c.124]

Расчет установочных координат производится на основании элементов и геометрических параметров обрабатываемого зуба инструмента. Поэтому в рабочих чертежах инструмента должны быть указаны ширина пера /, высота зуба h, измеренная в радиальном направлении, угол рабочей фрезы 0, передний угол у и диаметр заготовки.  [c.274]

Р о 3 е н б е р г А. М. и др. Выбор оптимальных геометрических параметров рабочих элементов твердосплавных деформирующих протяжек.— В кн. Протяжной инструмент, ч. II. Изд. Челябинского гор. отд. НТО Машпром, Челябинск, 1969, с. 45—56.  [c.182]

Микрогеометрия поверхности, обработанной одним и тем же методом, зависит от режимов резания, геометрических параметров рабочего инструмента, жёсткости технологической системы станок — заготовка — инструмент, степени затупления инструмента и от сма-  [c.740]

Следует иметь в виду, что вследствие неточности технологического оборудования, погрешностей и износа инструмента и приспособлений, силовой и температурной деформации системы станок—приспособление—инструмент—деталь (СПИД), вследствие неоднородности физико-механических свойств материала заготовок и остаточных напряжений в них, непостоянства электрических и магнитных свойств материала, а также в результате ошибок рабочего и других причин действительные значения геометрических, механических и других параметров деталей и частей машин (узлов) могут отличаться от расчетных. Поэтому следует различать нормированную точность деталей, частей (узлов) и машин, т. е. совокупность допускаемых отклонений от расчетных значений геометрических и других параметров, и действительную точность, определяемую как совокупность действительных отклонений, установленных в результате измерения (с допустимой погрешностью) изготовленных деталей, частей (узлов) и машин. Степень соответствия действительной точности нормированной зависит от качества материала и заготовок, технологичности конструкции изделий, точности их изготовления и сборки, а также от ряда других факторов. Таким образом, разработка чертежей и технических условий с указанием нормированной точности размеров и других параметров деталей и составных частей (узлов) машин, обеспечивающей их высокое качество, является первой составной частью принципа взаимозаменяемости, выполняемой в процессе конструирования изделий.  [c.10]

Исходные положения, используемые при производстве изделий. Для обеспечения взаимозаменяемости необходимо, чтобы изготовление деталей и сборка машин и других изделий производились независимо и с нормированной точностью их геометрических, электрических и других параметров и такими методами, при которых создавалось бы требуемое качество деталей и составных частей машин и обеспечивались бы заданные эксплуатационные показатели машин. Соблюдение точностных требований к размерам и другим параметрам является обязательным условием взаимозаменяемости. В этом заключается вторая составная часть принципа взаимозаменяемости, выполняемая в процессе производства изделий и их частей. Для выполнения этой составной части принципа взаимозаменяемости необходимо наличие соответствующего по точности оборудования, приспособлений, инструмента и средств контроля, а также соответствующая квалификация рабочих, выполняющих производственные и контрольные операции.  [c.10]

Для проверки на геометрическую точность станка ГОСТом установлены параметры и методы проверки их. Проверка станков по нормам точности заключается в установлении точности изготовления, взаиморасположения, перемещения и соотношения движений рабочих органов станка, несущих заготовку и инструмент, путем измерений с помощью приспособлений и приборов, а также путем промеров обработанных на станках образцов деталей.  [c.47]

Роторы для обработки предметов с прямолинейными геометрическими направляющими. Операции 2-го класса различаются между собой в зависимости от характера геометрической направляющей обрабатываемой поверхности. Для поверхностей с прямолинейной геометрической направляющей операции 2-го класса как по рабочему движению, так и по всем остальным параметрам аналогичны операциям 3-го класса. Для этих операций в данном случае, как и для операций 3-го класса, может быть необходим один инструмент, не совершающий рабочего движения (матрица), и один или два инструмента, подвижных в осевом направлении (например, пуансон и выталкиватель). Рабочие роторы для таких операций по кинематической схеме аналогичны роторам для операций 3-го класса.  [c.76]


На рис. 100 приведен пример типового рабочего места испытателя узлов станков для контроля, обкатки и испытания их под нагрузкой перед подачей на общую сборку. В комплект рабочего места входят стенд для обкатки и испытания узла, стеллаж-подставка для хранения узлов, инструментальная тумбочка для слесарного и мерительного инструмента, контрольно-измерительная аппаратура. На данном рабочем месте производятся следующие работы контроль геометрических параметров элементов узла до и после обкатки и испытания узла холостая обкатка узла испытание узла под  [c.220]

Наибольшее внимание при контроле и сортировке деталей уделяется определению геометрических размеров и формы их рабочих поверхностей. Контроль деталей по этим параметрам позволяет оценить величину их износа и решить вопрос о возможности их дальнейшего использования. При контроле размеров деталей в авторемонтном производстве используют как универсальный измерительный инструмент, так и пневматические методы контроля.  [c.80]

Режущие и калибрующие элементы входят в число основных конструктивных элементов рабочей части резца и характеризуются рядом геометрических параметров. К таким параметрам относятся углы режущей части, радиусы закругления вершины резца и главной режущей кромки. Влияние каждого из этих параметров на процесс резания многосторонне и различно, зависит от обрабатываемого и инструментального материалов, их физико-механических свойств, размеров сечения срезаемого слоя, режимов резания, состояния системы СПИД. В каждом реальном случае обработки с целью получения нужного экономического эффекта параметры должны определяться индивидуально. Приводимые ниже значения параметров стандартных резцов рассчитаны на достаточно широкую область применения и могут быть использованы как ориентировочные значения для последующих корректировок при эксплуатации. Геометрические параметры резцов, рассматриваемые ниже, не являются углами резания, так как последние кроме геометрических параметров резца характеризуются взаимным расположением резца и обрабатываемого изделия (углы резания в статике) или траекторией взаимного перемещения резца и обрабатываемого изделия (кинематические углы резания). Значение геометрических угловых параметров резцов будут соответствовать углам резания в статике в случае, когда вершина резца рассматривается на высоте центра вращения, а корпус резца перпендикулярен обработанной поверхности. При несоблюдении этих условий углы резания будут отличаться от углов резца. Это нужно иметь в виду при рассмотрении особенностей конструкции резцов вне связи с положением относительно обрабатываемого изделия и использовать за счет корректировки положения резца относительно обрабатываемого изделия для получения более рациональных углов резания. Это одна из особенностей, присущих данной конструкции инструмента, — резцам, которая позволяет при эксплуатации стандартных резцов использовать два пути оптимизации углов резания — переточку рабочей части резца и выбор рационального положения резца относительно обрабатываемой поверхности.  [c.125]

Расчет суммарной погрешности обработки. Точность обработки детали по заданным геометрическим параметрам зависит от совокупного действия большого числа факторов, связанных со смещением элементов технологической системы станок — приспособление — инструмент — деталь (далее СПИД) из заданного положения в рабочее.  [c.20]

Вследствие неточности технологического оборудования, погрешностей и износа инструмента и приспособлений, силовой и температурной деформаций системы станок—приспособление—инструмент-деталь (СПИД), а также из-за ошибок рабочего и других причин действительные значения геометрических, механических и других параметров деталей и изделий могут отличаться от расчетных (заданных), т. е. могут иметь погрешность. Погрешность — это разность между действительным значением и расчетным лграсч размерами  [c.11]

Цепочка роторных линий предна-значеня для выполнения всех операций технологического процесса. Число технологических операций, выполняемых в отдельной роторной автоматической линии, обусловливается особенностями и требованиями принятого технологического процесса. Между соседними роторными автоматическими линиями устанавливают бункера межлинейных запасов предметов обработки. Цепочка (рис. 1) содержит 1) технологические (рабочие) роторы, выполняющие обработку путем воздействия инструмента или среды на предметы обработки при обработке могут быть изменены как геометрические параметры, так и физико-химические свойства предметов 2) транспортные роторы, осуществляющие передачу, ориентацию и изменение плотности потока предметов обработки 3) контрольные механизмы, обеспечивающие сплошной или выборочный контроль предметов обработки 4) энергетические механизмы, предназначенные для преобразования энергии и движений 5) контрольно-управ-ляющие механизмы, корректирующие технологические параметры процессов обработки и осуществляющие разбраковку предметов обработки 6) логические механизмы, предназначенные для принятия решений о частичном отказе от подачи предметов на вход роторной линии, о смене инструмента на основе результатов контроля предметов обработки, о коррекции работы аппаратов и т. п.  [c.284]

Конструктивная общность всех видов технологических роторов различного назначения позволяет осуществлять в широких пределах унификацию деталей, узлов, механизмов, конструктивных и геометрических параметров. Типовой технологический ротор с двусторонним механическим приводом рабочих движений (рис. 9) имеет главный вал, который приводится во вращение от редуктора с помощью зубчатого колеса. Каждый инструментальный блок устанавливают в гнездах блоко-держателя, и штоки блока соединяют с ползунами ротора с помощью байонетных замков. Такая система позволяет осуществлять быструю замену любого вышедшего из строя инстру ментального блока. В роторах с механическим приводом рабочие и вспомогательные ходы сообщаются инструментам через ползуны, ролики которых обкатываются по пазовым или торцовым кулачкам, установленным в опорных стаканах. Во избежание поломок механизмов при возможных перегрузках торцовые кулачки снабжают амортизаторами. Роторы с кулачковым приводом рекомендуется применять для выполнения технологических операций с силой до 20 кН.  [c.297]

Здесь I — размер поверхности детали в мм, по которой осуществляется перемещение инструмента или самой детали в направлении подачи (для различных видов обработки этот размер определяется по-разному — см. табл. 65) /1 — величина врезания в мм, зависящая от геометрических параметров заборной— режущей части инструмента, отдельных элементов режима резания и размеров обрабатываемых поверхностей (для работы различными инструментами определяется по соответствующим формулам — см. табл. 65) для обеспечения свободного подхода инструмента к обрабатываемой поверхности с рабочей подачей расчётную величину врезания следует увеличивать на 0,5-н 2 мм — перебег инструмента или детали в направлении подачи в ММ, во всех случаях, когда инструмент или обрабатываемая деталь относительно инструмента и.меет возможность свободного перемещения за плоскость обработки, прибавляется небольшая величина перебега в пределах 1-Т-5 мм в зависимости от размеров обработки величина перебега к расчётной длине не прибавляется, если рпбота ведётся в упор, например, подрезка уступа, прореза-ние канавок, глухое сверление и т. п. — дополнительная длина в мм. на взятие пробных стружек, имеющая место в условиях единичного, мелкосерийного и серийного производств при работе на универсальных станках (токарных, строгальных, фрезерных и др.) со взятием пробных стружек. В зависимости от измерительного инструмента и измеряемого размера дополнительные длины на взяти пробных стружек колеблются от 3 до 10 мм. При взятии двух пробных стружек дополнительная длина удваивается.  [c.482]


Микрогеометрия поверхности, обработанной одним и тем же методом, зависит от режимов резания, геометрических параметров рабочего инструмента, жесткости технологической системы станок — заготовка — инструмент, степени затупления инструмента и от сма-зывающе-охлаждающей жидкости. При одних и тех же условиях обработки чистота поверхности зависит от обра батываемого материала  [c.424]

Выбор геометрических параметров и расположения электролитоподводящих щелей и отверстий на рабочих поверхностях инструментов осуществляется экспериментально с учетом обеспечения при течении электролита в области обработки отсутствия застойных зон вихревого движения электролита и сепарации потока.  [c.757]

Если деталь имеет относительно простую геометрическую форму, и соотношение ее размеров соответствует требованиям технологической деформируемости исходной заготовки (по средней и накопленной локальной деформации, глубине полости, толщине стенки, нагрузке на инструмент, допустимому графику нагрузки оборудования), то она может быть изготовлена за один переход. Однако в некоторых случаях может оказаться более выгодным заменить один переход двумя или несколькими переходами. К числу наиболее распространенных критериев оценки и сравнения технико-экономической эффективности одно- и многопереходиого процесса относятся объем производства и стоимость оснастки на единицу изделия при использовании однопозипион-пого и многопозиционного штампа качество получаемых штампованных заготовок и деталей условия работы и стойкость рабочих деталей инструмента параметры необходимого оборудования и условия автоматизации процесса.  [c.127]

Повышение производительности при сварке несколькими головками достигается при комплексной автоматизации ряда последовательно выполняемых операций. Так, при дуговой сварке — это подача и фиксация изделия в позиции сварки подвод головок в рабочее положение поиск свариваемого соединения (наведения сварочного инструмента на линию соединения до начала сварки) подача защитного газа или флюса в зону сварки зажигание дуги и выведение параметров режима сварки по заданной программе на требуемые значения стабилизация параметров режима сварки в заданных пределах или изменение их по заданной программе или в зависимости от положения в пространстве, а также от геометрических и других характеристик линии соединения свариваемых элементов в зоне сварки направление сварочного инструмента (электрода) на линию соединения во время сварки удаление шлаковой корки со шва (при сварке под флюсом) перед наложением замыкающих и пересекающихся участков швов изменение по заданной программе параметров режима сварки на каждой головке при выполнении замыкающих и пересекающихся участков швов прекращение сварочного процесса путем изменения параметров режима по заданной программе до нулевых значений удаление неиспользованного флюса и шлаковой корки с изделия отгвод головок в исходное положение вывод изделия на позиции сварки.  [c.39]

Параметры работоспособности абразивного инструмента обычно изменяются во времени. Восстановление заданной геометрической формы и режущей способности рабочей поверхности инструмента называют правкой. Необходимость в правке отпадает для тех инструментов, которые обладают самозатачиваемостью, т. е. свойством абразивного инструмента сохранять работоспособное состояние в течение всего периода эксплуатации. В режиме самозатачивания работают сегментные торцешлифовальные круги, хонинговальные и суперфинишные бруски, обдирочные круги, шлифовальные круги с определенными характеристиками и ряд других инструментов. Для большинства абразивных инструментов параметры работоспособности определяются состоянием рельефа рабочих поверхностей, отклонениями от геометрической формы и их взаимного расположения.  [c.355]

При ЭХО многоместных пресс-форм на станках используют последовательную обработку гравюр одним электродом с циклическим перемещением заготовки на координатном стола станка (мод.4422). При этом достигается повторяемость профиля гравюры до 0,01 мм за счет идентификации режимов обработки и геометрических параметров технологической системы станка. Идентификации режимов ЭХО достигается за счет применения циклической схемы подачи электрода-инструмента (4А423ФЦ, ЭРО-120, ЭРО-122), что позволяет разделить во времени процессы съема металла и удаление оксидных пленок из межэлектродного зазора (МЭЗ). Это обеспечивает возможность работы на малых МЭЗ с гарантированным удалением продуктов растворения из рабочей зоны. Такая схема обработки позволяет также контролировать процесс обработки непрерывно с частотой 1 - 2 Гц, корректировать управляющую программу непосредственно в процессе обработки.  [c.682]

Абразивный наполнитель и обрабатываемое изделие (или партия изделий) помещаются в рабочую камеру машины, колеблющуюся с определенной частотой И амплитудой. В результате многократных соударений частиц наполнителя и обрабатываемого изделия изменяются его геометрические и физико-механические параметры. Изменение геометрических параметров выражается в округлении режущих кромок и улучшении качества их поверхностей, изменение же физико-механических параметров сводится к созданию в поверхностном слое сжимающих остаточных напряжений. Наибольший эффект от механического упрочнения был получен на инструментах для черновой и получистовой обработки. Хорошие результаты получены также и при виброобработке пластинок из твердого сплава группы ТК.  [c.368]

Геометрия режущей части. Всякий режунщй инструмент имеет на рабочей части одно или несколько лезвий. Различают однолезвийные (например, резцы) и многолезвийные (сверла. ( )резы и т, д.) инструменты. Каждый зуб инструмента можно рассматривать как отдельный резец со всеми присущими последнему геометрическими параметрами (рпс. 5) (подробно см. [1]). Главные из них задний угол а, передний угол у, главный угол в плане ф, вспомогательный утол в плане ф , угол наклонд режущей кромки X. Имеет значение также форма передней поверхности (рис. 6). Плоские поверхности для хорощего дробления стружки при обработке вязких материалов снабжают накладными стружколомателями, порожками н радиусными лунками.  [c.21]

Плоскости на режущей части инструмента могут занимать самые разнообразные положения. Поэтому юзникает необходимость при заточке совместить плоскую поверхность инструмента с рабочей плоскостью шлифовального круга, обеспечив соответствующую установку инструмента на станке. Иными словами, необходимо определить углы поворота применяемого в каждом конкретном случае приспособления вокруг соответствующих осей, зп лы установки, обеспечивающие получение заданных геометрических параметров инструмента.  [c.220]


Смотреть страницы где упоминается термин Параметры геометрические инструмента рабочие : [c.7]    [c.586]    [c.493]    [c.175]    [c.154]    [c.742]   
Основы теории резания металлов (1975) -- [ c.34 , c.41 ]



ПОИСК



Инструмент рабочий

Параметр рабочий

Параметры геометрические



© 2025 Mash-xxl.info Реклама на сайте