Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Токарные Геометрия

Под стойкостью инструмента Т понимают суммарное время (мин) его работы между переточками на определенном режиме резания. Стойкость токарных резцов, режущая часть которых изготовлена из разных инструментальных материалов, составляет 30— 90 мин. Стойкость инструмента зависит от физико-механических свойств материала инструмента и заготовки, режима резания, геометрии инструмента и условий обработки. Наибольшее влияние на стойкость оказывает скорость резания.  [c.272]


Непосредственная зависимость ошибки регулировки от размера инструмента не единственная форма связи такого рода. Например, ту же заготовку винта иногда изготовляют на токарном автомате (с накаткой резьбы на другом станке), и тогда уровень настройки зависит не от размера, а от положения инструмента — и то лишь при прочих равных условиях. К числу прочих, далеко не всегда равных условий, от которых может зависеть математическое ожидание диаметра заготовки винта при обработке на токарном автомате, относятся, например, радиальная составляющая усилия резания, которая в свою очередь зависит от геометрии резца, припуска, физико-механических свойств прутка, и жесткость системы станок — приспособление — инструмент — деталь, температура системы и пр. На операции металлопокрытия ошибка регулировки (отклонение математического ожидания толщины нанесенного слоя) зависит от концентрации раствора, силы тока, длительности процесса. Бывают операции с многочисленными техническими факторами ошибки регулировки и очень сложной схемой их взаимодействия (термообработка, шлифование применительно к такому признаку качества как поверхностная твердость и пр.).  [c.41]

При токарной (черновой) обработке наплавленного слоя твёрдого сплава надлежит строго придерживаться геометрии резцов и режима работы, приведённых в табл. 183 (28].  [c.434]

Наплавленный слой твёрдого сплава сормайт № 2 можно после отжига обрабатывать токарными резцами и другими инструментами из инструментальной и быстрорежущей стали, применяя режимы работы и геометрию режущего инструмента, близкие к режимам обработки высокохромистых сталей.  [c.434]

Режимы резания и геометрия резцов при токарной обработке органического стекла приводятся в табл. 15.  [c.707]

Геометрия режущей части — такая же, как и у резцов для токарных станков.  [c.69]

Резцы токарные алмазные — Геометрия 32 —Подачи и скорости резания 63  [c.798]

В табл. 19 и 20 указаны геометрия инструмента и режимы резания при токарной обработке некоторых пластмасс.  [c.352]

На поверхности, обработанной токарным резцом, образуются неровности в виде винтовых выступов и винтовых канавок (рис. 2.11). Неровности, расположенные в направлении движения подачи Ds, образуют поперечную шероховатость, а неровности, расположенные в направлении главного движения резания D — продольную шероховатость. Высота Я и характер неровностей зависят от обрабатываемого материала, режима резания, геометрии режущих кромок инструмента и других факторов (рис. 2.12).  [c.50]


В машиностроении большинство деталей получает окончательные формы и габаритные размеры в результате механической обработки заготовки резанием, которое осуществляется путем последовательного удаления режущим инструментом с поверхности заготовки тонких слоев материала в виде стружки. Схема работы резца, его элементы и геометрия, а также режимы резания при точении и других видах токарной обработки приведены в гл. 2.  [c.141]

Сверление является одним из распространенных методов обработки на токарных станках и осуществляется для предварительной обработки отверстий. Предварительно обработать резанием отверстие в сплошном материале можно только с помощью с в е р-л а. В зависимости от конструкции и назначения различают сверла спиральные, перовые, для глубокого сверления, центровочные, эжекторные и др. Наибольшее распространение при токарной обработке получили спиральные сверла. Конструкция и геометрия сверл, а также других инструментов для обработки отверстий и резьб рассмотрены в гл. 2 и 6.  [c.142]

На рис. 9.21, б показан эталон для токарного станка с ЧПУ. Деталь обрабатывают, соблюдая технические параметры (режим резания, материал, геометрию режущих инструментов, СОЖ), рекомендуемые заводом — изготовителем оборудования.  [c.320]

Геометрия токарного резца  [c.8]

На геометрию углов резца у и а также влияет установка резца в зависимости от положения вершины резца относительно оси вращения заготовки (или линии центров токарного станка). При отрезании, обработке конических и фасонных поверхностей, чистовом нарезании резьбы вершину резца следует устанавливать  [c.13]

При токарной обработке наружных поверхностей (обточка цилиндра и конуса, проточка канавок, подрезка торца и отрезание) применяются резцы, размеры поперечных сечений стержня которых приведены в табл. 3.1. Основные размеры токарных резцов из быстрорежущей стали (ГОСТ 18868-73, ГОСТ 18869-73, ГОСТ 18871-73, ГОСТ 18884-73, ГОСТ 22708-77... ГОСТ 22712-77), с пластинками из твердого сплава (ГОСТ 18877—73. .. ГОСТ 18882—73 ) и сборных с механическим креплением пластинок (ГОСТ 23075— 78, ГОСТ 23076—78) приведены в табл. 3.2 —3.5 размеры алмазных вставок (ГОСТ 13288—76, 13289—76) — в табл. 3.6. Формы заточки режущей части резцов указаны в табл. 3.7, передний и задний углы — в табл. 1.1, угол наклона главной режущей кромки — в табл. 1.2, главный угол в плане — в табл. 1.3, вспомогательный угол в плане — в табл. 1.4. Геометрия лезвия резца для обработки пластмасс будет приведена в табл. 3.8.  [c.95]

Геометрия режущего инструмента. Принцип работы любого режущего инструмента основан на действии клина. Наиболее наглядно можно рассмотреть элементы и геометрию режущего инструмента на примере токарного резца (рис 12.1). Последний состоит из рабочей части П, которая принимает непосредственное участие в отделении срезаемого слоя металла, и крепежной части I, с помощью которой производится закрепление резца в резцедержателе. Основными элементами рабочей части резца являются передняя поверхность 1, по которой схо-  [c.351]

Благодаря высокой производительности, точной геометрии и практическому отсутствию токарной обработки (обрабатываются лишь фаски и торцы) этот процесс устойчиво сохраняется в подшипниковом производстве.  [c.590]

ГЕОМЕТРИЯ ТОКАРНЫХ РЕЗЦОВ  [c.17]

Геометрия токарного резца. Форма режущих инструментов создавалась многолетней практикой. Производственный рабочий должен выбрать геометрические параметры инструмента и заточить его в соответствии с требуемой формой, поэтому обозначения углов резца на чертеже в первую очередь должны обеспечить легкость заточки.  [c.124]

Для подсчета величины сил необходимо сначала определить значения т, т) , и Ф (Ь, t, а и i известны из геометрии инструмента и срезаемого слоя). Величины а , и Ф связаны уравнением для угла сдвига. Для токарного резца с достаточной степенью точности можно принять, что т]( = г. В этом случае соотношение для угла сдвига становится сходным с уравнением (3.62). Недостающие параметры могут быть определены опытным путем. Зная величину т можно определить Ф , а следовательно, и силы.  [c.131]


При некоторых условиях резания винтовая фреза будет сохранять контакт зубьев с заготовкой и сглаживать изменение силы, как показано на рис. 7.20, б. Сходный эффект может быть достигнут путем увеличения числа зубьев. Однако их число ограничено в связи с уменьшением пространства для размещения стружки. Геометрия ножей торцовых фрез сходна с геометрией токарных  [c.139]

При рассмотрении влияния переменных величин на скорость резания для постоянной стойкости инструмента учитывались также размеры срезаемого слоя и в определенной степени геометрия инструмента. Сложность этого выражения для токарных операций видна из уравнения (8.6)  [c.168]

При закреплении в корпусе фрезы вместо вставных ножей от 1 до 12 резцов токарного типа, оснащённых твёрдыми сплавами и имеющими надлежащую геометрию режущих элементов, головки могут быть использованы для скоростного резания сталей всех марок. Корпус фрезы изготовляется из стали мар ш 45 или 40Х. Закрепление встав-  [c.126]

При использовании фрез с новой геометрией в ряде случаев оказывается, что вспомогательное время установки и снятия деталей значительно больше сократившегося машинного времени. Учитывая это, необходимо обратить особое внимание на сокращение вспомогательного времени, для чего желательно применение многоместных приспособлений с быстродействующими зажимами. Это особенно важно, если принять во внимание, что в серийном производстве на токарных, фрезерных и других станках машинное время редко превышает 50 / штучного времени.  [c.353]

Для токарной обработки термопластов применяют резцы из инструментальной углеродистой и быстрорежущей стали (Р9, Р18 и др.). Геометрия резца передний угол у= 10- 20°, задний угол а= 15 20°, угол в плане ф = 45°, угол наклона главной режущей кромки Л= = 0 + -5° [15.4, 15.19].  [c.68]

При обработке заготовок точением на токарном станке имеющие место температурные деформации резца зависят ог режимов резания, материала обрабатываемой заготовки, вылета резца из резцедержателя, сечения резца и его геометрии, а также толщины пластинки твердого сплава.  [c.91]

Переточка затупившихся резцов, а также заточка резцов, централизованно выпускаемых промышленностью, может в значительной степени повысить эффективность обработки за счет придания режущим кромкам оптимальной геометрии. Ориентировочные значения оптимальных геометрических параметров токарных проходных резцов, рекомендуемые для различных условий обработки, приведены в табл. 4.15—4.17.  [c.163]

Элементы и углы резца. Принцип работы любого режущего инструмента основан на действии клина. Наиболее наглядно можно рассмотреть элементы и геометрию режущего инструмента на примере токарного резца.  [c.342]

Аноды типа, изображенного на рис. 8-2,д, получают обтачиванием заготовок на обычных токарных станках твердосплавными резцами. Режимы обработки и рекомендуемая геометрия резцов приведены в 2-3.  [c.344]

Точение пластмассовых деталей производится на быстроходных токарных и револьверных станках, применяемых для обработки металлов. В качестве режущего инструмента применяют резцы, оснащенные пластинками твердых сплавов или из быстрорежущей стали. Геометрия заточки резцов несколько иная, чем у токарных резцов для обработки металлов. Так, при точении термопластов резцы из быстрорежущей стали имеют передний угол 7 до 15—20°, задний угол а до 20°, угол в плане = 45°. При точении термореактивных пластмасс резцы с пластинками твердого сплава имеют передний угол у = 10-4-20°, задний угол а = 10 —-20° (иногда достигает 30°), угол в плане ср = 45°.  [c.680]

Токарные резцы для обработки керамики цо форме (геометрии) такие же, как и металлообрабатывающие. По виду обработки они также делятся на проходные, расточные, подрезные, отрезные, резьбовые, фасонные и др.  [c.164]

При токарной обработке деталей из пластмасс применяются резцы, геометрия которых характеризуется данными, приведенными в табл.19.  [c.130]

Среди деятелей эпохи Возрождения особенно выделяется гениальный художник, геометр и инженер, итальянец Леонардо да Винчи (1452—1519), которому принадлежат исследования в области теории механизмов, трения в машинах и движения по наклонной плоскости. Кроме того, он занимался перспективой, теорией теней и строил модели летательных машин. Им построен также эллиптический токарный станок, носящий до сих пор его имя. Другой замечательный деятель этой эпохи, великий польский ученый Николай Коперник (1473—1543) создал свою гелиоцентрическую картину мира, которая, сменив геоцентрическую картину Птолемея, произвела большой переворот в научном мировоззрении и оказала огромное влияние на все последующее развитие естествознания. Благодаря работам Коперника и многочисленным наблюдениям датского астронома Тихо-Браге Иоганн Кеплер (1571 —1630) получил свои три знаменитых закона движения планет, послуживших Ньютону основанием для его закона всемирного тяготения ). Далее следует упомянуть о работах голландца Стевина (1548—1620), который исследовал законы равновесия тел на наклонной плоскости и в результате пришел к выводу основных законов статики.  [c.11]

Автоматизированный комплекс станков с ЧПУ для обработки деталей—тел вращения, созданный фирмой Hita hi Seiki o. (Япония), обеспечивает высокие производительность и качество обработки. Характерным для данного участка является то, что измерение обрабатываемых деталей осуществляется на автономной измерительной установке, связанной с металлорежущими станками транспортной системой. Результаты измерений передаются по цепи обратной связи для введения коррекции на геометрию в токарном многоцелевом станке. Введение автоматической коррекции на геометрию инструмента в токарном станке позволяет устранить медленно меняющуюся (функциональную) часть погрешности обработки партии деталей.  [c.21]


Предварительное обтачивание под сглаживание при режиме резания о= 120. ..130 м/мин i=0,3 мм 5 = 0,17 мм/об осуществлялось резцом из сплава Т15К6, имеющим следующую геометрию у=5°, а=8°, ф = 45°, ф1=30°, /- = 0,5 мм. После токарной обработки поверхность имела шероховатость / 2=40... 20 мкм.  [c.85]

Время резания новым режущим инструментом от начала резания ло отказа называется периодом стойкости режущего инструмента. Стойкость токарных резцов составляет 30... 90 мин и зависит от свойств материалов инструмента и заготовки, режима резания, геометрии инструмента. Наибольшее влияние на стойкость оказывает скорость резания. Кривую изнашивания (рис. 22.16, г) можно разделить на три периода 0-А — период приработки, А-В — период нормального изнашивания, В-С — период катастрофического изнашивания. Чем выше скорость резания, тем быстрее начинается катастрофическое изнашивание, что вызвано возрастанием температуры в зоне резания. Между скоростью резания v и стойкостью Гпри заданном критерии затупления, неизменных подаче и глубине резания существует зависимость,  [c.463]

Величина неровностей в виде гребешков и В1падин зависит от вида обработки, рода обрабатываемого материала, степени пластической деформации при резании, режимов резания, геометрии режущего инструмента и других факторов. Микронеровно-ст и — это след режущего инструмента на поверхности детали. Для-токарной обработки теоретическая формула для подсчета высоты микронеровностей имеет следующий вид  [c.37]

Широкое развитие скоростных методов обработки стало возможным лишь с применением инструментов, оснащенных пластинками из металлокерамических и минералокерамических сплавов. Конструкции и геометрия резцов с пластинками из твердых сплавов крайне разнообразны. Приведем некоторые из них. На фиг. 19, а доказан резец токаря-новатора лауреата Сталинской премии Г. С. Бортке1ви1ча. Таким резцом при обработке юа токарном станке, деталей из стали 40Х и 40 была достигнута скорость резания 300—  [c.70]

На рис. 7.21 показана геометрия фрезы со вставными ножами. Резание обычно происходит кромками а и Ь угол С соответствует углу в плане токарного резца по американской системе обозначений. Аналогичным образом угол г соответствует углу а , <Ха—а. Можно применять номограмму Кроненберга (см. рис. 7.11) и уравнения для перевода американской системы обозначений токарного резца в систему, рассматривающую геометрические параметры в нормальной плоскости. Последняя упрощает технологию заточки фрезы. Торцовая фреза (см. рис. 7.21) имеет вставные зубья, которые могут выниматься для заточки или замены. Фрезы малого диаметра могут иметь напайные режущие вставки или зубья.  [c.140]

Указанные конструктивные особенности червяков и червячных колес определяют выбор принципиальной схемы технологического процесса их изготовления. Обработка червяков в первом этапе технологического процесса принципиально не отличается от изготовления цилиндрических зубчатых колес сдответствующего класса. Схема обработки в первом и во втором этапах червячных колес сходна с обработкой цилиндрических или конических колес в осевой установке червячного колеса (а в глобоидных передачах — и червяка) при токарной и зубообрабатывающей операциях. Второй этап технологического процесса изготовления червяков и червячных колес имеет свои специфические особенности, не свойственные другим видам передач и в значительной мере зависящие от выбранной геометрии зацепления пары.  [c.420]

Точение. Этим методом хорошо обрабатываются винипласт, органическое стекло, полиэтилен, фторопласты, литые реактопласты и слоистые пластики. Для точения используют универсальные быстроходные металлорежущие станки, токарные и револьверные. Режущий инструмент изготавливают из твердых сплавов (ВК6, ВК8), быстрорежущей стали (Р9, Р18) и реже из углеродистых сталей, (УЮА, У12А). Геометрия заточки резцов для обработки термопластов 7= 15-=-20°, а — до 20°, ф = 45°, Я,=0° для обработки термореактивных пластмасс у= = 104-20°, a=10-i-20°, ф=45°, Я=0°.  [c.676]

Токарная обработка (черновая и чистовая) произ-водитря твердосплавными резцами по режимам, указанным в табл. 2-7. Геометрия резцов задний угол а = 25— 30° передний угол =0— 5° угол заострения равен 60°.  [c.50]

Геометрия режущего инструмента. Принцип работы любого режущего инструмента основан на действии клина. Наиболее наглядно можно рассмотреть элементы и геометрию режущего инструмента на примере токарного резца. Последний состоит из головки (рис. 50, б], которая принимает непосредственное участие в отделении pe- заемого слоя металла, подошвы, на которую опирается резец при установке его на станке, и тела, с помощью которого производится закрепление резца в резцедерл а-теле. Основными элементами головки резца являются передняя поверхность 9, по которой сходит стружка, главная задняя поверхность 5, обращенная к поверхности резания, вспомогательная задняя поверхность обращенная к обработанной поверхности, главное лезвие  [c.176]


Смотреть страницы где упоминается термин Токарные Геометрия : [c.798]    [c.423]    [c.95]    [c.83]   
Краткий справочник металлиста (1972) -- [ c.263 , c.273 ]

Справочник металлиста Том 3 Изд.2 (1966) -- [ c.16 , c.18 , c.27 , c.32 ]



ПОИСК



Геометрия



© 2025 Mash-xxl.info Реклама на сайте