Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет Уравнения канонические

Канат подъемный, расчет 607 Канонические уравнения 530 Колебания 608  [c.725]

Расчет методом смешанным 480, 501 -- Уравнения канонические 502  [c.825]

В тех случаях, когда кроме внешних нагрузок нужно учесть и влияние температуры, порядок расчета остается прежним. Свободные члены канонических уравнений при этом представляют собой перемещения в основной системе не только от заданных нагрузок но и от изменения температуры  [c.403]


Следовательно, каноническое уравнение (14.19) при расчете на смещение опор принимает вид  [c.421]

Используя осевую симметрию, проводим расчет для /в части плиты, заштрихованной на рис. 140. Для определения шести неизвестных усилий Xi в стержнях и равномерного (перемещения штампа 2о надо составить шесть канонических уравнений смешанного метода и одно статическое уравнение 2Z = 0. При окончательном подсчете надо учесть, что к квадрату 1 приложено восемь равных сил (так как этот квадрат входит во все восемь частей основа-  [c.371]

Вообще в выборе основных неизвестных и метода получения уравнений для них можно провести аналогию с теорией расчета статически неопределимых систем, излагаемой в курсе строитель ной механики стержневых систем. Там, как известно, есть три основных метода метод сил, метод деформаций и смешанный метод. Неизвестные силы определяются из уравнений деформаций (канонические уравнения в методе сил), неизвестные перемещения (углы поворота и смещения узлов рам)—из уравнений равновесия.  [c.30]

Канонические уравнения метода сил, расчет статически неопределимых балок и рам. Эти вопросы представляют значительный интерес для изучения курса металлоконструкций подъемно-транспортных машин.  [c.44]

Для расчета третьей из рассматриваемых балок раскрываем ее статическую неопределимость. Основная система, нагруженная заданной силой и искомыми лишними неизвестными, показана ка рис. 13-14. При выборе основной системы использована симметрия заданной системы и нагрузки. Таким образом, раскрытие статической неопределимости сводится к решению одного канонического уравнения  [c.337]

Заметим, что использование для построения разностной схемы характеристических соотношений на границе особенно существенно. Дело в том, что при построении разностного аналога уравнений (4.12) для граничных точек получается переопределенная задача — соотношений больше, чем неизвестных. Каноническая по отношению к границе характеристическая форма уравнений позволяет единственным образом получить корректную разностную схему расчета граничных точек. Для ее построения следует записать все характеристические уравнения (4.8 ) — (4.1 Г) с нормалью п, совпадающей с нормалью у к границе. При этом получаем четыре соотношения, по одному для каждой из формул (4.8 ) — (4.1 Г), и к ним добавляются два граничных условия. Всего получаются шесть условий.  [c.653]


Перемещения А,р и 6,, входящие в канонические уравнения, чаще всего определяют по методу Мора или по способу Верещагина. При этом для балок и рам влиянием поперечных и продольных сил обычно пренебрегают и учитывают лишь изгибающие моменты. Однако, определяя перемещения в балках прямоугольного поперечного сечения, для которых отношение высоты сечения к длине пролета /г// 1 /5, поперечные силы учитывать обязательно. При расчете статически неопределимых рам с большими значениями указанного отношения (h/l> 1 /5) ошибка, вызванная неучетом интегралов продольных и поперечных сил, также становится существенной, особенно для высокой рамы. Следует иметь в виду, что в реальных  [c.425]

Принимая в качестве лишних неизвестных внутренние усилия, во многих случаях можем значительно упростить расчет. Например, если исходная система симметрична (по конфигурации и расположению жесткостей), то основную систему выгодно строить также симметричной, поскольку при этом некоторые побочные коэффициенты канонических уравнений будут равны нулю. Так, при расчете симметричной рамы, показанной на рис. 408, а, основную систему целесообразнее получить разрезом горизонтального стержня (ригеля) посредине (рис. 409, а). При этом основная система будет также симметричной. Тогда в числе лишних неизвестных будем иметь симметричные усилия кососимметричные 2- Эпюры  [c.428]

Легко видеть, что система дважды статически неопределима. На рис. 410, б—г показаны некоторые возможные варианты эквивалентной системы. Для расчета примем вариант, показанный на рис. 410, б. Чтобы определить два лишних неизвестных усилия X, и Xj, воспользуемся каноническими уравнениями (14.8)  [c.429]

Теория расчета плоских рамных систем представляет частный случай теории расчета призматических пространственных рам, а канонические уравнения метода перемещений являются частным случаем дифференциальных уравнений (8.9) [см. подчеркнутые члены второго уравнения (8.9)].  [c.243]

При расчете ее с помощью основной системы (рис. 12.9, необходимо составить и решить три канонических уравнения с тремя неизвестными  [c.465]

Таким образом, при расчете симметричной системы следует основную систему выбирать так, чтобы все неизвестные были симметричными или кососимметричными. Это позволяет решение полной системы канонических уравнений заменить решением двух независимых систем, что значительно сокращает объем вычислений (особенно при большом числе неизвестных).  [c.466]

Расчет статически неопределимых систем с использованием системы (VII.4) (системы канонических уравнений метода сил) носит название расчета по методу сил. Этот расчет ведется в определенном порядке, который изложен в примере VII.5.  [c.247]

При расчете статически неопределимой системы на действие температуры (при отсутствии внешней нагрузки) канонические уравнения получают вид  [c.503]

Для многих задач расчета пространственных температурных полей в телах канонической формы могут быть получены точные аналитические решения. Однако для нестационарных одномерных и любых дву- и трехмерных задач эти решения записываются в виде рядов, интегралов, часто содержат специальные функции. Во многих случаях в аналитические выражения входят параметры, являющиеся корнями трансцендентных уравнений и систем таких уравнений, которые могут быть решены лишь численно. Поэтому расчеты пространственных температурных полей на основе точных аналитических решений также требуют применения ЭВМ.  [c.50]

Общие ОСНОВЫ расчета. Каноническая система уравнений.  [c.190]

Совокупность этих уравнений называют канонической системой метода сил (существуют и другие методы расчета статически неопределимых систем, например метод деформаций и др.). В об-  [c.190]

Бесконечно малые канонические преобразования. Константы движения и свойства симметрии. В связи с дальнейшим рассмотрением скобок Пуассона мы введем понятие бесконечно малых канонических преобразований. Как и в случае бесконечно малых поворотов, это будут такие преобразования, при которых переменные q, р изменяются на бесконечно малые величины. (Поэтому все расчеты мы будем производить лишь с точностью до членов первого порядка малости относительно этих величин.) Уравнения такого преобразования можно записать в виде  [c.285]


Разделение неизвестных. Сохранение необходимой точности и уменьшение трудоемкости расчета являются центральными проблемами алгоритмического и вычислительного аспекта строительной механики. При расчете стержневых систем методом сил удовлетворение обоим требованиям достигается, если в матрице системы канонических уравнений имеется много нулевых элементов, а ненулевые расположены компактно в области, близкой к главной диагонали матрицы, и при этом численные значения элементов, расположенных на главной диагонали, существенно превышают значения остальных элементов. Идеальным является случай, при котором ненулевыми являются лишь элементы, расположенные на главной диагонали. В таком случае происходит полное разделение неизвестных в системе канонических уравнений, и для отыскания неизвестных вовсе не приходится решать систему — каждое из неизвестных определяется самостоятельно. Вместе с тем выше уже было обнаружено, что вид матрицы коэффициентов системы канонических уравнений зависит от выбора основной системы и лишних неизвестных.  [c.571]

Идея метода перемещений. Основная система и канонические уравнения. При расчете системы методом перемещения, как и в методе сил, вместо непосредственного расчета заданной системы рассматривается некоторая иная, упрощенная, называемая основной системой. Основная система метода перемещений получается из заданной путем введения дополнительных связей, препятствующих повороту жестких узлов и смещениям узлов, для чего вводятся жесткие заделки, делающие невозможными повороты узлов, но не исключающие их линейных смещений, и добавляются стержни, препятствующие смещению узлов.  [c.592]

Завершение расчета системы. После составления канонических уравнений и их решения, которое в силу симметрии матрицы коэффициентов относительно главной диагонали (как и в методе сил) может быть осуществлено при помощи сокращенной схемы Гаусса, находятся усилия по формулам  [c.597]

При расчете оболочек с учетом податливости диафрагм сначала определяются усилия в основной системе (шарнирно опертая по контуру оболочка, диафрагмы, абсолютно жесткие в своей плоскости и податливые из плоскости), затем определяются усилия, вызванные совместной работой оболочки с примыкающими конструкциями. Усилия, полученные из этих расчетов, суммируются. Распределение усилий в основной системе получается из расчета оболочек по теории В.З. Власова. Для определения усилий, вызванных совместностью работы отдельно стоящей оболочки с контурными элементами, по каждому краю составляется четыре канонических уравнения. Таким образом, при точном решении для  [c.141]

В практике проектирования используются приближенные методы расчета оболочек на такие нагрузки — сосредоточенные нагрузки заменяют эквивалентной по моменту равномерно распределенной нагрузкой или контурные элементы рассчитывают на приложенные к ним сосредоточенные нагрузки как обычные плоские конструкции без учета их совместной работы с оболочкой. Оба метода не позволяют определить усилия взаимодействия между контурным элементом и оболочкой. Кроме того, при использовании первого метода остаются неизвестными усилия в элементах решетки загруженной диафрагмы. Усилия в контуре и усилия взаимодействия оболочки с диафрагмой более точно определяются в соответствии с положениями работ [49] и [12]. При расчете в соответствии с методикой, изложенной в работе [49], коэффициенты канонических уравнений при неизвестных принимают теми же, что в расчете на равномерно распределенную нагрузку. При определении свободных членов сосредоточенную нагрузку заменяют погонной с интенсивностью, максимальной в середине пролета и убывающей к опорам диафрагмы по синусоидальному закону. Максимальное значение эквивалентной нагрузки определяют из условия совпадения в обоих случаях прогибов диафрагм.  [c.160]

Порядок расчета следующий. Записывают канонические уравнения для определения лишних неизвестных. Основная система приведена на рис. 3-27,6. После определения лишних неизвестных находят продольные перемещения узлов рамы. Коэффициенты канонических уравнений вычисляют по формулам  [c.176]

Расчет плоских рам с одной лишней неизвестной является простейшим частным случаем расчета рам методом сил, требующим составления и решения одного канонического уравнения.  [c.120]

Расчет сопл может быть произведен в рамках двухскоростной и двухтемпературной модели по методике, изложенной в гл. 4 (плоское течение). Ряд важных особенностей конфузорных двухфазных потоков устанавливается на основе упрощенного квази-одномерного подхода. В последнем случае используется система уравнений (1.1) — (1.14) в упрощенном виде, так как течение предполагается стационарным. В указанных уравнениях следует положить /(5т = 0. Для численного решения на ЭВМ эти уравнения приводятся к каноническому виду [9, 61]. Выполнив необходимые преобразования, получим  [c.227]

Итак, расчет течения через двухрядную решетку по сравнению с расчетом течения через однорядную решетку является новой, более общей задачей. Мы рассмотрели решение этой задачи по методу конформного отображения на двухсвязную область (кольцо). Известны и другие подходы к решению этой задачи, обобщающие иные методы расчета течения через однорядную решетку. По методу интегральных уравнений расчет сводится к вычислению интегралов типа (7.1) или (7.11) по двум контурам и 2- Возможно также применение конформного отображения на двухрядные канонические решетки, например на двойные решетки кругов, путем соответствующего обобщения разложения (5.3).  [c.111]

Одномерные и квазиодномерные задачи механики описываются системами обыкновенных диф ренциальных уравнений. К одномерным можно отнести задачи о деформировании стержней, балок, а также круглых пластин и оболочек вращения при осесимметричном нагружении. В ряде случаев для трехмерных и двумерных задач теории упругости можно применить метод разделения переменных и решать задачу в рядах Фурье или методом Канторовича. Задачи, для которых тем или иным способом возможно приближенно перейти от уравнений в частных производных к обыкновенным уравнениям, называются квазиодномерными. Для расчетов на ЭВМ наиболее удобной формой представления разрешающих дифференциальных уравнений является система дифференциальных уравнений первого порядка, или каноническая система. Для таких систем разработаны стандартные программы интегрирования, а также различные вычислительные приемы, обеспечивающие достаточную точность решения краевых задач [20, 33].  [c.85]


Переставляя строки матриц В в новом порядке, как показано цифрами справа, методом Гаусса определяем граничные параметры с учетом и без учета деформации растяжения. Последние сведены в таблицу 2.5. Там же приведены результаты расчета по методу сил, где коэффициенты канонических уравнений вычислялись с учетом деформаций изгиба, сдвига и растяжения.  [c.98]

Выполняют проверку правильности расчета коэффициентов при неизвестных и свободных слагаемых канонических уравнений.  [c.3]

Учитывая приведенную выше аналогию, все наиболее эффективные современные методы расчета статически неопределимых систем (канонические уравнения деформаций, способ ортогонали-зации взаимно нулевых эпюр и т. п.) можно перенести в теорию упругости, именно в метод П. Ф. Папковича.  [c.62]

Рещение задачи, как мы видели, сводится к системе канонических уравнений. Несмотря на то что эти уравнения линейны и их решение не представляет принципиальных трудностей, при большом числе неизвестных решение становится достаточно трудоемким. Именно поэтому целесообразно использовать любую возможность для упрощения уравнений метода сил. Конечно, степень статической неопределимости системы мы изменить не можем. Она предопределена наложенными связями. Но с помощью надлежащего выбора основной системы можно обратить в нуль ряд коэффициентов 6 , И соответствснпо разбить систему п связанных уравнений на несколько независимых систем более низкого порядка. В частности, в стержневых системах, обладающих определенной регулярностью геометрических и жесткостных свойств, всегда можно упростить структуру канонических уравнений и снизить трудоемкость расчета. И среди таких систем в  [c.116]

Подпрограмма SYSTRD, реализующая метод прогонки, предполагает, что система разностных уравнений записана в каноническом виде (3.56) — (3.58). Поэтому для ее использования необходимо осуществить расчет коэффициентов а , Ь , для системы ка-  [c.103]

Всем, например, хорошо известен метод сил, используемый при раскрытии статической неопределимости. Трудности этой задачи возрастают с увеличением числа неизвестных. Применение быстродействуюш их машин резко расширяет возможности расчета. Сейчас не представляет труда определить усилия и моменты в узлах 200—300 раз статически неопределимой системы. Для этого выработаны приемы быстрого подсчета коэффициентов канонических уравнений и составлены удобные алгоритмы для определения неизвестных. Между тем следовало бй задуматься над тем, что здесь количество может перейти в качество.  [c.160]

В общем случае определение термофизических свойств такой плазмы является задачей многих тел (причем без малого параметра разложения), аналитическое решение которой пока не получено. Существующие к настоящему времени приемы и методы расчета состава и термодинамических функций плотной низкотемпературной неидеальной плазмы (Г=1) по погрешностям оценки параметров плазмы существенно уступают соответствующим методам расчета идеального газа. Наиболее слабым звеном в этих методах является отсутствие теоретических предпосылок для оценки погрешностей расчета. Эксперименты на ударных трубах, с пробоем диэлектриков и другие в силу значительных погрешностей не могут к настоящему времени однозначно базироваться на той или иной методике расчета. В такой ситуации следует стремиться к наиболее простым формам уравнения состояния плазмы, а оценку коэффициентов, входящих в него, с погрешностью 3-4% считать удовлетворительной. При этом следует иметь в виду, что традиционная химическая модель (модель смеси) даже для плазмы с Г s 7 может дать удовлетворительные результаты по большинству параметров плазмы при обоснованном учете связанных, состояний и кулоновского взаимодействия. Достаточно надежные результаты могут быть получены также для некоторых параметров с использованием методов разложения термодинамических величин в канонические ансамбли, дать приемлемые результаты для не слишком широкого диапазона давлений в канале.  [c.51]

Сопоставляя формулы (1.52) и (1.66), можно прийти к выводу, что метод сил является менее алгоритмичным, чем метод перемеш,е-ний. При использовании метода перемеш,ений решают систему линейных уравнений с размерами 6р X 6р. Матрица системы уравнений при этом симметрична и положительно определенна. При использовании метода сил сначала следует рассчитать основную систему, для чего надо решить систему уравнений с матрицей [Aq, имеюш,ую размеры 6р X 6р. Матрица А(,] несимметрична. Далее решаем систему канонических уравнений, число которых равно степени статической неопределимости (6s—6р). При ручном счете метод перемещ,ений с учетом продольных деформаций стержней практически не используют из-за большого числа неизвестных и требований, предъявляемых к точности вычислений. В то же время метод сил находит широкое распространение при расчете стержневых систем, вследствие того, что при ручном счете легко определить усилия в основной статически определимой системе.  [c.44]

В результате отображения расчет течения через заданную решетку сводится к расчету течения в полученной внутренней односвязной области от вихреисточника и вихрестока, находящихся в определенных точках области. Этот расчет может быть произведен и непосредственно, по методу сеток или путем решения соответствующего интегрального уравнения, например относительно потенциала скорости. Однако более целесообразно вместо непосредственного расчета потенциала скорости найти конформное отображение полученной области на какую-либо каноническую область, после чего расчет потенциала скорости при любых условиях решетки производится очень просто.  [c.73]


Смотреть страницы где упоминается термин Расчет Уравнения канонические : [c.404]    [c.108]    [c.427]    [c.559]    [c.233]    [c.560]    [c.20]   
Прочность, устойчивость, колебания Том 1 (1966) -- [ c.48 , c.484 , c.484 , c.488 ]



ПОИСК



Вид канонический

Канонические уравнения уравнения канонические

Уравнения канонические



© 2025 Mash-xxl.info Реклама на сайте