Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердое тело, движения решения

В книге содержится краткое изложение основных теоретических положений метода конечных элементов, а также подробно рассмотрено использование МКЭ для решения самых разнообразных задач механики жидкости (течение невязкой и вязкой жидкости в каналах, заливах и озерах с учетом геометрии береговой линии, обтекание жидкостью твердых тел, движение жидкости в пористых средах и различные проблемы, связанные с явлениями диффузии, конвекции и распада в жидких средах и др.).  [c.5]


Дифференциальное уравнение вращательного движения твердого пела в общем случае позволяет решать две основные задачи гю заданному вращению тела определять вращающий момент внешних сил и по заданному вращательному моменту и начальным условиям находить вращение тела. При решении второй задачи для нахождения угла поворота как функции времени приходится интегрировать дифференциальное уравнение вращательного движения. Методы его интегрирования полностью аналогичны рассмотренным выше методам интегрирования дифференциального уравнения прямолинейного движения точки.  [c.315]

При определении движения несвободного твердого тела наряду с задаваемыми внешними силами учитываются и неизвестные реакции связей. В этом случае для решения задачи используются дополнительные уравнения, определяющие ограничения движения тела имеющимися связями.  [c.233]

Это условие можно также использовать для проверки результатов вычислений, произведенных при решении задачи на основе дифференциальных уравнении плоского движения твердого тела.  [c.218]

Для решения этих задач нужно составить и затем проинтегрировать дифференциальное уравнение вращательного движения твердого тела [уравнение (221) .  [c.341]

При решении всех этих задач следует составить дифференциальное уравнение вращательного движения твердого тела [уравнение (221)] и затем это уравнение проинтегрировать.  [c.345]

В тех случаях, когда нельзя найти решение системы дифференциальных уравнений (28) в замкнутой форме, разрабатываются методы, позволяющие значительно упростить эти уравнения для последующего исследования, в частности понизить их порядок. Так, например, при изучении движения абсолютно твердого материального тела, состоящего из бесконечного количества точек, заполняющих некоторый объем, система дифференциальных уравнений вида (28) должна была бы состоять из бесконечного числа уравнений. Однако в механике установлены приемы, позволяющие полностью описать движение всех точек твердого тела с помощью только шести дифференциальных уравнений не выше второго порядка каждое.  [c.64]

При решении задач, приведенных в этой главе, необходимо ясно понимать, что вращением называется движение твердого тела, а не точки. Отдельно взятая материальная точка не вращается, а движется по окружности — совершает криволинейное движение.  [c.231]

В этой главе рассмотрено несколько простейших типовых задач, при решении которых можно использовать теоремы динамики для точки и системы материальных точек — теорему об изменении количества движения, теорему об изменении кинетической энергии и основной закон динамики для вращательного движения твердого тела (А. И. Аркуша, 1.56 и 1.58).  [c.320]


Решение. Полуцилиндр и стержень являются системой твердых тел, находящихся в равновесии. Под действием веса стержня полуцилиндр может начать движение вправо (при недостаточной силе трения между полуцилиндром и полом). Для определения искомой наименьшей величины коэффициента трения скольжения между полуцилиндром и горизонтальной плоскостью рассмотрим отдельно равновесие стержня и полуцилиндра.  [c.89]

Решение. Рассмотрим равновесие каждого из цилиндров в отдельности (рис. б и в), отбросив мысленно пол, стену и другой цилиндр, заменив их действие реакциями. Каждую реакцию разложим на нормальную составляющую и силу трения. Тогда первый цилиндр можно рассматривать как свободное твердое тело, находящееся в равновесии под действием пяти сил веса, двух нормальных реакций и двух сил трения (рис. б). Аналогично рассматривается равновесие второго цилиндра (рис. в). Силы трения направлены по касательным, проведенным к цилиндрам в точках соприкосновения в сторону, противоположную возможному движению цилиндра.  [c.105]

Решение. Мгновенное угловое ускорение твердого тела равно скорости движения конца вектора мгновенной угловой скорости (о. Из решения предыдущей задачи (рис. б) следует, что вектор о описывает конус вокруг оси 2 с угловой скоростью (Й1. Рассматривая ш как радиус-вектор точки твердого тела, вращающегося с угловой скоростью И) вокруг оси 2, находим скорость этой точки  [c.475]

Решение. Изобразим твердое тело на расстоянии х от начала отсчета О. По условию задачи начальные условия движения имеют вид  [c.35]

При решении обратных задач динамики (определение движения по заданным силам) приходится интегрировать систему дифференциальных уравнений плоского движения твердого тела. Для определения шести постоянных интегрирования должны быть заданы шесть начальных условий движения, имеющих вид  [c.253]

Решение задач динамики плоского движения твердого тела рекомендуется выполнять в следующей последовательности  [c.253]

Решение. При вращении турбинного диска вал изгибается. Так как диск насажен в середине вала без перекоса, то его движение будет происходить в горизонтальной плоскости, и поэтому следует применить дифференциальные уравнения плоского движения твердого тела.  [c.269]

Решение. В общем случае движения твердого тела кинетическая энергия вычисляется по формуле  [c.295]

Решение задачи методом кинетостатики оказалось более громоздким, так как пришлось определять главный вектор и главный момент фиктивных сил инерции колеса. Применение же дифференциальных уравнений плоского движения твердого тела короче и естественнее, чем использование метода кинетостатики.  [c.361]

Решение. Твердое тело совершает движение по инерции вокруг неподвижной точки О при наличии двух внешних сил веса тела, приложенного в центре тяжести О, и силы реакции опорной точки О.  [c.525]

Поступательное движение твердого тела. Наиболее общим приемом составления уравнений динамики поступательного движения твердого тела является применение теоремы о движении центра инерции системы материальных точек. Теорема преимущественно используется в проекциях на оси декартовых координат. В число данных и искомых величин должны входить массы материальных точек, их уравнения движения, внешние силы системы. Решение обратных задач упрощается в случаях, когда главный вектор внешних сил, приложенных к твердому телу, постоянен либо зависит только от 1) времени, 2) положений точек системы, 3) скоростей точек системы. Труднее решать обратные задачи, в которых главный вектор внешних сил одновременно зависит от времени, положения и скоростей точек системы.  [c.540]

Решение обратных задач динамики твердого тела, вращающегося вокруг неподвижной точки, представляет значительные трудности. Дифференциальные уравнения движения, т. е. динамические уравнения Эйлера, решаются в квадратурах только в исключительных случаях.  [c.542]


При решении задач с помощью общих теорем динамики, а также при применении дифференциального уравнения вращения твердого тела вокруг неподвижной оси, дифференциальных уравнений плоского движения твердого тела и динамических уравнений Эйлера силы разделяются на внешние и внутренние.  [c.545]

Интегрируя полученную систему дифференциальных уравнений движения твердого тела, находим частоты свободных колебаний, главные колебания ротора и общее решение задачи.  [c.625]

Другим крупнейшим ученым этого периода является П. Л. Чебышев (1821 —1894), известный своими многочисленными математическими исследованиями и трудами по прикладной механике он явился основоположником отечественной шко лы теории механизмов и машин. Большое внимание современников привлекли к себе исследования С. В. Ковалевской (1850—1891), завершившиеся решением одной из труднейших задач динамики твердого тела до нее законченные результаты в этой области удалось получить только Эйлеру и Лагранжу. Особое значение для дальнейшего развития естествознания и техники имело творчество ученика П. Л. Чебышева, виднейшего математика и механика А. М. Ляпунова (1857—1918), создателя основ современной теории устойчивости равновесия и движения. На основные результаты и идеи Ляпунова опираются труды большого числа его учеников и последователей, способствовавших дальнейшему развитию этой области науки.  [c.16]

Настоящий параграф посвящен решению следующей задачи в каждый данный момент времени при различных частных предположениях о характера относительного и переносного движений найти вид того результирующего сложного движения, которому соответствует распределение абсолютных скоростей точек тела в этот момент. Таким образом, здесь будет идти речь о сложении мгновенных (бесконечно малых) перемещений тела. Так как распределение скоростей точек твердого тела в данный момент зависит от его поступательной и угловой скорости в этот момент, то рассматриваемую задачу можно еще назвать задачей о сложении мгновенных поступательных и угловых скоростей тела ). Заметим, что если мы имели бы в виду сложение не мгновенных, а конечных перемещений тела, то соответствующие теоремы получили бы в общем случае совершенно иную формулировку.  [c.139]

Многие крупные ученые проявляли большое остроумие и находчивость, решая различные частные задачи по движению твердого тела н по движению несвободных точек. Однако необходимо было найти общий метод, который дал бы возможность аналитически выразить действие связей, указать общие принципы решения подобных задач.  [c.259]

Каждое из этих семи всеобщих уравнений движения выглядит так или иначе, в зависимости от того, для какого объекта оно составлено, написано ли оно для одной материальной точки, для твердого тела, совершающего определенное движение, или для изменяемой механической системы. Они могут быть написаны в конечном или в дифференциальном виде. В зависимости от условий задачи приходится выбирать уравнение и форму его, соответствующую заданным условиям. При этом полезно иметь в виду, что если проекции силы являются функциями времени, то часто бывает возможно проинтегрировать уравнения проекций количества движения. Уравнение кинетической энергии дает интеграл в тех случаях, когда силы являются функциями расстояния. Этим часто определяется выбор того или другого уравнения для решения задачи. Выводу семи всеобщих уравнений движения для различных движущихся объектов посвящены 35—37.  [c.132]

Потребность в изучении свойств движений твердых тел зародилась в глубокой древности. Практически любая техническая конструкция включает элементы, которые в нормальных условиях их работы близки по своим свойствам к абсолютно твердому телу. Задачи баллистики пушечных ядер, снарядов, ракет, спутников планет на определенных этапах исследования могут рассматриваться как задачи о движении абсолютно твердого тела. Такие же задачи возникают при создании высокоточных измерительных приборов, механизмов и машин. Из сказанного ясно, что теория движения абсолютно твердого тела весьма обширна и имеет многочисленные практические приложения. Здесь мы ограничимся лишь основами этой теории, включающими общую математическую постановку проблемы и традиционные методы решения типичных задач.  [c.443]

В реальном течении, как показывают эксперименты, закрутка потока несколько отличается от составного вихря Рэнкина, получаемого в процессе решения уравнения движения (4.79). Учет отклонения приосевого вихря от вращения по закону твердого тела со = onst осушесталяется введением показателя степени при радиусе  [c.192]

С. В. Ковалевская (1850—1891), решившая одну из труднейших задач динамики твердого тела А. М. Ляпунов (1857—1918), который дал строгую постановку одной из фундаментальных задач механики и всего естествознания — задачи об устойчивости равновесия и движения.и разработал наиболее общие методы ее решения И. В. Ме-ш,ерский (18Й—1935), внесший большой вклад в решение задач механики тел переменной массы К. Э. Циолковский (1857—1935), автор ряда фундаментальных исследований по теории реактивного движения А. Н. Крылов (1863—1945), разработавший теорию корабля и много внесший в развитие теории гироскопа и гироскопических приборов.  [c.8]

Следовательно, теорема о движении центра масс и теорема об изменении количества движения системы представляют собой, по существу, две разные формы одной и той же теоремы. В тех случаях, когда изучается движение твердого тела (или системы тел), можно в равной мере пользоваться любой из этих форм, причем уравнением (16) обычно пользоваться удобнее. Для непрерывной же среды (жидкость, газ) при решении задач обычно пользуются теоремой об изменении количества движения системы. Важные приложения эта теорема имеет также в теории удара (см. гл. XXXI) и при изучении реактивного движения (см. 114). ,  [c.282]


Движение свободного твердого тела. Как известно, движение свободного твердого тела слагается из поступательного движения вместе с полюсом, в качестве которого при решении задач динамики выбирают обычно центр масс С тела, и из движения вокруг центра масс, i k OKpyr iie-подвижной точки (см. 63). Если на тело действуют внешние силы F, F%, то движение полюса С описывается теоремой о движении.центра масс тас= 1 г> где m — масса тела. В проекциях на неподвижные оси это равенство дает  [c.344]

При решении задач по статике, относящихся к равновесию твердого тела, почти всегда рассматриваемое тело является несвободным. Условия, стесняющие свободу движения рассматриваемого тела, называются в механике связями. В статике связи осуществляются при помощи твердых или гибких тел, соединенных с данным твердым телом или касающихся его. Обычно задача состоит в определении сил взаимодействия между данным твердым телом и телами, осуи ествляющпмп связи, наложенные на это тело. Сила, с которой связь, препятствующая перемещению данного твердого тела в каком-нибудь направлении, действует на это тело, называется реакцией связи. Направление реакции связи противоположно тому направлению, в котором связь препятствует перемещению данного тела.  [c.19]

Пример. В качестве примера решения задачи об устойчивости движения путем надлежащего выбора функции Ляпунова V рассмотрим задачу об устойчивости перманентных вращений твердого тела, движущегося по инерции относительно неподвижной точки. В гл. V было показано, что уравргения движения по инерции тела с неподвижной точкой можно записать так  [c.234]

При решении задач на определение уравнений плоского движения твердого тела, уравнений движения и траекторий точек плоской фигуры рекомендуется такая последовательность действи 1  [c.367]

Блестящих результатов в самых различных отделах механики достиг гениальный ученый Николай Егорович Жуковский (1847—1921), основоположник авиационных наук экспериментальной аэродинамики, динамики самолета (устойчивость и управляемость), расчета самолета на прочность и т. д. Его работы обогатили теоретическую механику и очень многие разделы техники. Движение маятника теория волчка экспериментальное определение моментов инерции вычисление пла нетных орбит, теория кометных хвостов теория подпочвенных вод теория дифференциальных уравнений истечение жидкостей сколь жение ремня на шкивах качание морских судов на волнах океана движение полюсов Земли упругая ось турбины Лаваля ветряные мельницы механизм плоских рассевов, применяемых в мукомольном деле движение твердого тела, имеющего полости, наполненные жидкостью гидравлический таран трение между шипом и подшипником прочность велосипедного колеса колебания паровоза на рессорах строительная механика динамика автомобиля — все интересовало профессора Жуковского и находило блестящее разрешение в его работах. Колоссальная научная эрудиция, совершенство и виртуозность во владении математическими методами, умение пренебречь несущественным и выделить главное, исключительная быстрота в ре-щении конкретных задач и необычайная отзывчивость к людям, к их интересам — все это сделало Николая Егоровича тем центром, вокруг которого в течение 50 лет группировались русские инженеры. Разрешая различные теоретические вопросы механики, Жуковский являлся в то же время непревзойденным в деле применения теоретической механики к решению самых различных инженерных проблем.  [c.16]

Поскольку множество решений допускает сдвиг вдоль направления е , получаем уравнение прямой, указанное в утверждении теоремы. Обратимся к изучению поля ускорений в плоскопараллельном движении. Зададим точку твердого тела радиусом-вектором г, выходящим из неподвижного полюса О, а мгновенный центр скоростей — радиусом-вектором с началом в том же полюсе. По теореме 2.14.1 найдем скорость точки твердого тела в плоскопаргшлельном движении  [c.147]


Смотреть страницы где упоминается термин Твердое тело, движения решения : [c.314]    [c.512]    [c.196]    [c.398]    [c.109]    [c.208]    [c.253]    [c.13]    [c.17]    [c.10]    [c.13]    [c.7]    [c.98]   
Механика электромагнитных сплошных сред (1991) -- [ c.376 , c.471 , c.483 ]



ПОИСК



Движение твердого тела

Движение твердых тел

О решении задачи движения твердого тела с одной неподвижной точкой методом разделения переменных

Общий метод решения задачи о движении твердого тела Уравнения Эйлера

Решение нелинейных уравнений методом усреднения. Автоколебания. Вынужденная синхронизация. Система с медленно изменяющимися параметраАдиабатические инварианты. Параметрический резонанс в нелинейной системе. Многомерные системы ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА



© 2025 Mash-xxl.info Реклама на сайте