Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние пластическое твердого

Выбор того или иного метода переработки пластиков в значительной мере определяет физико-механические, диэлектрические и другие свойства изделия и, в свою очередь, зависит от того, является ли полимер, используемый в качестве связующего, термопластичным или термореактивным. В процессе переработки пластических масс в результате физико-химических процессов происходит переход из вязко-текучего состояния в твердое, структурирование и ориентация полимера и ряд других изменений.  [c.13]


Дислокации образуются в кристаллах металла при переходе из жидкого состояния в твердое, при пластической деформации, около посторонних включений, на границах зерен и блоков.  [c.14]

Магнитную текстуру в сплавах Fe—Сг-Со можно создать не только с помощью ТМО. Эти сплавы обладают достаточно высокой пластичностью, что позволяет подвергать их холодной пластической деформации с большими степенями обжатия не только в состоянии а-твердого раствора, но и на различных стадиях распада а->а,+а2. Используя одноосную холодную пластическую деформацию (волочение, экструзию, прокатку в калибрах) на промежуточной стадии формирования высококоэрцитивного состояния, можно существенно улучшить магнитные свойства сплавов. Схема деформационного старения включает три основные операции предварительное старение, пластическую деформацию и окончательный отпуск.  [c.516]

Пластмассами называются полимеры, которые при нормальной температуре находятся в твердом стеклообразном состоянии и способны при определенной температуре переходить в состояние пластического течения.  [c.61]

Все рассмотренные выше различные явления, характеризующие пластическую деформацию, часто встречаются в комбинации друг с другом. В связи с этим их оказывается невозможно отделить одно от другого, чем и объясняется большое разнообразие в механическом поведении твердых тел, приведенных в состояние пластической деформации.  [c.81]

Сделаем теперь обзор некоторых физических фактов, характеризующих образование пластического состояния в твердых телах. Рассмотрим медленное непрерывное течение пластичного тела, при котором его форма изменяется лишь незначительно. В поликристаллических твердых телах остаточную деформацию можно считать настолько значительной, что в сравнении с ней возможно пренебречь упругой частью деформации ). Мы предполагаем также, что в каждой точке медленно движущейся среды известны как величины, так и направления главных нормальных напряжений и что направления последних в данной точке не изменяются в процессе деформирования. Чтобы определить деформацию среды, рассмотрим  [c.259]

Феноменологически механизм распространения волны пластической деформации качественно аналогичен механизму распространения электромагнитной волны. Его физическая суть сводится к следующему. Пластическая деформация твердых тел может протекать только в условиях неоднородного напряженного состояния. Пластический сдвиг зарождается в зонах максимальных концентраторов напряжений как локальное кинетическое структурное превращение и распространяется в пределах определенного структурного элемента деформации путем движения дефектов как фрагментов другой структуры. Любой трансляционный сдвиг является сугубо релаксационным процессом и сопровождается релаксацией локального концентратора напряжений.  [c.12]


При быстром охлаждении серого чугуна, расплавленного или нагретого до температуры выше 750°С, графит легко переходит в цементит (то есть чугун отбеливается) и, кроме того, закаливается. Относительное удлинение чугуна при разрыве практически равно нулю, поэтому при неравномерном нагреве или остывании почти всегда возникают большие внутренние напряжения и трещины. В расплавленном состоянии чугун текуч и мгновенно переходит из жидкого состояния в твердое, минуя пластическое. Все эти свойства чугуна в большой степени затрудняют его сварку.  [c.76]

Установлено, что пластические деформации по своему влиянию на состояние кристаллов твердых растворов (уменьшение степени ближнего порядка) оказывают воздействие, аналогичное закалке [14]. Поэтому вероятно, что значительные деформации, соответствующие разрушению закаленных латуней, перекрывают и нивелируют эффект, полученный от закалки.  [c.235]

Сварка трением относится к процессам, в которых используются взаимное перемещение свариваемых поверхностей, давление и кратковременный нагрев. Сварка трением происходит в твердом состоянии при взаимном скольжении двух заготовок, сжатых силой Р. Работа, совершаемая силами трения при скольжении, превращается в теплоту, что приводит к интенсивному нагреву трущихся поверхностей. Трение поверхностей осуществляется вращением или воз-вратно-поступательным перемещением сжатых заготовок (рис. 5.40). В результате нагрева и сжатия происходит совместная пластическая деформация. Сварное соединение образуется вследствие возникновения металлических связей между чистыми (ювенильными) контактирующими поверхностями свариваемых заготовок. Оксидные пленки на соединяемых поверхностях разрушаются в результате трения и удаляются за счет пластической деформации в радиальных направлениях.  [c.222]

Однако принято считать, что при соединении металлов в твердом состоянии имеет значение не только схватывание, но и спекание. Спекание — комплекс диффузионных процессов, протекающих во времени при повышенных температурах. Схватывание — бездиффузионное явление — объединение кристаллических решеток, находящихся в контакте тел в результате их совместного пластического деформирования. Относительная роль схватывания и спекания в разных методах соединения металлов различна и определяется в основном температурой, временем и давлением в контакте. Например, диффузионную сварку при большом времени выдержки можно считать основанной на явлении спекания. Во всех остальных случаях схватывание первично, а диффузионные и рекристаллизационные процессы, если они вообще происходят, вторичны.  [c.15]

Дислокация представляет собой энергетически неуравновешенный атомный комплекс с повышенной свободной энергией. Под влиянием внешнего силового (энергетического) воздействия она начинает двигаться к положению с наименьшей свободной энергией (стабильному состоянию). В процессах возникновения и движения дислокаций, в том числе при пластической деформации, они перемещаются к поверхности, где увеличивают плотность участков с повышенной свободной энергией, повышенной активностью, что имеет большое значение при сварке металлов давлением в твердом состоянии.  [c.472]

Это обусловливает волновой характер пластического течения твердых тел. В общем случае в деформируемом теле возникает целый спектр волн пластической деформации различной длины, которые определяют иерархию структурных уровней деформации н заданной среде. Если в материале нет внутренней структуры (аморфное состояние), определяющую роль в распространении волны пластического течения играют боковые поверхности образца [195].  [c.347]

Важной характеристикой напряженного состояния является коэффициент мягкости , равный отношению максимальных касательных напряжений к максимальным нормальным. Чем меньше этот коэффициент, тем жестче напряженное состояние. Касательные напряжения способствуют развитию пластической деформации, а нормальные— разрыву межатомных связей, хрупкому разрушению твердого тела.  [c.117]


Сен-Венана — Леви — Мизеса теория пластичности 82, 8 5, 89 Сжатие пластического материала между шероховатыми плитами 337 Состояние пластическое твердого тгла 9  [c.375]

Механика твердого тела, будучи одной из глав общей механики, изучает движение реальных твердых тел. Различие между твердыми телами, с одной стороны, жидкостями — с другой, иногда кажется интуитивно ясным (нанример, сталь и вода), иногда отчетливую границу провести бывает трудно. Лед представляет собою твердое тело, однако ледники медленно сползают с гор в долины подобно жидкости. При прокатке раскаленного металлического листа между валками прокатного стана металл находится в состоянии пластического течения и термин твердое тело по отношению к нему носит довольно условный характер. Неясно также, следует ли отнести к жидким или твердым телам такие вещества, как вар, битум, консистентные смазки, морской и озерный ил и т. д. Поэтому дать определение того, что называется твердым телом затруднительно, да пожалуй и невозможно. В последние годы наблюдается определенная тенденция к аксиоматическому построению механики без всякой апелляции к интуиции и так называемому здравому смыслу . Таким образом, вводятся различные модели, иногда чисто гипотетические, иногда отражающие основные черты поведения тех или иных реальных тел и пренебрегающие второстепенными подробностями. Для таких моделей можно установить некоторый формальный принцип классификации, позволяющий отделить модели жидкостей от моделей твер1а.ых тел, но эта классификация отправляется от свойств уравнений, но не тел как таковых. Поэтому термин механика твердого тела будет относиться скорее к методу исследования, чем к его объекту.  [c.16]

Рассмотрим напряженное состояние элемента твердого тела (рис. 4.3) на площадке фактического контакта в виде одной из граней этого элемента. Все грани элемента будут находиться под сжимающими напряжениями, поскольку под действием приложенной нормальной нагрузки по оси X элемент должен увеличиваться в направлении осей К и Z, но этому препятствует окружающий материал. На площадке контакта действует сила трения, поэтому элемент находится под действием не только нормальных О,, но и касательных напряжений, например а,. Такое напряженное состояние сгюсобствует пластическому течению материала. Исследования рабочих поверхностей деталей машин в парах трения и опытных образцов после их испытания показывают, что все металлы в условиях трения в пределах активного слоя подвергаются пластическому деформированию. Активным слоем или активным объемом называют слой (объем), который примыкает к контактирующей поверхности элемента (детали) пары трения и в котором могут происходить различные физико-химические изменения, инициированные трением.  [c.84]

Итак исторически основание математической теории пластичности было заложено трудами Сен-Венана и М. Леви, которые вывели в семидесятых годах прошлого столетия общие уравнения внутренних движений (течения) в твердых пластических телах за пределами упругости. В начале настоящего столетия были обнародованы исследования А. Хаара, Т. Кармана и А. Межеев-ского в области теории напряженного состояния пластических сред.  [c.20]

Во-первых, в зонах локализации деформации возникают сильно-возбужденные состояния, которые обеспечивают кинетические структурные превращения при распространении пластического сдвига. Согласно [1] эти зоны можно рассматривать в качестве самостоятельной дефенитной фазы, возникающей при объединении дефектов как элементов другой структуры. Конечно, это не традиционная фаза Гиббса, для нее характерны отсутствие дальнего порядка и сохранение лишь ориентационного порядка. В [22] она названа гексагональной фазой. В любом случае несомненно одно, что зону локализации деформации нельзя описывать как просто кристалл с дефекта. ш, ее поведение определяется особенностями сильновозбужденных состояний в твердых телах [2, 23]. Во-вторых, сдвиги при локализации деформа-  [c.44]

Некоторое время спустя становится ясным, что п в разупорядоченном состоянии поликристаллы твердых растворов обнаруживают стадии II и III пластической деформации [28—30]. Картина течения поликристаллов приобретает общий характер независимо от того, сплав это или чистый металл, упорядоченное или разупорядоченное состояние и каков тип кристаллической решетки. Идентифицируется и наличие переходной стадии в поликристаллах [29]. Среди советских исследователей здесь отметим цикл работ Цыпина с сотрудниками, посвященных стадийности кривых течения поликристаллов меди и ее твердых растворов [31—33]. В 1976 г. в монографии Ивановой и Ермишкина [34] явление стадийности кривых течения описано на ОЦК поликристаллах. Картина кривой течения поликристаллических металлов могла быть представлена теперь в следующем виде (рис. 5.2) переходная стадия, стадии II и III.  [c.125]

Аналогично, переход из жидкого состояния в твердое можно осуществить через переходную однофазовую область пластического состояния.  [c.26]

Синтетические материалы можно разделить на две большие группы твердопластичные (которые из твердого состояния не могут быть переведены в пластическое состояние ни одним из неразрывных методов) и термопластичные (которые могут быть переведены в пластическое состояние из твердого состояния).  [c.307]

Термическая обработка нержавеющих сталей аустенитного класса сравнительно проста и заключается в закалке в воде от температур 1050—1100°. Нагрев до этих температур вызывает растворение карбидов хрома (М дС,.), а быстрое охлаждение фиксирует состояние пересыщенного твердого раствора. Медленное охлаждение недопустимо, так как при этом, как и при отпуске, возможно выделение карбидов, приводящее к ухудшению пластичности и коррозионной стойкости. Кроме того, при закалке происходят рекристаллизационные процессы, устраняющие последствия пластического деформи-)ования, которому часто подвергаюгся нержавеющие аустенитные стали. 3 результате закалки твердость этих сталей не повышается, а снижается — поэтому для аустенитных нержавеющих сталей закалка является умягчающей термической операцией.  [c.358]


С более общей точки зрения пластическое твердое тело можно определить, исходя из следуюпщх условий. Если происходят изменения объема, то они чисто обратимы, так что тензор необратимых напряжений представляет собой девр1атор. Если этот тензор не достиг некоторою предела текучести, зависящего, возможно, от состояния элемента и его истории, скорость изменения формы равна нулю. Если необратимые напряжения находятся на пределе текучести, то скорость изменения формы может быть отличной от нуля. Она зависит только от тензора необра-  [c.118]

Как видйо на рис.7.6.3, с уменьшением относительной толщины мягкой прослойки X эффект контактного упрочнения усиливается, и при некотором ее значении обеспечивается возможность достижения прочности основного металла. Однако достижение столь полного упрочнения затрудняется тем, что схема напряженного состояния участков твердого металла вблизи прослойки оказывается значительно более мягкой по сравнению с трехосным растяжением мягкой прослойки, и они вступают в пластическую деформацию, в то время как вдали от прослойки металл работает еще упруго. Естественно, что такое смягчение металла в приконтактной области уменьшает сдерживание деформаций мягкой прослойки, ослабляя эффект упрочнения. В этом случае контактное упрочнение реализуется не полностью, и в выражение (7.6.2) приходится вводить коэффициент реализации контактного упрочнения Кр< 1  [c.238]

Дальнейшие успехи в создании прочных сталей связаны с тем, что у некоторых многокомпонентных легированных сталей (с относительно небольшим общим содержанием легирующих добавок) при охлаждении с температуры аустенитного превращения в определенном интервале те.мператур (450—550 С) не наблюдается распада аустенита, сопровождающегося образованием твердых феррпто-цементитных смесей. В этом интервале сталь неограниченное время остается в пластичном состоянии ее можно ковать, шта.мповать, прокатывать. Это положило начало термомеханической обработке, представляющей собой сочетание процессов термообработки и пластической деформации.  [c.174]

Высокие теплопроводность и теплоемкость алюминия требуют применения мощных источников тепла, а в ряде случаев подогрева. Высокий коэффициент линейного расширения и малый модуль упругости способствуют появлению значительных сварочных деформаций, что требует применения надежных зажимных приспособлений и устранения деформаций после свар Ки в ответственных конструкциях. В алюминии отсутствует пластическое состояние при нагреве и переходе из твердого в жидкое соетояние, при этом алюминий не меняет своего цвета, а в области температур более 400—450 С имеется провал прочности и пластичности, поэтому рекомендуется сварка на подкладках,  [c.134]

Прочность такого жидкотвердого агрегата близка к нулю, т. е. сопротивление деформированию практически отсутствует. Начиная с некоторой температуры, названной температурой верхней границы интервала хрупкости (Гаг), металл переходит в стадию твердожидкого состояния, характеризующегося таким увеличением количества твердой фазы, при котором возможность жидкости перетекать между затвердевшими зернами резко уменьшается. При деформировании происходит заклинивание зерен и дальнейший процесс становится возможным только в случае пластической деформации самих зерен либо смещения их друг относительно друга. Обычно оба эти процесса протекают одновременно. Деформация такого двухфазного агрегата при условии сохранения сплошности в направлении действия сил Р возможна только при смятии отдельных точек контакта зерен (рис. 12.40,6, I—2, 3—7 и т. д.), поворота прилегающих зерен и их деформации. В ранней стадии такого деформирования  [c.475]

Особенностью напряженно-деформированного состояния твердых прослоек является реализация в них эффекта контактного разупрочнения, заключаюш,егося в возникновении благоприятной мягкой схемы напряженного состояний и приводящей к улучшению деформационных характеристик сварного соединения (удлинения, сужения, трещиностойко-сти и др.). На основе установленных закономерностей изменения касательных напряжений на контактной плоскости твердой прослойки, при которой ее металл полностью перейдет в пластическое состояние, получены уточненные формулы.  [c.97]

Метод акустической эмиссии (АЭ) относится к диагностике и направлен на выяснение состояния объектов путем определения и анализа шумов, сопровождающих процесс образования и роста трещины в контролируемых объектах. Он базируется на регистрации акустических волн, возникающих в металле и сварных соединениях при нагружении в результате образования пластических деформаций, движения дислокаций, появления микро- и макротрещин. В основу метода положено явление излучения (эмиссии) упругих волн твердым телом при локальных динамических перестройках его структуры при его деформировании и локальном разрушении (пластическая деформация, скачкообразное развитие т )ещин). Метод применяется для выявления состояния предразруше-ния тяжело нагруженных конструкций сосудов высокого  [c.254]

В.Н. Бовенко [15] принял, что при механическом воздействии на твердое тело упругая энергия переходит не только в потенциальную энергию атомов (образующихся свободных поверхностей), как это было принято Гриффитсом, но и в энергию автоколебательного движения. Это привело к установлению дискретно - волнового критерия устойчивости структуры - число Бовеи-ко) [15]. Предложенная им автоколебательная модель предразрушения твердого тела базируется па постулате о возникновении областей автовозбуждения активности вещества вблизи дефектов структуры вследствие нарушения однородного состояния исходной активной неустойчивой конденсированной среды. Эти автовозбуждения являются основными носителями когерентных (или макроскопических квантовых) эффектов. Они являются очагами пластической деформации, микро- и макротрещин, зародышами образования новой фазы на различных структурных иерархических уровнях самоорганизации, источниками акустической эмиссии (АЭ), микросейсмов и землетрясений.  [c.201]

Вместе с тем для сварных соединений, включающих в свой состав хрупкие твердые прослойки, которые при неблагоприятном стечении обстоятельств становятся очагами разрушения вследствие исчерпания ресурса пластичности твердого металла, необходимо учитьшать эффект смягчения их напряженного состояния, который приводит к вовлечению в пластическую деформацию этих прослоек при  [c.29]

Более подробно следует остановиться на значениях прочностных характеристик, которые в дальнейшем будут фигурировать в зависимостях для расчета статической прочности механически неоднородных соединений. Ранее, в работе /9/, для бездефектных соединений с мягкими прослойками нами была принята на основе многочисленных зкспериментальнььх данных идеально-жестко-пластическая диаграмма мягкого металла М. При этом, в расчетных формулах данную диаграмму в условиях общей текучести аппроксимировали на уровне значений временного сопротивления металла М (ст ). Для соединений с плоскостными дефектами такой подход применим не всегда. Последнее связано с ростом вблизи вершины дефекта показателя напряженного состояния П = Oq/T (здесь Од — гидростатическое давление, Т— интенсивность касательных напряжений, которая равна пределу текучести мягкого или /с твердого металлов при чистом сдвиге). Предельную (предшествующую разрушению) интенсивность пластических деформаций можно определить из диаграмм пластичности, отражающих связь предельной степени деформации сдвига Лр с показателем напрязкенного состояния П для конкретных материалов сварных соединений /9, 24/. Для этого необходимо знать показатель напряженного состояния П, величина которого зависит только от геометрических характеристик сварного соединения, степени его механической неоднородности и размеров дефекта П = (as, 1/В, f )Honpe-деляется из теоретического анализа. Определив значение предельной интенсивности пластических деформаций, по реальной диаграмме деформирования рассматриваемого металла СТ, =/(Е ) находим величину интенсивности напряжений в пластической области. Интервалы изменения а следующие Q.J, < а . Для плоской деформации та -кая подстановка в получаемые формулы означает замену временного сопротивления на данную величину.  [c.50]


В качестве твердых прослоек могут выступать сварной шов. зона термического влияния, промежуточная наплавка при сварке разнородных металлов и т. д, Ранее соединениям, имеющим в своем составе твердые прослойки с удовлетворительной деформациотой способностью, удеЛ51ЛОСЬ мало внимания. Последнее связано с тем, что прочность рассматриваемых соединений лимитировсшась механическими свойствами основного более мягкого металла М, а сама твердая прослойка в процессе нагружения либо работала упруго, либо незначительно вовлекалась в пластическую деформацию, Интерес к анализу предельного состояния соединений с твердыми прослойками возникает с появлением в них плоскостных дефектов, которые являются причиной разрушения конструкций по твердой прослойке.  [c.66]

Особенности напряженно-деформированного состояния механически неоднородных сварных соединений были исследованы нами на образцах-моделях с применением метода м>аровых полос, а также методом конечных элементов и линий скольжения /2, 81/. При этом степень механической неоднородности (соотношение свойств твердого и мягкого металлов = ст J / а ) варьировали таким образом, чтобы обеспечить совместное пластическое деформирование металлов на стадиях, близких к предельным Сочетание методов линий скольжения и конечных элементов при решении данной задачи позволило вскрыть некоторые закономерности, которые дали возможность учесть эффект неполной реализации контактного упрочнения мягких прослоек в рамках принятых допущений и подходов. В частности, на основании численных расчетов МКЭ и экспериментальных данных, было установлено, что  [c.103]

Следу ет отметить, что рассмотренный подход учета эффекта неполной реализации контактного упрочнения мягких прослоек за счет вовлечения основного более твердого металла в пластическую деформацию бьш разработан на основе банка данных, полученных МКЭ для случая плоской деформации (v = О, л = 0,5 /91/). Вследствие этого для использования данного алгоритма чета (в форме (3.10)) на случай ра боты механически неоднородных соединений в составе тонкостенных обаючек давления, характеризующийся двухосным полем нагфяжений, изменяющимся в пределах [О, 1], необходимо было подтвердить возможность распространения установленных ранее закономерностей о напряженно-деформированном состоянии материалов вблизи границы раздела на случай произвольного соотношения натфяжений п в стенке оболочек. Для этого 6bLT выполнен расчет напряженно-деформированного состояния мягкой прослойки МКЭ в условиях ее нагружения в двухосном поле наряжений,  [c.106]

Обраи1,аясь к диаграмме деформирования идеально пластического тела, мы видим, что свойства его в известной мере оказываются промежуточными между свойствами твердого тела и жидкости. До достижения пластического состояния тело упруго и, следовательно, должно безусловно рассматриваться как твердое. После достижения предела текучести оно деформируется неограниченно или течет подобно жидкости. Можно было бы сказать, что жидкость — это твердое тело с пределом текучести, равным нулю. В связи с такой двойственной природой пластического тела и теории пластичности оответственно делятся на две группы теории течения, уподобляющие пластическое тело жидкости, и теории деформационного типа, которые строятся по образу и подобию теории упругости. Слово теории употреблено здесь во множественном числе. Единой универсальной теории пластичности до сих пор не существует, разные авторы придерживаются разных точек зрения. Ответить на вопрос, какая именно из этих теорий ближе к истине, нелегко. При решении практических задач все они дают очень близкие результаты.  [c.59]


Смотреть страницы где упоминается термин Состояние пластическое твердого : [c.98]    [c.17]    [c.178]    [c.147]    [c.147]    [c.26]    [c.201]    [c.116]    [c.108]    [c.129]    [c.94]    [c.365]   
Пластичность Ч.1 (1948) -- [ c.0 ]



ПОИСК



Состояние пластическое

Твердое состояние



© 2025 Mash-xxl.info Реклама на сайте