Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полимеры ориентация

Промышленные и исследовательские лаборатории в последнее время делают больший упор на выявление связи между механическими свойствами полимеров и их структурой и на расширение возможностей их применения, чем на синтез новых полимеров. Конструкторы нуждаются в знании вязкоупругих свойств полимеров при создании все новых и новых изделий, вытесняющих изделия из металлов и стекла. Переработчики полимерных материалов все больше осознают влияние таких факторов, как молекулярная масса полимеров, ориентация, условия термообработки и т. д., на качество продукции. Очевидно, что существует настоятельная необходимость в книге, в которой механические свойства полимеров и полимерных материалов анализируются на уровне, удовлетворяющем и конструкторов и переработчиков-технологов.  [c.10]


Эффект повышения прочности в начальный период воздействия сред обусловлен спонтанной ориентацией структурных элементов полимера. Следующее затем падение прочности вызвано дезориентацией и ослаблением силы взаимодействия структурных элементов в результате увеличения микропористости. Возникающая спонтанная ориентация сохраняется после прекращения воздействия сред, что может быть объяснено релаксационной природой снятия локальных внутренних напряжений.  [c.109]

Гибкие пленки могут быть изготовлены из линейных полимеров с достаточно высокой молекулярной массой, т. е. с большой длиной молекул. Основные способы их изготовления а) разлив на гладкую металлическую поверхность раствора полимера и б) разлив на гладкую охлаждаемую поверхность расплавленного полимера. Гибкость пленки может быть повышена двумя способами добавлением к материалу пленки (перед ее формовкой) пластификатора вытяжкой пленки при температуре, несколько превышающей температуру размягчения ее материала при этом линейные молекулы материала пленки получают преобладающую ориентацию в направлении растяжения, что способствует повышению как гибкости пленки, так и ее прочности при растяжении в направлении вытяжки.  [c.136]

Несмотря на то что в результате электростатического притяжения между полимерами, модифицированными силанами, и поверхностью минеральных наполнителей не возникает водостойких связей, электрокинетические силы весьма важны для ориентации полярных молекул, осаждающихся на поверхности из водной среды.  [c.190]

Известно, что вторая дисперсная фаза влияет на энергию разрушения хрупкой матрицы тремя путями. Один из них связан с пластической деформацией вследствие высоких напряжений около фронта трещины, и эта деформация поглощает энергию при развитии трещины. Явление пластической деформации обычно ассоциируется с такими вязкими материалами, как металлы и термопласты, но, поскольку энергия разрушения даже наиболее хрупких керамик и пластиков больше присущих им поверхностных энергий [2, 13], следует предположить, что развитие трещины во всех материалах сопровождается некоторой пластической деформацией. Как будет кратко показано, пластическая деформация, обусловленная ориентацией молекул, может быть в хрупких полимерах увеличена введением дисперсных частиц эластомера. Второй эффект дисперсной фазы состоит в увеличении шероховатости поверхности разрушения вследствие нерегулярной траектории продвижения трещины [37]. Поскольку при выводе уравнений для вычисления энергии разрушения предполагается, что поверхность трещины плоская, шероховатость поверхности будет увеличивать энергию разрушения. Третий эффект обусловлен взаимодействием трещины и второй дисперсной фазы и будет обсужден в первую очередь.  [c.19]


Подробно изучен механизм, от которого зависит повышение вязкости термопластов, и, согласно [41, 42, 60], главные особенности их поведения такие же, как и для хрупких полимеров. Основа этого явления состоит в том, что эластомерная фаза приводит к увеличению молекулярной ориентации, которая происходит в объеме полимерной матрицы, окружающем частицы эластомера. В исследованиях [3, 4, 8] показано, что на поверхностях разрушения термопластов встречается существенная молекулярная ориентация. Предполагается, что в этом случае для развития начальной трещины требуется наибольшая затрата работы, и это также объясняет большое различив (на три-четыре порядка) между анергией разрушения и оцененной теоретически поверхностной энергией для этих материалов.  [c.27]

Если дисперсная фаза состоит из частиц эластомера, то для увеличения энергии разрушения жесткого полимера важны хорошие связи по границам раздела и большие частицы. Предполагается, что увеличенная энергия разрушения является следствием большей степени молекулярной ориентации, которая возникает в полимерной матрице, окружающей частицы эластомера.  [c.29]

Строение углеродного волокна и степень ориентации его структурных элементов зависят от состава макромолекул и степени кристалличности полимера, из которого были изготовлены органические волокна. Изменение степени вытяжки волокон, темпера-  [c.37]

Значение и,, зависит от химического строения полимера. Коэффициент Y в уравнении (4), характеризующий степень уменьшения энергетического барьера под действием напряжения в отличие от U(, и То зависит от ориентации полимерных цепей и степени полимеризации.  [c.28]

Выбор того или иного метода переработки пластиков в значительной мере определяет физико-механические, диэлектрические и другие свойства изделия и, в свою очередь, зависит от того, является ли полимер, используемый в качестве связующего, термопластичным или термореактивным. В процессе переработки пластических масс в результате физико-химических процессов происходит переход из вязко-текучего состояния в твердое, структурирование и ориентация полимера и ряд других изменений.  [c.13]

В процессе литья под давлением в результате направленного приложения усилий сдвига при течении и резкого увеличения вязкости вследствие снижения температуры при заполнении формы происходит ориентация макромолекул, зависящая от соотношения скоростей деформации и релаксации полимера. Ориентационные явления способствуют увеличению прочности и жесткости в направлении ориентации, однако вызывают нестабильность размеров во времени.  [c.45]

На прочность сварных соединений большое влияние оказывают состав полимеров, степень его полярности, ориентация молекул и другие факторы.  [c.180]

На процесс образования третьего тела оказывает влияние множество явлений, среди которых в случае трения полимеров можно назвать следующие оплавление, ориентация, тер-  [c.62]

Наконец, ориентация и кристаллизация полимера приводят к увеличению его прочности и упругости.  [c.22]

На сегодняшний день можно считать установленным наличие анизотропии теплопроводности в полимерах различной химической природы, подвергнутых плоскостной вытяжке (Л. 27, 49]. При этом обнаружено, что теплопроводность в направлении ориентации, в первую очередь для полимеров с более высоким молекулярным весом, выше, чем в направлении, перпендикулярном ей. Проявление анизотропии теплопроводности наблюдалось также на стандартных образцах, подготовленных к исследованию теплофизических характеристик, [Л. 36]. Природу анизотропии теплопроводности нельзя отнести за  [c.35]

Попытки получить более универсальные зависимости для расчета теплопроводности ориентированных полимерных систем до сих "пор не увенчались заметны.м успехом, поскольку установление аналитической зависимости между молекулярным весом и степенью ориентации для полимеров с различной химической природой сопряжено со значительными трудностями. Решение этого вопроса может быть достигнуто лишь путем разработки универсальной модельной схемы теплопереноса с учетом всех современных достижений по изучению физико-химических и механических свойств полимеров и сравнения расчетных данных с результатами опытов.  [c.36]


В гл. 1 отмечалось, что элементами структуры полимера могут быть звенья макромолекул, непосредственно макромолекулы, глобулы, пачки, сферолиты и т. д. Структурные изменения в клеевых прослойках в зависимости от механизма протекающего процесса могут осуществляться на различном уровне или одновременно на нескольких структурных уровнях. В частности, ввиду большой асимметрии размеров макромолекул и элементов надмолекулярных структур под действием структурных превращений, а также при наложении силового или температурного поля протекает деформация полимерной системы. Последняя в свою очередь может сопровождаться ориентацией структурных элементов. iB условиях клеевой прослойки в первом приближении следует ожидать двухосную ориентацию структурных элементов в плоскости склеивания. Этому в известной мере способствует воздействие внешнего теплового поля, так как флуктуации тепловой энергии интенсифицируют ориентацию звеньев макромолекул и структур из них.  [c.48]

Теория молекулярного строения линейных полимеров предполагает наличие в структуре объекта полимерных цепей, состоящих из элементов, обладающих определенной анизотропией формы и свойств. В связи с этим полимерный объект считается изотропным, если полимерная цепь представляется в виде клубка со статически ориентированными элементами. Когда же имеет место направленная ориентация элементарных цепей, то объект макроскопически анизотропен. Как отмечалось ранее, наиболее распространенным способом ориентации структурных элементов полимеров является операция вытягивания. При этом степень анизотропии исследуемых свойств охлажденного ниже температуры стеклования Тс полимера определяется не только величиной относительного удлинения Д///, но и скоростью вытягивания, температурой, длительностью выдержки нагретого образца под 4 51  [c.51]

Анализ полученных данных показывает, что между опытными данными для пленок и прослоек прослеживается определенная корреляция, свидетельств>(ющая о единой природе, порождающей анизотропию термического сопротивления. Очевидно, что, как и для вытянутых пленок, причиной анизотропии термического сопротивления клеевых прослоек следует считать ориентацию структурных элементов в плоскости склеивания. Другое дело, что сам процесс ориентации при отверждении клеевых прослоек отличается целым рядом специфических особенностей в сравнении с вытяжкой полимерных пленок. Во-первых, в процессе отверждения полимер прослойки проходит через несколько стадий состояния, сопровождаемых фиксацией ориентированных структурных элементов в плоскости склеивания. Во-вторых, наличие поверхностей субстратов накладывает ограничения на подвижность цепей и их составляющих. Например, при напряжении 10-10 Па пленки из ПС растягиваются при температуре 483 К в течение 2 с более чем в 2 раза [Л. 70], в то время как даже при значительно больших значениях внутренних напряжений растяжение клеевой прослойки практически незаметно. Такое положение вызвано адгезионным сцеплением частей цепей с поверх-  [c.55]

Вытяжку производят подачей внутрь трубы воздуха под давлением 2—6 ат, нагретого до температуры, на 10° С ниже температуры плавления кристаллов в полимере. Ориентация вытяжкой способствует также повышению тенлостойкости полимера.  [c.39]

Органические полярные диэлектрики имеют дипольно-релаксационную поляризацию, которая связана с наличием в звеньях цепей полимера полярных радикалов (гидроксильных, карбоксильных, галоидных и др.) при несимметричном их расположении в цепи полимера. Эта поляризация в твердом диэлектрике, так же как и в жидкостях, связана с тепловым движением, но ориентация диполей здесь происходит в меньшей мере, не всей молекулы, а только ее радикалов, так как поворот диполей ограничивается высокой вязкостью полимера, превосходящей вязкость мономеров или олигомеров в десятки тысяч и миллионы раз. Диэлектрическая проницаемость твердых полярных полимеров, так же как и полярных мономеров и олигомеров, зависит от частоты и температуры, но максимум выражен тем меньше, чем больше, жесткость материала, чем выше его вязкость в одном и том же интервале температур и частот. Зависимость поляризации диэлектриков от частоты электрического поля иоказана на рис. 1.1.  [c.13]

Синтетические волокна. Из синтегических волокнистых материалов следует отметить полиэтилентерефталатные (лавсан, терилен, терен, дакрон), полиамидные (капрон, дедерон, нейлон, анид), полиэтиленовые, полистирольные, поливинилхлоридные (хлорин) и политетрафторэтилеповые. Понятие о химической природе и основных свойствах материалов, из которых изготовляются (вытягиванием из растворов или расплавов) эти волокна, было дано выше ( 6-5, 6-6 и 6-11). Напомним, что такие материалы, равно как и материалы, из которых изготовляются гибкие пленки ( 6-11), —это линейные полимеры с высокой молекулярной кассой. Многие синтетические волокна, например, полиамидные, после изготовления подвергаются вытяжке для дополнительной ориентации линейных молекул вдоль волокон и у.лучшения механических свойств волокна при этом, очевидно, увеличивается и длина волокна, и оно становится тоньше. В СССР из синтетических волокон в электроизоляционной технике большое применение имеет капрон. Использование капрона вместо натурального шелка и хлопчатобумажной пряжи высоких номеров в производстве обмоточных проводов дает большой экономический эффект, ибо капрон не только много дешевле, чем шелк и тонкая хлопчатобумажная пряжа,  [c.146]

Адсорбция силанов поверхностью стекла из латексных систем описана менее подробно. На основании косвенных данных [34] можно полагать, что вначале на стекле осаждаются находящиеся в водной фазе силанолы, на которых затем коалесцируют частицы полимера. Подобная ориентация особенно характерна для положительно заряженных силановых аппретов (рис. 1).  [c.187]


Хотя, по-видимому, увеличенная энергия разрушения в полимерах, содержащих дисперсный эластомер, и связана с увеличенной степенью молекулярной ориентации внутри полимерной матрицы, окружающей частицы эластомера, приведенные объяснения этого явления не очевидны. В других исследованиях по развитию трещины показано, что уровень возникающей молекулярной ориентации зависит от времени, в течение которого материал находится под влиянием поля напряжений около фронта трещины [2]. В одной из первых работ по полимерам с введенными для повышения вязкости частицами эластомера предполагалось, что частицы эластомера просто уменьшают скорость роста трещины. Это заключение было основано на наблюдениях Мерца и др. [43], которые показали, что частицы эластомера допускают значительное упругое удлинение и поэтому удерживают разрушенные поверхности полимера вместе до разрушения частиц. Таким образом, полимер в окрестности частиц эластомера находится под действием высоких напряжений вследствие влияния как поля напряжений в окрестности фронта трещины, так и неразрушенных частиц эластомера более долгое время, чем поверхности разрушения, не содержащие частиц. Этим может быть объяснена большая степень ориентации молекул в композитах полимер — эластомер.  [c.28]

Следует отметить, что высокий модуль углеродных волокон обусловлен преиму1цественной ориентацией графитовой структуры, возникающей при деградации исходного полимера. Из-за такой структуры свойства волокон являются сильно анизотропными. Особенно важна анизотропия прочности, модуля и коэффициентов температурного расширения, и она отражается в свойствах композитов, которые оказываются более анизотропными, чем аналогичные композиты на основе стеклянных волокон. Для данного типа волокна прочность и модуль композита при осевом растяжении зависят в первую очередь от объемной доли волокон и лишь в незначительной степени от состава используемой  [c.365]

На рис. 1.43 показана схематическая кривая прочностных состояний аморфного полимера. По оси абсцисс отложена температура ..no оси ординат — истинное напряжение в образце, равное отношению растягивающего усилия к фактическому сечению образца, соответствующему данной степени его растяжения. До температуры хрупкого разрушения полимер обладает хрупкой прочностью Охр, слегка понижающейся с ростом температуры в этом интервале температур предел вынужденной эластичности agg, показанный штриховой линией, выше хрупкой прочности Ojp. Выше Г р в полимере возникает вынужденная эластическая деформация, вызывающая преимущественную ориентацию молекул вдоль оси растяжения и связанное с этим упрочнение полимера. Поэтому в этом диапазоне температур прочность полимера растет, а предел вынужденной эластичности падает и при температуре стеклования обращается в нуль — полимер переходит в высокоэласти-  [c.56]

Рис. 4.114. Зависимость предела (грочггости кристаллического полимера от температуры — температура ориентации (температура, при которой начинает образовы — TeNfneparypa перехода из хрупко- Рис. 4.114. Зависимость предела (грочггости <a href="/info/113052">кристаллического полимера</a> от температуры — температура ориентации (температура, при которой начинает образовы — TeNfneparypa перехода из хрупко-
Фторопласт-3 (политрифторхлорэтилен) вследствие особой структуры частиц, получаемых в результате полимеризации, имеет ограниченную текучесть дан<е при очень высокой температуре, близкой к температуре разложения (310—315°С). Течение приводит к ориентации молекул и анизотропии свойств. У фторопласта-3 температура потери прочности (ТПП) в большей мере, чем у других фторопластов определяет температуру и давление литья. Для переработки литьем под давлением рекомендуются партии с ТПП, равной 245—250° С. Имеется возможность нагревать материал значительно выше ТПП, не приближаясь еще к температуре разложения, т. е. доводить до состояния наибольшей текучести. Рекомендуется температура литья выше ТПП на 10—30°С. При такой температуре полимер обладает хорошей термостабильностью. Частичное разложение происходит, в основном, лишь за счет включенных в цепь полимера малотермостабильных примесей. Следует иметь в виду, что чем выше температура и больше время прогрева в процессе переработки, тем выше скорость разложения и ниже прочность изделий. В подборе параметров литья более целесообразным является повышение давления, а не температуры расплава. Давление литья может достигать 4000 кГ1см таким образом, литье фторопласта-3 возможно на литьевых машинах, обеспечивающих нужные параметры.  [c.69]

Динамический модуль сдвига (Н/см ) и тангенс угла механических потерь (tg 6) определяются (ГОСТ 20812—75) для уетановления температуры стеклования, оценки стеиепи поперечного сшивания сетчатых полимеров и граництл совместимости полимеров с пластификаторами, изучения влияния кристалличности и ориентации па вязкоупругое поведение полимеров.  [c.235]

Поликарбонаты получают поликонденсацией хлорангидрида угольной кислоты с многоатомными спиртами или двухатомными фенолами. Промышленное значение получил способ синтеза дифлона из фосгена и дифенилпропана. Процесс проводится в щелочной среде в присутствии веществ, вступающих в реакцию с выделяющимся хлористым водородом. Выпускается по ТУП — 262—63. Поликарбонаты —высококристаллические термопластичные полимеры, легко поддающиеся ориентации. В зависимости от взятого фенола или многоатомного спирта можно получить поликарбонаты линейного или пространственного строения, с температурой плавления от 180 до 300° С и температурой стеклования от 130 до 170° С.  [c.257]

Ряд термопласти.чных полимеров обладает способностью к кристаллизации (типичными кристаллизующимися термопластами являются, например, широко распространенный полиэтилен и политетрафторэтилен, иначе фторопласт), которая, однако, никогда не распространяется на весь объем материала. В нем наряду с кристаллической всегда сохраняется и некоторая стекловидная аморфная фаза. Степень кристалличности зависит не только от вида материала, но и от технологии его изготовления. Кристаллические структуры возникают вследствие объединения групп цепных молекул (обычно лишь на отдельных участках их длины), причем процессу кристаллизации способствует ориентация молекул под действием внешних растягивающих усилий. Свойства частично кристаллических полимеров со стекловидной аморфной фазой в сравнении с полностью аморфными материалами более стабильны по отношению к изменениям температуры. Частично кристаллические полимеры имеют при этом определенную температуру плавления, которая для аморфных полимеров не существует.  [c.33]

Сопротивление разрушению полимеров существенно зависит от температуры, скорости деформирования и времени выдержки под напряжением. Исходная структура материала способствует неравномерному распределению внутрених усилий между отдельными цепными молекулами, даже если поле осредненных микроскопических напряжений вполне однородно. При быстром приложении внешних усилий некоторые молекулярные цепи оказыва-ваются перегруженными, в то время как другие совсем не воспринимают никаких усилий. При медленном возрастании внешних усилий и при выдержке под постоянными нагрузками распределение внутренних усилий между отдельными молекулярными цепями должно постепенно выравниваться, причем сопротивление разрыву нарастает по мере ориентации цепных молекул в направлении действия растягивающей силы.  [c.35]


При трении пластиков о металл важно учитывать низкую теплопроводность пластиков и отсутствие различия в структуре поверхностных и глубинных слоев материала в сравнении с металлами. По-видимому, в условиях трения и износа пластиков их поверхностные слои под влиянием вынужденного взаимоперемеш,ения могут терять исходную ориентацию, изменять плотность упаковки и т. д. и тем самым резко увеличивать свободную энергию полимера [4]. Эта специфика свойств пластмасс должна сказываться и на поведении смазочных материалов, которое до сих пор изучено мало. Остается неизученной роль присадок к маслам при трении пластиков о металлы неизвестно, каким требованиям должны удовлетворять смазочные материалы, используемые при трении пластмасс о пластмассы.  [c.81]

Отмеченное ранее свойство полимеров передавать тепловой поток преимущественно в направлении главных валентных связей структурных элементов Л. 30, 31, 34] ставит перед исследователями интересные проблемы по созданию полимерных систем с анизотропией теплопроводности. Необходимость изучения этого вопроса объясняется широким распрострапенцем метода плоскостной ориентации полиме-  [c.34]

В работах [Л. 49, 50], посвященных качественному анализу воздействия теплового потока на одноосноориентированные пленки из полистирола, полиметилметакрилата > ПММА), капрона и полиэтилена, делается вывод об отсутствии анизотропии теплопроводности у большинства аморфных полимеров, с чем нельзя согласиться. Пе-обнаружение этого эффекта можно отнести лишь за счет несовершенства методики эксперимента, постановка которого сводилась к визуальному определению формы фигуры плавления легко плавящегося вещества, наносимого на исследуемый материал. Ошибочность вышеуказанного вывода подтверждается результатами работы [Л.27], в которой проводилось исследование численного значения коэффициента теплопроводности для одноосноориентированного аморфного полимера ПММА. Устаиовлено, что вытяжка на 375% у ПММА повышает теплопроводность в направлении ориентации при температуре  [c.35]

Для исследования влияния ориентации структурных элементов клеевой прослойки на процесс теплообмена клеевых соединений автором проводились комплексные испытания двухосноориентированных путем вытяжки пленок и отвержденных клеевых прослоек из полимера одной природы. В качестве объекта исследования применялся аморфный полимер — атактический полистирол (ПС) с молекулярной массой Л1 = 7-10 . Пленки из ПС приготовлялись в виде пластин заданных размеров путем прессования при температуре 433 К и давлении 100-10 Па с последующим отжигом для реалаксацип возникших напряжений. После этого пластины растягивались в двух взаимно перпендикулярных направлениях 52  [c.52]


Смотреть страницы где упоминается термин Полимеры ориентация : [c.406]    [c.26]    [c.92]    [c.92]    [c.97]    [c.105]    [c.105]    [c.28]    [c.593]    [c.35]    [c.36]    [c.36]    [c.52]    [c.53]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.23 ]



ПОИСК



Ориентация

Полимерия

Полимеры



© 2025 Mash-xxl.info Реклама на сайте