Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства атомные полупроводников

Наличие локализованных состояний в запрещенной зоне и их распределение по энергиям существенно влияют на электрофизические, оптические и другие свойства некристаллических полупроводников. В свою очередь, количество, а также распределение локализованных состояний по энергиям определяются взаимным расположением атомов, или атомной (молекулярной) структурой материала. Отсутствие дальнего порядка в расположении атомов некристаллических полупроводников приводит к тому, что при одном и том же химическом составе материала его структура (взаимное расположение атомов), а следовательно, и свойства могут быть различными. Эта особенность некристаллических полупроводников, с одной стороны, позволяет управлять при неизменном химическом составе свойствами материала, изменением его структуры в процессе изготовления образцов, а с другой стороны, делает необходимым при производстве приборов на основе некристаллических полупроводников контролировать не только химический состав, но и атомную структуру исходного материала.  [c.11]


Электронные свойства жидких полупроводников, как и всех конденсированных веществ, определяются физической структурой на атомном уровне. Понять, насколько возможно, такую структуру — в этом состоит важная часть нашей задачи, и для этой цели важным источником информации являются физикохимические данные. Химические факторы также определяют области составов и температур, в пределах которых возможны экспериментальные исследования свойств жидких полупровод-, ников здесь представляется уместным дать обзор этих факторов.  [c.49]

Многие физические свойства элементов связаны с положением, которое они занимают в периодической системе. Так, атомные массы элементов возрастают с увеличением порядкового номера (исключение из этого правила составляют пары Аг—К, Со—Ni, Те—I) к магнитному упорядочению способны только металлы с незаполненными 3- и 4-й оболочками (исключением является твердый кислород), а сверхпроводящими свойствами в основном обладают парамагнитные переходные металлы четвертого — седьмого периодов полупроводники располагаются в середине периодов в главных подгруппах 111, IV и VI. а полуметаллы — в главной подгруппе V все периоды заканчиваются диэлектрическими кристаллами. Отчетливую периодичность обнаруживают и другие физические свойства.  [c.1231]

Технические полупроводники могут быть разбиты на четыре группы 1) кристаллы с атомной решеткой (графит, кремний, германий) и с молекулярной решеткой (селен, теллур, сурьма, мышьяк, фосфор) 2) различные окислы меди, цинка, кадмия, титана, молибдена, вольфрама, никеля и др. 3) сульфиды (сернистые соединения), селениды (соединения с селеном), теллуриды (соединения с теллуром) свинца, меди, кадмия и др. 4) химические соединения некоторых элементов третьей группы периодической таблицы элементов (алюминий, галий, индий) с элементами пятой группы (фосфор, сурьма, мышьяк) и др. К числу полупроводников относятся некоторые органические материалы, в частности полимеры, имеющие соответствующую полупроводникам по ширине запрещенную энергетическую зону. Особенности свойств некоторых органических полупроводников, как гибкость, возможность получения пленок при достаточно большой механической прочности, заставляют считать их перспективными.  [c.276]

В каждой из контактирующих сред на нек-рое расстояние от П. простирается слой, в к-ром элементный состав и хим. состояние, атомная и электронная структуры и, следовательно, динамич., электронные, магн. и др. свойства вещества существенно отличаются от его свойств в объёме. Толщина этого слоя зависит от природы соприкасающихся сред и внеш. условий и определяется характерной длиной, присущей рассматриваемому физ. явлению (см. Размерные эффекты. Квантовые размерные эффекты). Напр., толщина слоя со специфич, электронными свойствами определяется длиной экранирования электрич. поля в среде и изменяется от 10 см в металлах до величин 10 — 10" см и более в полупроводниках, плазме и электролитах (см. Дебаевский радиус экранирования).  [c.653]


Свойства поверхности образцов изучаются путем приложения небольшого напряжения (0,01 — 10 В) и регистрации туннельного тока в зазоре (примерно несколько атомных диаметров) между электропроводящим острием (зондом) и исследуемой поверхностью металлов, полупроводников и других проводящих материалов. Туннельный ток зависит от химического состава и особенностей рельефа. Эта информация дополняется данными спектроскопических измерений. Полученные результаты характеризуют топографию, химические и электронные свойства поверхности.  [c.182]

Изделия из гексагонального нитрида бора благодаря их высоким электроизоляционным свойствам в сочетании с хорошей химической и термической стойкостью применяются для нужд атомной энергетики, электротехники, производства полупроводников, диэлектриков и др. р-В имеет кубическую структуру, аналогич-  [c.231]

По мере развития современной науки и техники растет спрос на металлы высокой чистоты, имеющие особые свой-ства. Так, сверхчистый алюминий обладает повышенной коррозионной стойкостью, более высокой пластичностью, электро- и теплопроводностью и рядом других ценных свойств. Германий приобретает свойства полупроводника только при содержании в нем одного атома примеси на миллион и, более атомов самого германия. Особые требования к металлам высокой чистоты предъявляются при исследовании атомного ядра, в атомной энергетике и радиоэлектронике.  [c.11]

Примесные полупроводниковые кристаллы. Германий и кремний, элементы IV основной группы Периодической системы, обладают в чистом виде низкой проводимостью. Однако они приобретают свойства полупроводников, если к ним добавить элементы III и V основных групп с приблизительно одинаковым атомным радиусом, так как в этом случае примесный центр становится электрически активным. Благодаря внедрению элементов этих групп, к примеру Р, Аз, 5Ь (V группа), в германии образуются дефекты, вызывающие появление избытка электронов. При таком замещении получаются дефекты донорного типа, так как избыточный пятый валентный электрон сурьмы связан только слегка и вблизи примесного центра образует протяженное облако отрицательного заряда, которое охватывает область приблизительно в 1000 атомов германия (рис. 10.6). Так как свободные электроны являются носителями зарядов, то речь идет о полупроводнике типа п.  [c.214]

Требования к полупроводниковому материалу определяются в первую очередь прибором, в котором полупроводник будет применяться. Это связано с тем, что полупроводниковые приборы используют различные явления, связанные с чувствительностью полупроводников к внешним воздействиям, а также поверхностные свойства полупроводников (контакт полупроводник-металл, полупроводник-диэлектрик и их сочетания). Важнейшую роль в требованиях к полупроводниковому материалу играет надежность работы прибора. Это вызвано тем, что, во-первых, с развитием микро- и наноэлектроники усложняется структура приборов, состоящих из огромного числа элементов. Причем каждый такой прибор может во множестве использоваться в оборудовании конкретного назначения. Во-вторых, электронное оборудование широко используется в экстремальных условиях (атомная промышленность, космос, авиация и т.п.), когда на прибор воздействуют низкие или высокие температуры и давления, ионизирующие излучения, сильные электромагнитные поля, большие статические и механические нагрузки, агрессивные среды и микроорганизмы. Применение же специальных средств защиты не всегда возможно из-за экономических, технических или энергетических условий и обстоятельств.  [c.648]

Атомные свойства изоляторов и полупроводников  [c.497]

Исключительно важной чертой теории, которую мы сейчас излагаем, является возможность выделить из очень большой энергии, характеризующей связь в металле, небольшие по величине члены, зависящие от конфигурации ионов. Без такой процедуры трудно представить себе изучение свойств, которые мы назвали атомными. Хотя теория атомных свойств изоляторов и полупроводников не имеет столь изящного вида, все же и в этих случаях оказывается возможным аналогичное выделение в энергии структурно зависящих членов это позволяет создать соответствующие методы расчета атомных свойств. Мы обсудим лишь общие черты таких методов их приложение к изучению конкретных свойств совершенно очевидно и очень похоже на использование эффективного взаимодействия между ионами в металлах.  [c.497]


Теория атомных свойств полупроводников имеет еще более зыбкую основу. Опять проблема состоит не в отыскании самой энергии связи. Даже если мы пренебрежем полупроводниковой природой кремния и будем рассматривать его как простой металл в приближении Вигнера — Зейтца, то мы получим примерно правильные энергию связи и даже равновесный атомный объем (23). Это не позволяет определить ту конфигурационную зависимость энергии, которая возникает целиком из-за небольших изменений энергии при переходе электронов из металлического состояния в сильно связанное. Однако удача с энергией связи наводит на мысль, что в данном случае мы могли бы воспользоваться методом псевдопотенциалов, как мы это делали для простых металлов (241. Подобный подход, очевидно, совершенно неприменим к электронным свойствам, когда главным является исчезновение ферми-поверхности. Кроме того, при рассмотрении экранирования возникает принципиальная ошибка в области длинных волн диэлектрическая функция расходится в области длинных волн вместо того, чтобы стремиться к некоторой константе, как это должно было бы быть. Однако если интересующие нас свойства характеризуются фурье-компонентами потенциала с длинами волн порядка периода решетки, описанный подход может оказаться разумным. Таким образом, в частности, можно получить распределение электронной плотности в кремнии, показанное на фиг. 6, которое, по крайней мере полуколичественно, согласуется с экспериментом. Вместе с тем, определяя наиболее устойчивую структуру, мы не можем  [c.499]

И все же такой подход не может сказать ничего сколько-нибудь определенного об атомных свойствах полупроводников. Однако он учитывает одну важную черту полупроводников, которая остается за пределами досягаемости теории простых металлов. Это подчеркивали также Хейне и Джонс. Учет в матричных элементах членов второго порядка привел бы к вкладу в энергию четвертого порядка. В теории металлов такие члены опускаются, но они, по-видимому, существенны в полупроводниках. Их присутствие не позволяет уже определить характеристическую функцию как функцию, не зависящую от конфигурации ионов, а следовательно, выразить энергию через двухчастичные взаимодействия. Тем не менее вполне возможно, что имеет смысл осуществить такого рода расчет, удерживая в энергии эти члены четвертого порядка. Другие члены четвертого порядка, может быть, можно опустить. Такой анализ еще не был проведен, но он представляется весьма многообещающим, к тому же он является довольно непосредственным обобщением метода псевдопотенциалов для простых металлов на случай валентных кристаллов. Обычно ковалентность связывают как раз с наличием поправок более высокого порядка, которые отсутствуют в теории простых металлов. Таким образом, описанная процедура и означала бы учет в этой теории эффектов ковалентности.  [c.501]

Хотя теория атомных свойств изоляторов и полупроводников все еще находится в зачаточном состоянии, маловероятно, чтобы это продолжалось долго.  [c.502]

Следует подчеркнуть, что полностью микроскопический подход к исследованию энергетического спектра электронов в твердом теле связан с чрезвычайными математическими трудностями обш,его характера, не специфичными именно для многоэлектронной задачи. Эти трудности возникают и в обычной одноэлектронной теории и связаны с необходимостью решения задачи о движении одного электрона в периодическом поле идеальной решетки. Дело в том, что обычно в коллектив электронов, определяющих электрические, магнитные и др. свойства твердого тела, естественно включать электроны не всех вообще, а лишь одной-двух внешних атомных оболочек. Конкретное разделение на коллектив электронов и атомные остовы зависит, естественно, от природы вещества и характера задачи (см. ниже). Однако вид электронной плотности даже в изолированном атоме обычно не удается представить в простой аналитической форме. В результате приходится либо апеллировать к более или менее грубым приближенным методам, либо иметь дело с уравнением неизвестного вида. По этой причине представляется целесообразным вообще отказаться от полного вычисления энергетического спектра электронов в идеальной решетке, определяя его параметры из опыта. В полупроводниках для этой цели удобно использовать, например, явление циклотронного (диамагнитного) резонанса [2], [3] в металлах успех сулит использование гальваномагнитных данных [1] и исследование поглощения ультразвука в магнитном поле [4]. Динамическая теория при этом должна давать ответ на следующие вопросы  [c.158]

При формулировке рассматриваемой модели мы, однако, пренебрегли одним важным свойством суммарной потенциальной энергии Т (г). Хотя волновая функция фд (г — К ), описывающая связанное состояние электрона в атоме — в основном, собственная функция задачи с одиночной атомной потенциальной ямой V (г), соответствующее собственное значение энергии 1 оказывается очень чувствительным к хвостам ям, протягивающимся от прочих центров, перекрываясь друг с другом (рис. 13.4). При беспорядке газового типа имеет место разброс энергий связанных состояний, в результате чего возникает случайное их распределение с характерной шириной W. В локаторном представлении это есть не что иное как диагональный беспорядок, типичный для модели Андерсона ( 9.9) существует мнение, что последняя в какой-то мере имитирует примесную зону в полупроводнике.  [c.562]

Вопросы о том, какие именно примеси будут проявлять электрическую активность в том или ином полупроводнике и какие из них окажутся амфотерными, требуют специального анализа. К сожалению, ответы на эти вопросы нельзя получить исходя из простых представлений о свойствах примесного атома, основанных на близости геометрических (атомных или ионных радиусов) и электрохимических (электроотрицательностей) характеристик примесного атома и той кристаллохимической позиции, которую он занимает в полупроводнике. Ни тот, ни другой критерий не могут быть использованы для атомов переходных металлов (случай амфотерных узельных и амфотерных междоузельных центров) из-за неприменимости представления о радиусах и электроотрицательностях, как о постоянных атомных характеристиках [30]. Эти критерии оказываются неприменимы и для амфотерных диссоциативных примесей по тем же причинам, что и в предыдущем случае. Прогнозирование проявления амфотерных примесных центров всех типов в полупроводниках возможно только на основе строгой теории о узельной и междоузельной растворимости примесей в полупроводниках. Современному состоянию этой проблемы, различным подходам к ее рещению посвящена монография [31].  [c.120]


Законы К. м. составляют фундамент наук о строении вещества. Они иозволили выяснить строение электронных оболочек атомов и расшифровать атомные и молекулярные снектры, установить природу хим. связи, объяснить периодич. систему элементов Менделеева, понять строение и свойства атомных ядер. Поскольку свойства макроскопич. тел определяются движением и взаимодействием частиц, из к-рых они состоят, законы К. м. объясняют многие макроскопич. явления, напр. температурную зависимость и величину теплоёмкости макроскопич. систем (газов, твёрдых тел). Законы К. м. лежат в основе теории строения твёрдых тел (металлов, диэлектриков, полупроводников) и её многочисл. техн. приложений. Только на основе К. м. удалось последовательно объяснить магн. свойства веществ а создать теорию ферромагнетизма и антиферромагнетизма. К. м. естеств. образом решила ряд проблем классич. статистич. физики, напр, обосновала теорему Нернста (см. Третье начало термодинамики), разрешила Гиббса парадокс. Важное значение имеют макроскоиич. квантовые эффекты, проявляющиеся,  [c.273]

Этот результат привел к заблуждениям при обсуждении свойств жидких полупроводников. Поскольку к включает атомный вклад -Ла [уравнение (2.3)], большое значение Хт/оТ имеет смысл только при Хт Ха. Но О сзма по себе мала в МБ-пре-деле, и действительно, Хт1оТ становится большим в области, где Практически в случаях, когда а достаточно велика, так что Хе"У Ха, Ef должна быть достаточно близка к краю зоны, так что МБ-прнближение становится неприменимым. Чтобы увидеть это, вспомним, что для жидкостей у,а 4-10 3 Вт/град-см (гл. 2, 4), так что, если 1 л 2(й/е)2 и 1000 К, то ХеЛ Ха приводит к а- 250 Ом- см- Поэтому в соответствии с обсуждением в гл. 6, 1, п. 6, Ef должна быть около порога подвижности, и определение Хе в области, где существенны амбиполярные вклады, должно производиться с использованием интегралов Ферми—Дирака, которые обсуждаются в приложении Б.  [c.110]

Для сварщиков важно иметь в виду, что прочные связи ковалентного типа устанавливаются не только в атомных кристаллах, но и при соединении металлов с металлоидами, оксидами металлов, а также полупроводниками или интерметалли-дами, обладающими полупроводниковыми свойствами. Интерме-таллиды — соединения типичных металлов с металлами, имеющими слабые металлические свойства.  [c.9]

В общепринятой трактовке даже при фиксированных температуре и давлении Sp не может характеризоваться каким-либо определенным значением, твк как возмошше виш>1 дефектов кристалла и их концешрация зависят от множества неуправляемых факторов. Между тем, сравнительный анализ данных по и рх показал, что в веществах, исследованных при нормальных условиях, значения Sp оказались подчинены строгой количественной зависимости от их среднего атомного номера Z p, рассчитываемого как среднее арифметическое атомных номеров всех атомов, входящих в состав,вещества, Таким образом, стало очевидно, что дефект плотности является существенным свойством кристаллических веществ (по крайней мере, щирокого класса алмазоподобных полупроводников) [89].  [c.194]

Селен Se (Selenium). Порядковый номер 34, атомный вес 78,96. Для селена известно несколько аллотропических форм. Стекловидный селен получается при отвердевании жидкого селена и представляет чёрную массу со стекловидным изломом. При нагревании выше 100 стекловидный селен быстро превращается в серый кристаллический селен. Последний обладает заметной фотопроводимостью и легко проявляет фотоэффект. Оба эти свойства обусловливают его применение в электрических приборах. Кристаллический селен, являясь полупроводником, проявляет униполярность, будучи помещён между двумя дисками, сделанными из разных металлов, что используется для изготовления сухих выпрямителей. Кристаллический селен весьма хрупок = 220°, кап — плотность 4,8. Жидкий селен представляет собой чёрную, непрозрачную, очень вязкую жидкость. Помимо указанных форм, селен обнаруживает способность давать и другие аллотропические видоизменения.  [c.360]

Оба типа упорядоченности возможны только при определенных атомных концентрациях. Отсюда следует, что степень порядка должна убывать при отклонении от этой концентрации. Следует также указать, что свойства, чувствительные к неупорядоченности ((электропроводность, прозрачность и другие), имеют максимальное или минимальное значение вблизи этого состава. Показано [259, 338], что это в особенности верно для солеподобных соединений (полупроводников).  [c.13]

ПАРАКРИСТАЛЛ — молекулярный кристалл с перемежающимися кристаллическими и аморфными областями ПАРАМАГНЕТИЗМ (есть свойство вещества, помещенного во внешнее магнитное поле, намагничиваться в направлении, совпадающем с направлением этого поля, если в отсутствие внешнего магнитного поля это вещество не обладало упорядоченной магнитной структурой Паули проявляется в металлах и полупроводниках и образуется спиновыми магнитными моментами электронов проводимости ядерный образуется магнитными моментами атомных ядер) ПАРАЭЛЕКТРИК— неполярная фаза сегнетоэлектрика, возникающая выше температуры фазового перехода ПЕРЕОХЛАЖДЕНИЕ— охлаждение вещества ниже температуры его равновесного перехода в другое фазовое состояние ПЕРЕХОД [квантовой системы (безызлучательный характеризуется изменением уровня энергии атома или молекулы без поглощения или испускания фотона вынужденный осуществляется понижением уровня энергии под действием внешнего излучения скачкообразный возникает самопроизвольно или вследствие  [c.258]

В атомной структуре аморфных твёрдых тел (стёклах, аморфных металлах и сплавах, аморфных и стеклообразных полупроводниках) наблюдаются области размером с аномальным взаимным расположением и нлотиостыо атомов, обладающие собств. внутр. напряжениями, избыточным объёмом, подвижностью, т. е. рядом свойств точечных Д. и дислокаций.  [c.597]

Поверхность полупроводника. Под поверхностью П. понимают неск. атомных слоёв вблизи границы П. Она обладает свойствами, отличающимися от обьёмных. Наличие поверхности нарушает траисляц. симметрию кристалла и приводит к поверхностным состояниям для электронов, а также к особым эл.-магн. волнам (поверхяостные поляритоны), колебат. и спиновым волнам. Благодаря своей хим. активности поверхность, как правило, покрыта макроскопич. слоем посторонних ЯТО.МОВ пли молекул, адсорбируемых из окружающей среды. Эти атомы и определяют физ. свойства поверхности, маскируя состояния, присущие чистой поверхности. Развитие техники сверхвысокого вакуума позволило получать и сохранять в течение неск. часов атомарно чистую поверхность. Исследования чистой поверхности методом дифракции медленных электронов показали, что кристаллографии, плоскости могут смещаться как целое в направлении, перпендикулярном к поверхности. В зависимости от ориентации поверхности по отношению к к ристал л о-графич. осям это смещение может быть направлено внутрь П. или наружу. Кроме того, атомы приповерхностного слоя изменяют положение равновесия в плоскости, перпендикулярной поверхности, по сравнению с пу положениями в такой же плоскости, находящейся далеко от поверхности реконструкция поверхности). При этом возникают упорядоченные двумерные структуры с симметрией ниже объёмной или не полностью упорядоченные структуры. Первые являются термодинамически равновесными, и их симметрия зависит от ориентации поверхности. При изменении темп-ры могут происходить фазовые переходы, при к-рых симметрия структур изменяется (см. Поверхность).  [c.43]

В настоящее время жидкие металлы широко используются в качестве теплоносителей в атомных реакторах и рабочих тел в МГД-преобразователях. Исключительные перспективы практического применения имеют жидкие полупроводники, открытые А. Р. Регелем. Их возможности определяются большим температурным диапазоном устойчивости и отличным сочетанием термоэлектрических характеристик, что делает их практически незаменимыми при решении проблемы прямого преобразования тепловой энергии в электрическую с использованием таких источников, как атомная и солнечная энергия. В этой связи мы считаем полезным издание обобщающих работ по структуре и свойствам жидких металлов и сплавов, содержащих как обзор экспериментальных результатов, так и полезные теоретические обобщения и выводы. С этой точки зрения несомненно целесообразен перевод в качестве отдельной книги обзора известного металлофизика Вилсона (Metallurgi al Rev., 1965, № 40, p. 381—590).  [c.8]


Кристаллические структуры твердых тел обусловлены межатомными связями, возникающими в результате взаимодействия электронов с атомными остовами. Вывод металлических структур — ОЦК, ГЦК и ПГ — из электронного строения атомов представляет кардинальную проблему физики металлов [1, 21. В основе квантовой теории металлов лежит теория энергетических зон [3 —11]. Она рассматривает поведение электронов в периодическом поле решетки. Кристаллическая структура определяется дифракционными методами и вводится в зонную модель априори как экспериментальный факт, без объяснения ее происхождения. Разрывы непрерывности энергий электронов приводят к образованию зон Бриллюэна, ограниченных многогранниками, форма которых зависит от симметрии кристалла. Характер заполнения зон и вид поверхности Ферми различны для металлов, полупроводников и изоляторов. Расчеты позволяют получить з нергетическую модель, количественно описывающую энергетическое состояние электронов и физические свойства твердых тел. Однако из зонной модели нельзя вывести кристаллическую структуру, поскольку она вводится в основу построения зон как экспериментальный факт. Расчеты зонных структур и физических свойств металлов получили широкое развитие благодаря теории псевдопотенциала 112—19]. Они позволяют оценить стабильность структур металлов, но не вскрывают физическую природу конкретной геометрии решетки.  [c.7]

У элементов, занимающих промежуточное положение, например у германия, связь носит смешанный ковалентно-металличе-ский характер ), вследствие чего такие элементы являются полупроводниками (см. гл. II). Однако в подгруппах VB — VIIB постепенное нарастание металлических свойств, происходящее по мере увеличения атомного номера, приводит к увеличению прочности связи, т. е. наблюдается картина, прямо противоположная описанной для элементов подгруппы IVB. Это различие наиболее наглядно иллюстрируется фиг. 8, где показано, как меняется величина сжимаемости у элементов различных периодов при переходе от подгруппы IVB к подгруппе VB. Отмеченное увеличение сил сцепления в решетке элементов подгрупп VB — VIIB при увеличении атомного номера элемента обусловлено тем, что несмотря на ослабление ковалентных связей между атомами внутри слоев.  [c.51]

Краевая дислокация соответствует нарушению вдоль края образовавшейся в кристалле под влиянием тех или иных причин неполной атомной плоскости. Вдоль этого края атомы кристалла имеют несовершенную координацию — неполное число соседей, вследствие чего одна или более связей у этих атомов являются незавершенными. В кристаллах германия и кремния координационное число равно четырем. Краевые дислокации с некоторой долей винтовой компоненты в этих кристаллах образуются на плоскостях 111) вдоль направлений < 110>. Атомы вдоль края неполной плоскости имеют один неспаренный электрон (рис. V. 20) и могут взаимо/1ействовать с электронами, захватывая их с образованием спаренной связи, с выделением энергии. Такая дислокация ведет себя в полупроводнике, следовательно, подобно акцепторной примеси. В связи с этим дислокации изменяют электрические свойства полупроводника, ухудшая в особенности время жизни неосновных (вводимых в полупроводник извне) носителей тока, характеристику, определяющую качество работы ответственных полупроводниковых приборов (транзисторов).  [c.512]

Известно, что лучшие термоэлектрические материалы были получены на основе халькогенидов или их сплавов, содержащих металлы с большими атомными массами. К таким металлам относятся, в частности, молибден. Установлено, что халькогениды молибдена — MoSe2 и МоТег —обладают полупроводниковыми свойствами [150, с. 79]. Единственными известными полупроводниками, которые сохраняют свои высокие эксплуатационные свойства, находясь в виде поликристаллических пленок, являются селениды и теллуриды ртути [441].  [c.275]

Прежде чем продолжить обсуждение границ между жидкими полупроводниками и другими классами жидкостей, укажем приближенно, какого рода вещества обычно считают жидкими полупроводниками. Из элементов в эту категорию попадают расплавленный селен и расплавленный теллур. Другие элементы, такие, как германий и кремний, являющиеся полупроводниками в кристаллическом состоянии, при плавлении становятся металлами. То же самое справедливо для многих полупроводниковых соединений, например соединений элементов П1—V групп. Такой переход полупроводник — металл Иоффе и Регель [144] связали с уменьшением атомного объема. Таким образом, хорошо известная корреляция поведения кристаллических полупроводников с большим атомным объемом, по-видимому, сохраняется и в жидком состоянии. Многие другие соединения, например. ТпгТез, обнаруживают увеличение объема при плавлении или же относительно малые уменьшения объема, но тем не менее имеют электрические свойства, подобные свойствам полупроводниковых жидкостей. Взаимосвязь между электрическими свойствами и объемом более детально обсуждается в гл. 3, 2.  [c.14]

Структура пленок. Ранее уже отмечалось, что под реальной поверхностью обычно понимают слоистую структуру твердого тела (металла (М) или полупроводника (П)), покрытого пленкой собственного окисла — диэлектрика (Д). В зависимости от электрических характеристик последнего рассматриваются структуры МД, МП, ДП, ПП и, наконец, МДП. Электронные и оптические свойства таких слоистых структур определяются не только входящими в них материалами, но и свойствами свободных и межфазных границ. Атомные, ионные и электронные процессы, разыфывающиеся в фанич-ных фазах при внешних воздействиях — деформации, приложении электромагнитных полей, адсорбции и др., во многих случаях предопределяют функционирование перечисленных структур в различных системах микро-, опто- и акустоэлектроники.  [c.177]

Эти модели неизбежно оказываются эвристическими, и фигури-рующие в них параметры редко удается найти из первых принципов. Тем не менее иногда удается в простой форме отразить влияние довольно сложных структурных характеристик беспорядка. Рассмотрим, например, эффективную потенциальную энергию электрона в жидком металле. Эта функция характеризует многоэлектронную систему, и, строго говоря, соответствующий потенциал нельзя представить в виде простой суперпозиции атомных потенциалов он может зависеть от многоатомных характеристик структуры жидкости, например от средней локальной концентрации атомов. В 2.11 (рис. 2.42) мы видим, что объемы атомных ячеек в жидком состоянии вещества не постоянны, а флуктуируют, причем отклонения от средней величины могут достигать ]0%. Чтобы связать потенциальную энергию электрона в каждой ячейке с локальным атомным объемом, можно было бы воспользоваться методом потенциала деформации. При этом могла бы получиться простая континуальная модель, позволяющая описывать электронные свойства жидких металлов. Аналогичные соображения можно использовать и для определения эффективной потенциальной энергии носителей заряда вблизи края зоны в аморфном полупроводнике или для вычисления локальных упругих постоянных в стекле. В любых случаях предполагается, что искомая флуктуирующая величина зависит от локальных отклонений от идеальной тетраэдрической связи или от идеальной зигзагообразной конфигурации связей ( 2.10, рис. 2.33). На самом деле эти конкретные модели слишком упрощены, но на их примере можно проследить основную линию рассуждений, необходимых для того, чтобы связать картину непрерывного случайного поля с атомными характеристиками исходных материалов.  [c.135]

При рассмотрении таких систем, как сплавы замещения (гл. 9), жидкие металлы (гл. 10) и стеклообразные полупроводники (гл. И), которым свойственно относительно плотное размещение атомов в пространстве, нам обычно удавалось воспользоваться свойством атомистичности полной потенциальной энергии (см. 2.1). Даже в случае топологически неупорядоченной системы при рассмотрении поведения Т (г) в большей части объема образца все еще можно было использовать слабое ячеечное приближение (2.2). Это представляется очевидным, если величина Гу не намного превышает геометрический радиус атомной твердой сферы , а. Тогда каждая ячейка вещества порождает как раз потенциальную энергию V (г) (ср. с 10.3). Однако зта аппроксимация остается в силе и для атомных потенциалов с большим радиусом действия, при условии, что концентрация атомов в данном материале более или менее локально однородна. Так, в частности, обстоит дело в типичных моделях беспорядка в жидкостях (см. 2.11).  [c.554]


Смотреть страницы где упоминается термин Свойства атомные полупроводников : [c.652]    [c.927]    [c.569]    [c.14]    [c.35]    [c.478]    [c.15]    [c.28]    [c.198]    [c.276]    [c.101]    [c.158]    [c.537]   
Теория твёрдого тела (1972) -- [ c.497 , c.502 ]



ПОИСК



Атомные свойства изоляторов и полупроводников

Атомный вес

Полупроводники

Свойства атомные

Свойства полупроводников



© 2025 Mash-xxl.info Реклама на сайте