Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводники чувствительность

P. А. С M и T, Полупроводники, чувствительные в инфракрасной области спектра, УФН, 58, стр. 433—486, 1956.  [c.432]

Полупроводники чувствительны к различного рода внешним воздействиям — свету, облучению ядерными частицами, электрическому и магнитному полям, давлению и т. п.  [c.47]

В разд. 5.1 показано, как влияет на свойства полупроводника введение небольшого количества примеси. Зависимость сопротивления от температуры чрезвычайно чувствительна к количеству и качеству вводимой примеси, что может использоваться для получения желаемых характеристик. Из рис. 5.7 видно, что для термометрических целей более всего интересны области III и IV. Хотя наклоном кривой и абсолютным значением удельного сопротивления можно в какой-то степени управлять, высокая чувствительность обоих этих параметров к малым изменениям концентрации примеси мешает получать  [c.235]


Параметры То и То = gJo - постоянные для конструкционных металлов и их сплавов, полимеров и ионных кристаллов, совпадают по величине соответственно с периодом и частотой собственных тепловых колебаний атомов в кристаллической решетке твердого тела (равны - Ю" си 10 - Ю Гц). Параметр у характеризует структурный коэффициент, определяющий чувствительность материала к напряжению. Выражения (3.1) и (3.2) справедливы для чистых металлов, сплавов, полимерных материалов, полупроводников, органического и неорганического стекла и др.  [c.124]

Применение однородных полупроводников. Очень сильная зависимость проводимости полупроводников от температуры делает возможным создание с их помощью очень чувствительных термометров и устройств, с помощью которых можно контролировать силу тока в цепи. Такие прибо-  [c.355]

Явление увеличения электропроводности полупроводника под действием излучения называют фотопроводимостью и широко используют при создании различных приборов, чувствительных к освещению. Фотопроводимость может возникнуть в полупроводнике лишь при определенной, близкой к ширине его запрещенной зоны энергии фотонов падающего излучения. Излучение с энергией фотонов, меньшей ширины запрещенной зоны, будет проходить через полупроводник не поглощаясь. При энергиях, значительно больших ширины запрещенной зоны, фотоны будут поглощаться поверхностью полупроводника и образующиеся при этом свободные электроны и дырки не проникнут в его толщу.  [c.19]

Электрическая проводимость полупроводников весьма чувствительна даже к небольшому количеству примесей. Например, введение в кремний всего 0,001% В увеличивает его проводимость при 20°С примерно в 1000 раз в ряде случаев примеси увеличивают проводимость в миллионы раз. Проводимость полупроводников, обусловленная наличием примесей, называется примесной проводимостью, а полупроводники — примесными полупроводниками.  [c.281]

Такая особенность приводит к исключительной чувствительности проводимости полупроводников к различным примесям, включая избыток или недостаток атомов одного из элементов, образующих полупроводниковые химические соединения кислорода в окислах, углерода в карбидах, серы в сульфидах и т. д.  [c.270]

К числу существенных недостатков германиевых вентилей относится невысокая рабочая температура рабочий диапазон от — 50 до + Ж С при длительном воздействии температуры выше + 60° С в них проявляется тепловое старение, приводящее к ухудшению электрических параметров при низких температурах наблюдается значительное понижение обратного сопротивления. Кремниевые выпрямители могут работать при температуре до -1- 200° С. С точки зрения работы при высоких частотах кремниевые диоды имеют перед германиевыми преимущества, заключающиеся в большей чувствительности к слабым сигналам (пороговое напряжение у первых 0,01 В, у вторых от 0,1 до 0,25 В). Характеристики кремниевых вентилей, возможность получения больших выпрямленных мощностей в установках малых габаритов, особенно при использовании искусственного охлаждения, делают их исключительно прогрессивными. Поскольку кремний и германий являются элементами IV группы таблицы Менделеева, дырочная проводимость в них создается примесями элементов третьей группы, а электронная — элементов пятой группы. Для кремниевых полупроводников часто применяют алюминий, бор, для германиевых — индий в качестве акцепторной примеси мышьяк и сурьма (элементы V группы) — в качестве донорных примесей.  [c.284]


Время жизни неосновных носителей более чувствительно к облучению, чем удельная электропроводность. Если, например, ввести избыток дырок в полупроводник и-типа (в этом случае дырки являются неосновными носителями, а электроны — основными), то они исчезнут в результате рекомбинации с электронами, но это произойдет не мгновенно. Среднее время, необходимое для рекомбинации неосновного носителя с основным, называется временем жизни неосновного носителя. Эти свойства особенно важны во многих полупроводниковых приборах, особенно в транзисторах. Механизм рекомбинации определяется примесями и другими типами дефектов. В приведенном выше примере дырки и электроны рекомбинируют после захвата дефектами, которые называют центрами рекомбинации. Очень эффективными центрами рекомбинации являются вакансии и междоузлия.  [c.283]

Избыток электронов и дырок, временно образовавшихся в полупроводниках под действием излучения, увеличивает объемную удельную электропроводность материала. Однако наиболее резко чувствительность к облучению выражена в полупроводниковых переходах.  [c.284]

Ввиду недостатка опытных данных о влиянии излучения на термисторы можно полагать, что некоторые полезные сведения такого типа можно получить из данных о влиянии излучения на различные окислы металлов. Как упоминалось выше, термисторы изготовляют путем смешивания окислов различных металлов со связующими материалами. Большинство окислов, применяемых в термисторах, хорошо известны как катализаторы химических реакций и как полупроводники для изготовления диодов. Различные окислы металлов несколько отличаются друг от друга по чувствительности сопротивления к изменению температуры.  [c.361]

Болометры — это приемники инфракрасного излучения, действие которых основано на изменении сопротивления металла или полупроводника от температуры.. В отличие от радиационного пирометра в качестве чувствительного элемента используются такие материалы,, как платина и полупроводники (соответственно напыленный болометр и полупроводниковый). Высокочувствительный приемный элемент (толщиной 30—40 мкм) заключают в стеклянный баллон, в котором поддерживается определенное давление воздуха, с окном из прозрачного материала (кварцевого стекла), пропускающего излучение лишь той области спектра, для измерения температуры которой предназначен болометр.  [c.113]

На рис. 12.7 показаны устройство фоторезистора и схема его-включения. Чувствительный элемент фоторезистора представляет собой брусок или пленку монокристаллического или поликристал-дического полупроводника с двумя омическими контактами. Он подключается к источнику смещения через нагрузочное сопротивление Толщина чувствительного элемента должна быть достаточно большой, чтобы в кем поглощался практически весь свет W o (1 — 0. прошедший через освещенную поверхность — мощность падающего света г — коэффициент отражения поверхности).. Это требование легко выполнить для собственных фоторезисторов-и часто трудно выполнить для примесных. Если оно выполнено, то< число носителей (или пар носителей при собственном поглощении),, генерируемых светом в единицу времени в чувствительном элементе при X < будет равно  [c.324]

Следует указать, что в поликристаллических фоторезисторах чувствительность определяется часто процессами на границах моно-кристаллических зерен, а не процессами в объеме полупроводника в этом случае соотношение (12.17) не применимо.  [c.326]

Кристаллические счетчики. Помимо света, внутренний фотоэффект может быть вызван облучением полупроводника потоком частиц — электронов, ионов, а-частиц и др. Такие частицы, проникая в глубь полупроводника, генерируют на своем пути свободные носители заряда и тем самым повышают его электропроводность, а при неизменном напряжении, приложенном к полупроводнику, увеличивают силу тока в цепи. Так как число генерируемых носителей пропорционально числу таких частиц, падающих на полупроводник, то по изменению силы тока в цепи можно судить о числе частиц, попадающих в полупроводниковый кристалл. Это позволяет конструировать на данном принципе кристаллические счетчики частиц. Обычно их градуируют не в единицах силы тока, а непосредственно в числах частиц. Для увеличения чувствительности счетчика изменение силы тока в кристалле усиливается с помощью специальных радиотехнических схем.  [c.327]


В полупроводниковых тензорезистора X в качестве чувствительного элемента используют монокристалличе-ский полупроводник толщиной 20— 50 мкм, шириной до 0,5 мм и длиной 2—12 мм. Особенностью полупроводниковых тензорезисторов является их высокая чувствительность, в 50— 60 раз превышающая чувствительность проволочных тензорезисторов, и большой уровень выходного сигнала (0,1В и более). Сопротивление полупроводникового тензорезистора при одних и тех же размерах посредством добавления присадок и выбора определенной технологии изготовления может меняться от 100 Ом до 50 кОм. Тензорезисторы из кремния и германия обладают высокой чувствительностью, химически инертны и выдерживают нагрев до 500—540 °С.  [c.412]

Резистивные пасты. В резистивных пастах функциональные материалы являются комбинацией проводников, изоляторов и полупроводников, в проводниках сопротивление композиции определяется главным образом свойствами контактов между металлическими частицами. В резистивных композициях истинная картина механизма проводимости неизвестна, но исходя из величин сопротивления, чувствительности резисторов к напряжению и характера температурной зависимости можно сделать вывод, что контакты между частицами имеют полупроводниковую природу.  [c.471]

Шостранственные модуляторы света на основе структур МДГ1 —жидкий кристалл и фотопроводник—жидкий кристалл использ ют, в основном, полупроводники, чувствительные в видимой и ближней ИК-области спектра, так что перекрываемый ими спектральный диапазон чувствительности не выходит за рамки 0,35. .. 1,2 мкм. Однако практически важным являются и Другие спектральные диапазоны УФ и рентгеновский с коротковолновой стороны, средний и дальний ИК диапазоны с длинноволновой стороны,  [c.185]

Для счигываиня Производимых полем (светом) изменений коэффициента поглощения Да 10 см использовался полупроводниковый лазер с длиной волны излучения 880 им, лежащей На краю зоны фундаментального поглощения полупроводника. Чувствительность к возбуждающему излучению, измеренная по  [c.205]

Величина фото-э.д.с. существенно зависит от свойств используемого полупроводника и технологии изготовления. Для уменьшения флуктуаций темпового тока полезно охлаждение устройства. Широкое распространение получили германиевые и кремниевые фотодиоды. На рис. 8.28 приведены спектральные характеристики таких приемников света. Как видно, максимальная чувствительность германиевого фотодиода наблюдается в такой области длин волн (). iiK мкм), где использование фотоумножителей практически уже невозможно.  [c.443]

Халькогенидные стеклообразные полупроводники менее чувствительны к введению в них примесей. Это связано с особеннностя-ми химических связей в этих материалах. В то же время исследования последних лет дают основание говорить о возможности изменять спектр локальных состояний в запрещенной зоне этих полупроводников путем введения примесных атомов.  [c.367]

Для устранения вуалирующего действия фонового теплового излучения предложен метод, позволяющий включать чувствительность. фотослоя только на время экспонирования. Он основан на использовании полупроводниковых материалов, изменяющих свои фоторезистнвные свойства под действием электрического поля. В качестве фоточувствительного материала используют тонкие пластинки мопо-кристаллпческого кремния, германия, сернистого свинца или арсенида галлия, Изображение получают непосредственно на поверхности полупроводника или на специальной токочувствительной пленке, находящейся с ней в контакте.  [c.101]

Работа эджеографа основана на изменении прозрачности пленок некоторых полупроводников в монохроматическом свете с определенной длиной волны в зависимости от температуры. ПИ с пленкой из аморфного селена имеет, например, разрешение 4 мм , инерционность 0,5 с. Его чувствительность достаточна для получения изображения с температурой на 10—15 С выше комнатной.  [c.102]

Возможности выявления дефектов при резонансных методах радиодефектоскопии в полупроводниках, ферритах и диэлектриках определяются потенциальной и реальной чувствительностью. Поскольку для выделения сигнала, несущего информацию о дефекте при резонансных методах радиодефектоскопии (РМРД), нет принципиальной необходимости в пространственной локализации излучения при обнаружении дефектов (если не ставится задача определения их координат и геометрии), то РМРД позволяют выявлять существенно меньшие дефекты, чем другие радиометоды.  [c.237]

Варисторы, или элементы, чувствительные к величине напряжения, часто используют как выпрямители, грозоразрядники, а также во всех случаях, когда требуется изменение сопротивления в зависимости от напряжения. Эти элементы основаны на полупроводниках, электрическое сопротивление которых нелинейно изменяется в зависимости от напряжения постоянного тока. Изменения свойств варисторов могут быть несимметричными (селеновые или меднозакисные выпрямители) или симметричными (диски или стержни из карбида кремния).  [c.357]

Пробой р- и-перехода. Характеристикой, чувствительной к С0СТСЯН1И0 поверхности полупроводника, является и величина пробивного напряжения. На рис. 8.37, б показан несимметричный р — л-переход с высокоомной р-областью. При отр1щательном заряжении поверхностных состояний у поверхгюсти р-области образуется обогащенный слой, вызывающий уменьшение толщины перехода diioD в приповерхностном слое. При приложении к переходу обратного смещения напряженность поля у поверхности, где переход сужен, окажется выше, чем в объеме полупроводника, вследствие чего более вероятным становится поверхностный пробой. Таким образом, заряжение поверхности может вызывать понижение пробивного напряжения.  [c.256]

Бурное развитие электроники п фотоэлектроники в последнее десятилетие значительно расширило диапазон средств измерительной техники в теории машин. В последние годы техника, связанная с экспериментальными исследованиями машин, развивается за счет новых свойств полупроводников и диэлектриков, обладающих чувствительностью, в десятки раз превышающей чувствительность обычных тензодатчиков, что упростило и облегчило решение многих задач экспериментального исследования машин. Наряду с полупроводниками в последние годы в измерительную технику вошли диэлектрики, датчики, основанные на эффекте Холла, электрокинема тические датчики и другие средства измерения, основанные на достижениях современной физики, химии и электроники.  [c.32]


Появление спутниковой, тропосферной, космической связи и глобального радио- и телевещания на сверхвысоких частотах, сверхдальней радиолокации, радиоастрономии, радиосиектросконии потребовало создания радиоприемных устройств с ничтожно малым уровнем шума. Новые возможности в этом отношении открылись перед радиотехникой в связи с достижениями в области изучения свойств различных веществ при глубоком их охлаждении и в связи с освоением новых методов построения радиоприемных схем. В результате этого в 50-х годах появились идеи создания параметрических и квантовых парамагнитных усилителей. Такие схемы обычно охлаждают с помощью жидкого азота, а в последнее время — жидкого гелия. Современные параметрические усилительные схемы осуществляются на основе использования для изменения параметров схемы диодов, ферритов, полупроводников и других нелинейных элементов. Квантовые парамагнитные усилители в настоящее время строятся на двух нринцинах. В первом из них взаимодействие волны слабого сигнала с усиливающим парамагнитным веществом происходит в объемном резонаторе (усилители резонаторпого тина), а во втором — в замедляющих волноводах (усилители бегущей волны). Все эти устройства мало похожи на привычные радиоприемники и пока еще достаточно сложны в осуществлении и эксплуатации, но зато их чувствительность может быть доведена до 10 вт.  [c.380]

Вскоре на смену когерерным приемникам пришли приемники с детекторами на кристаллических полупроводниках (кристаллы цинкита и галенита) и телефонной трубкой в качестве индикатора. Они работали надежнее и имели более высокую чувствительность. Телефонный детекторный радиоприемник, сменивший когерерные устройства со звонковой сигнализацией, стал самым распространенным устройством для приема радиосигналов почти до середины 20-х годов. Главным его достоинством, кроме высокой чувствительности, была возможность различать на слух весьма слабые телеграфные сигналы на фоне атмосферных разрядов. Совершенствование детекторных радиоприемников продолжалось почти до 30-х годов XX в., и даже выход на техническую арену электронных ламп (середина первого десятилетия) не сразу внес в эту технику существенные изменения.  [c.316]

Одним из важных и перспективных направлений применения методов эллипсометрии является разработка новых технологических процессов в полупроводниковом и оптическом приборостроении. Высокая чувствительность поляризационно-оптических методов, а также возможность проведения измерений в защитных средах делают эллипсометрию совершенным средством исследования кинетики кристаллизации пленок на различных подложках. Особый интерес для технологии полупроводников эллипсометрия представляет в связи с возможностью исследования процесса эпитаксиального выращивания. Методы эллипсометрии позволяют проводить исследования влияния различных факторов (температуры подложки, качества ее механической обработки и химической чистоты и т. д.) на характер роста пленки, а также на ее толщину и значение показателя преломления. В работах [15, 166] приведены результаты измерения толщины эпитаксиальных слоев с помощью эллипсометров на основе СО 2-лазера и лазера на парах воды. При этом погрешность измерения составляла соответственно 0,01 и 0,1 мкм.  [c.208]

Оба типа упорядоченности возможны только при определенных атомных концентрациях. Отсюда следует, что степень порядка должна убывать при отклонении от этой концентрации. Следует также указать, что свойства, чувствительные к неупорядоченности ((электропроводность, прозрачность и другие), имеют максимальное или минимальное значение вблизи этого состава. Показано [259, 338], что это в особенности верно для солеподобных соединений (полупроводников).  [c.13]

Область спектральной чувствительности фотоэффекта определяетсн формой потенц. барьеров па границе. В резких Г. барьеры, возникающие из-за разрывов зон, препятствуют разделению иоснтелей, возбуждаемых светом при его поглощении в узкозопном полупроводнике (рис. 5, б). В плавных Г, разрывы зон и пички на  [c.448]

Носители заряда разогреваются не только пост, током, но также при поглощении ими эл.- магн. излучения, Возникающее при этом изменение электропроводности полупроводника представляет собой один из механизмов фотопроводимости ir используется для создания чувствительных приёмников излучения миллиметрового и субмиллиметрового диапазонов. Г. э. возникают также при генерации носителей заряда светом с энергией фотонов Доз, превышающей ширину запрещённой зоны g на величину, значительно б6льн1ую а также (в случае примесных полупроводников) светом с энергией фотонов, существенно превышающей энергию ионизации примесных центров (фоторазогрев). Часть фотоэлектронов, создаваемых в полупроводнике р-типа светом с рекомбинирует с дырками  [c.520]

Элементный анализ (исследования элементного состава твёрдых и жидких веществ, в первую очередь ме-таллич. сплавов, полупроводников, геологич. объектов земного и внеземного происхождения). В связи с малой летучестью большинства таких веществ их одновро.у . испарение и ионизация осуществляются в вакуумном искровом разряде с одноврем. регистрацией большого участка масс-спектра либо на фотопластинке, либо с помощью пространственно протяжённых детекторов. Чувствительность метода для большинства элементов порядка 10 —10 % (путём обогащения примесями добиваются чувствительности 10 % и лучше). Для элементного анализа наряду с вакуумной искрой применяют лазерную ионизацию, вторичную ионную эмиссию, а также жидкометаллич. ионные источники. G помощью М.-с. проводят как общий, так и локальный, и послойный элементные анализы. При этом толщина, подвергающаяся анализу, составляет неск, мономоле-кулярных слоёв, локальность — меньше 1 мкм. Для общего анализа наиб, удобно использовать -вакуумную искру, для послойного — ионно-ионную эмиссию, для локального — лазер. Масс-спектральный элементный анализ поверхностного слоя твёрдого тела получил особое значение в микроэлектронике. Для элементного анализа жидких растворов применяют ионизацию в индуктивно связанной плазме.  [c.58]

М. стала источником новых идей в методов в физике твёрдого тела и материаловедении. В связи с задачами М. созданы, напр., устройства с управляемыми электронными и ионными пучками диаметром в неск. атомов, ионные источники (от протонов до тяжёлых ионов) широкого диапазона анергий (с диаметром пучка, близким к размерам отд. ионов), аппаратура для выращивания монокристаллов и многослойных структур, где толщина, состав и строение каждого слоя контролируются с точностью до параметра решётки (см. Гетероструктура, Эпитаксия), и т. д. Созданы новые пьезоэлектрические материалы, феррогранаты, материалы с высокой чувствительностью к действию света, рентг. излучения, электронных и ионных пучков и т. д. Одно из достижений микроэлектронного материаловедения — сверхрешётки на основе множества чередующихся сверхтонких слоёв полупроводников типа  [c.154]

Сильная анизотропия проявляется и в нелинейном отклике монокристаллов металлов — в Аи, Си, А1 зарегистрирован нелинейный отклик от плёнок, обладающих высокотемпературной сверхпроводимостью. Всё это стимулирует применение нелинейных оптич. методов к анализу динамики электронной структуры нормальных и сверхпроводящих металлов. Чувствительность нелинейного отклика к тонким деталям зонной структуры полупроводников и металлов делает нелинейнооптич. диагностику эфф. методом изучения не только симметрии потенциала, в к-ром движется электрон, но и деталей картины этого движения.  [c.300]

Особое значение для О. приобретают строчки и матрицы фотоприёмников, использующие эффект зарядовой связи в полупроводниках (см. Прибор с зарядовой связью). Эти приёмники позволяют принимать, хранить нек-рое время и последовательно передавать при считывании оптич. сигналы. Такие фотоприёмники широко применяются для регистрации изображений и их последоват. передачи по каналам связи. По чувствительности они не уступают обычным фотоприёмникам. Осн. материал — Si.  [c.462]



Смотреть страницы где упоминается термин Полупроводники чувствительность : [c.267]    [c.184]    [c.576]    [c.576]    [c.356]    [c.656]    [c.197]    [c.547]    [c.397]    [c.449]    [c.628]    [c.555]    [c.700]   
Температура и её измерение (1960) -- [ c.156 ]



ПОИСК



334 — Чувствительность

Полупроводники



© 2025 Mash-xxl.info Реклама на сайте