Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства полупроводников

В разд. 5.1 показано, как влияет на свойства полупроводника введение небольшого количества примеси. Зависимость сопротивления от температуры чрезвычайно чувствительна к количеству и качеству вводимой примеси, что может использоваться для получения желаемых характеристик. Из рис. 5.7 видно, что для термометрических целей более всего интересны области III и IV. Хотя наклоном кривой и абсолютным значением удельного сопротивления можно в какой-то степени управлять, высокая чувствительность обоих этих параметров к малым изменениям концентрации примеси мешает получать  [c.235]


Следы примесей, определяющих свойства полупроводников, существенно влияют и на скорость окисления металлов, покрытых полупроводниковыми пленками. С другой стороны, легирующие компоненты, присутствующие в больших количествах (например, более 10 % Сг — Ni), оказывают влияние на скорость окисления не только изменяя полупроводниковые свойства пленок, но и путем изменения их состава и структуры.  [c.198]

Прибор полупроводниковый — прибор, действие которого основано на использовании свойств полупроводника [4, 10].  [c.151]

Но самым удивительным свойством полупроводников оказалось свойство односторонней проводимости контакта двух полупроводниковых кристаллов различного типа. Это свойство используется при создании разнообразных полупроводниковых приборов, служащих материальной базой современной радиоэлектроники, автоматики и вычислительной техники.  [c.154]

Донорные и акцепторные примеси. Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов — донорные и акцепторные. Если, например, в кристалле кремния имеется примесь атомов мышьяка, то эти атомы замещают в узлах кристаллической решетки атомы кремния. Пятивалентный атом мышьяка вступает в ковалентные связи с четырьмя атомами кремния, а его пятый электрон оказывается незанятым в связях (рис. 155).  [c.155]

В отличие от кристаллического полупроводника, где при комнатной температуре электроны с мелких донорных уровней переходят в зону проводимости, здесь они перейдут, в основном, на локализованные состояния вблизи уровня Ферми. При высокой плотности состояний это приводит к незначительному смещению уровня Ферми из положения Ер в положение и электрические свойства полупроводника практически не изменятся. Новое положение уровня Ферми может быть найдено из условия  [c.365]

Таким образом, хотя примеси практически и не принимают непосредственного участия в генерировании фотоэлектронов, тем не менее они оказывают заметное влияние на фотоэмиссионные свойства полупроводника — через создание заряда на его поверхности в результате обогащения или, напротив, обеднения электронами поверхностных состояний.  [c.166]

Специально вводя примеси (соответствующего состава и соответствующей концентрации), можно управлять временем жизни носителей заряда. Как будет показано ниже, тем самым можно существенно воздействовать на фотопроводящие свойства полупроводника.  [c.176]

Окисные пленки имеют толщину 0,5—3 нм и более и обладают свойствами полупроводников, а иногда и диэлектриков. Интенсивность образования окисных пленок и изменение структуры граничных слоев зависят от температуры в зоне контакта, которая увеличивается с ростом скорости вращения, от удельного давления на щетки и проницаемости окисной пленки для кислорода.  [c.316]


ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ПОЛУПРОВОДНИКОВ  [c.454]

Eg — ширина энергетической шели в спектре электронных возбуждений для веществ, обладающих свойствами полупроводников  [c.653]

Таблица показывает, что направления векторов Бюргерса наиболее устойчивых дислокаций хорошо согласуются с направлением скольжения. Выше уже указывалось, что скольжение в кристаллах осуществляется движением дислокаций, причем в процессе скольжения могут возникать новые и исчезать старые дислокации. Поэтому важными характеристиками являются плотность и распределение дислокаций. Под плотностью дислокаций понимают количество дислокаций, пересекающих площадку в м в кристалле. Для сравнительно совершенных кристаллов металлов (после их отжига, приводящего к уменьшению числа дислокаций, поскольку они представляют собой неравновесные образования) плотность дислокаций составляет 102—jgs см 2, а после пластической деформации может достигать 10 —см" . Дислокации сильно влияют (часто ухудшая) на электрические свойства полупроводников, и поэтому разработаны специальные способы выращивания монокристаллов полупроводников с малой плотностью дислокаций вплоть до бездислокационных.  [c.244]

Подробное рассмотрение физических процессов в полупроводниках завело бы нас слишком далеко в зонную теорию твердого тела. Поэтому ограничимся перечислением нужных нам свойств полупроводников без обсуждения механизма явлений. Хорошо (до 10" % и выше) очищенный от примесей полупроводниковый кристалл при комнатных температурах имеет ничтожно малую (по сравнению с металлами) электропроводность. Все электроны находятся в связанных состояниях. Для выбивания электрона ему надо сообщить энергию выше некоторой пороговой. Пороговая энергия имеет порядок 1 эВ (0,7 эВ для германия Ge и 1,1 эВ для кремния Si). В среднем на образование пары ионов в полупроводнике тратится энергия примерно 3 эВ — на порядок меньше, чем  [c.503]

Полупроводники занимают по удельной проводимости промел уточное место мевду проводниками и диэлектриками. Особенности свойств полупроводников позволяют широко использовать их в различных отраслях электротехники в технике связи в широком диапазоне частот, в различных устройствах радиоэлектроники и в технике сильного тока. Их применяют в выпрямителях, в усилителях, в фотодатчиках, в качестве специальных источников тока и т. п.  [c.4]

X — коэффициент, зависящий от свойств полупроводника, удовлетворяющий условию 1>д >0.  [c.274]

Примечание. В некоторых модификациях свойствами полупроводников обладают еще олово (серое), сурьма и углерод.  [c.230]

Релаксация фотопроводимости. Изменение электрических свойств полупроводников под влиянием электромагнитного излучения зависит от времени (релаксация). После прекращения облучения проводимость более или менее быстро возвращается к тому значению, которое она имела до облучения. У одних полупроводников это длится микросекунды, у других измеряется минутами и даже часами. Знание инерционности фотопроводимости различных полупроводниковых веществ важно при разработке, например, фоторезисторов, к быстродействию которых  [c.247]

ЭЛЕМЕНТЫ, ОБЛАДАЮЩИЕ СВОЙСТВАМИ ПОЛУПРОВОДНИКОВ  [c.251]

Из девяти элементов, обладающих свойствами полупроводников (см. табл. 8-2), рассмотрим те, которые получили наибольшее распространение в технике.  [c.251]

Превращения в кристалле в результате ядерных реакций при облучении нейтронами приводят к образованию атомов примесей. Как правило, это не очень существенно, за исключением случаев, когда образуются газы (например, при реакции нейтронов с бериллием образуется гелий). Газы в решетке могут накапливаться, образуя пузырьки, и приводить к сильному распуханию. Атомы примесей, не являющихся газами, могут существенно менять свойства полупроводников.  [c.142]

Поскольку концентрация и время жизни носителей тока в данном полупроводниковом приборе специально контролируются в процессе его изготовления, то эти характеристики предопределяют конкретную область применения прибора. Отклонения от заданных условий работы приводят к изменениям рабочих характеристик прибора, а они в свою очередь могут повлиять на работу всей цепи, в которую он входит. Иначе говоря, электрические свойства полупроводников зависят от типа и количества нарушений в кристаллической решетке. Поэтому не удивительно, что высокоэнергетические частицы, вызывая образование структурных дефектов и ионизацию атомов при прохождении через кристаллическую решетку, резко изменяют электрические свойства полупроводников. Ниже мы будем рассматривать как дефекты любые отклонения от нормальной кристаллической решетки и, в частности, инородные атомы, вакантные места в решетке (вакансии), промежуточные атомы (междоузлия), электроны и дырки в количествах, превышающих их равновесные концентрации, и т. д. Эти нарушения кристаллической решетки можно рассматривать как точечные, а нарушения другого типа — дислокации — как линейные дефекты.  [c.278]


Влияние радиационных нарушений на электрические свойства полупроводников обычно сводится к введению энергетических уровней в запрещенную энергетическую зону [44, 48]. Эти энергетические уровни связаны с дефектами в кристаллической решетке, которые могут захватывать электроны или дырки. Положительно заряженные места в решетке, образовавшиеся в результате захвата дырок, называются донорами. Акцепторами принято называть места в решетке, ставшие отрицательно заряженными в результате захвата электронов. Такие места в решетке оказывают большое влияние на концентрацию свободных дырок и электронов и, следовательно, на электрические и оптические свойства кристалла.  [c.282]

Многочисленные исследования влияния давления на полупроводниковые приборы показали, что свойства полупроводников не изменяются существенно по действием трехосных нагрузок. Реальные приборы, однако, могут вести себя различным образом в зависимости от конструкций корпусов.  [c.481]

Уже в наше время явлением заинтересовался советский ученый академик Иоффе, большую часть жизни посвятивший изучению удивительных свойств полупроводников—промежуточного класса веществ, не являющихся ни проводниками, ни изоляторами электрического тока.  [c.86]

Сурьмяно-цезиевый фотоэмиттер. При прогревании сурьмы в парах цезия образуется химическое соединение sjSb, обладающее свойствами полупроводника. Небольшой де1 )ицит цезия в кристаллической решетке превращает данный полупроводник в полупроводник р-тина. Его характеристики %=0Л эВ, А = 1,6 эВ, У зх=0,3.  [c.172]

У меди имеется один 4з-электрон и целиком задолненная Зб-оболочка (10 электронов). Большие орбиты Зб-электронов и значительное их число делают диамагнетизм замкнутых оболочек меди преобладающим над парамагнетизмом свободного 48-электрона. Если же энергетические зоны целиком заполнены или совершенно пусты (изоляторы), то твердое тело также обладает диамагнитными свойствами. Полупроводники были бы диамагнитными, если бы не малые парамагнитные составляющие восприимчивости, обусловленные свободными электронами.  [c.150]

Гидрогенизация аморфного кремния, как уже указывалось, позволила эффективно управлять его электрофизическими свойствами путем легирования. Между тем многие свойства полупроводника определяются шириной его запрещенной зоны, которая при легировании не изменяется (или изменяется незначительно). В целях расширения возможностей управления оптическими, фотоэлектрическими и электрическими свойствами полупроводника при изготовлении различных приборов наряду с гидрогенизированным аморфным кремнием применяют его сплавы с германием Ое, з Н, углеро-  [c.21]

В учебном пособии изложены теоретические основы алектроматериаловедения, касающиеся изучения структуры и свойств металлов и сплавов, применяемых в авиационном приборостроении. Приведены материалы, устанавливающие зависимость физикохимических свойств электротехнических сплавов от их строения, а также сведения о методах формирования у сплавов специальных свойств. Значительное место в учебном пособии отведено изучению конкретных групп электротехнических сплавов — конструкционных, магнитных, проводниковых, с особыми тепловыми свойствами, полупроводников.  [c.2]

В авиационной технике полупроводниковые материалы используют в приборах для генерации и усиления электрических сигналов и выпрямления переменного тока (диоды) и в качестве фотосопротивления и фотодиодов. Термоэлектрические свойства полупроводников позволяют применять их в качестве термосопротивлений, термоэлементов, термостабилизаторов и при создании солнечных батарей. Магнитные свойства полупроводниковых материалов (окислы металлов переходных групп, соединения металлов с серой, теллуром и селеном) позволяют применять их при изготовлении малогабаритных антенн, транс-  [c.279]

Оптические свойства полупроводников. Выше, в 1.2, было показано, что методы ИПД могут быть использованы для получения наноструктур не только в чистых металлах и сплавах, но и в полупроводниковых материалах, широко используемых в электронной технике. В последние годы значительный интерес вызвали оптические свойства наноструктурных Si и Ge, в которых наблюдалось люминесцентное свечение в видимой области спектра. Эти эффекты были обнаружены в пористом Si, полученном химическим травлением [396, 397], в образцах Si, полученных электронно-лучевым распылением [398], и в нанокристаллах Ge, полученным магнетронным распылением [399]. Вместе с тем в этих работах исследованные образцы были в виде пористого материала или тонких пленок. В этой связи интерес представляет исследование спектров рамановского рассеяния и фотолюминес-  [c.232]

Рассмотренные поверхностные состояння возникают на идеально чистой бездефектной поверхности, получить которую практи- ческн невозможно. В реальных условиях поверхностные свойства полупроводников определяются новерхностнымп состояниями, созданными главным образом чужеродными атомами (молекулами) на поверхности. На рис. 8.26, в показана зонная структура полупроводника. Вертикальной прямой ВС обозначена одна из свободных его поверхностей. Предположим, что на этой поверхности химически сорбировалась частица М. При такой сорбции волновые функции решетки и частицы перекрываются настолько, что частицу можно рассматривать как примесь, локально нарушающую периодичность потенциала решетки и приводящую к возишсновению в запрещенной зоне поверхностного уровня.  [c.242]

Таким образом, у поверхности полупроводника существует область, электрические свойства которой оиределяю1Ся не объемными концентрациями примеси, а величиной поверхностного заряда. В этой области концентрация носителей может существенно отличаться от объемной концентрации. Наличие такой области оказывает существенное влияние на многие свойства полупроводника электропроводность, работу выхода, фото-э. д. с. и др., а также на параметры приборов.  [c.244]

Бурное развитие электроники п фотоэлектроники в последнее десятилетие значительно расширило диапазон средств измерительной техники в теории машин. В последние годы техника, связанная с экспериментальными исследованиями машин, развивается за счет новых свойств полупроводников и диэлектриков, обладающих чувствительностью, в десятки раз превышающей чувствительность обычных тензодатчиков, что упростило и облегчило решение многих задач экспериментального исследования машин. Наряду с полупроводниками в последние годы в измерительную технику вошли диэлектрики, датчики, основанные на эффекте Холла, электрокинема тические датчики и другие средства измерения, основанные на достижениях современной физики, химии и электроники.  [c.32]


Стекло алектропроводящее — обладает электрическими свойствами полупроводника, причем увеличение его электронной проводимости достигается повышением объемной или поверхностной электропроводности.  [c.469]

Электропроводящее стекло (полупроводниковое) — стекло, обладающее свойствами полупроводников благодаря включению в состав элементов или окислов, придающих стеклу электропроводность. Различают халь-когенидные стекла, в состав которых входят в различных сочетаниях сплавы сульфидов, селенядов и теллуридов, а также мышьяка, висмута и других элементов и оксидные ванадиевые стекла на основе окислов ванадия и фосфора с добавками других окислов. Они находят широкое применение в качестве термисторов, светофильтров и фотосопротивлений.  [c.274]

Характер распределения засветки на приведенных фотоснимках устойчиво воспроизводится при многократной записи на одних и тех же образцах при переполировке их поверхностей. Таким образом, наблюдаемые на фотографиях ИК пропускания неоднородности связаны с объемными свойствами вещества. Хорошо известно также, что электрические, фотоэлектрические и прочие свойства полупроводников связаны с макрооднородностью структуры последних. Таким образом, неоднородное распределение засветки на полученных фотоснимках уже само по себе свидетельствует о возможности осуществления контроля качества полупроводниковых материалов рассмотренным методом.  [c.184]

Ионизирующее излучение, воздействуя на окисную пленку, образующуюся на поверхности металла, может изменять ее электропроводность, защитные свойства и в соответствии с этим коррозионную стойкость металла. И. Л. Розенфельд и Е. К. Оше [1,29] показали, что ток пар цирконий — алюминий, цирконий — железо в движущемся растворе трехпроцентного хлористого натрия значительно возрастает при облучении катода (цирконий) потоком электронов большой энергии (0,8 Меё) с интенсивностью 15 мка/см . После начала облучения сила тока возрастала в 15—20 раз, а затем в течение всего опыта (1 час) оставалась постоянной. По окончании облучения величина тока уменьшалась почти до исходного значения. При облучении анода исследуемых гальванических пар сила тока не увеличивалась. Изменение электрохимической активности циркониевого электрода под действием облучения связано с изменением физических свойств окисной пленки на циркониевом катоде. Окисная пленка на катоде (2гОг) рассматривается как полупроводник. Электрические свойства полупроводников могут существенно изменяться под влиянием облучения, которое в большинстве случаев вызывает резкое увеличение электропроводности полупроводников. Величина тока исследуемых пар определяется скоростью катодной реакции восстановления кислорода. Если допустить, что скорость этой реакции лимитируется высоким сопротивлением пленки-полупроводника на катоде, облучение, уменьшая сопротивление пленки окиси циркония, должно ускорить катодную реакцию и привести к резкому увеличению тока коррозионной пары.  [c.37]

А. э, применяется для измерения интенсивности УЗ-излучения, частотных характеристик УЗ-нреобра-зователей, а также для исследования электрич. свойств полупроводников измерения подвижности носителей тока, контроля неоднородности электронных параметров, примесных состояний и др.  [c.52]


Смотреть страницы где упоминается термин Свойства полупроводников : [c.381]    [c.91]    [c.538]    [c.542]    [c.274]    [c.189]    [c.218]    [c.253]    [c.100]   
Температура и её измерение (1960) -- [ c.183 ]

Справочник по элементарной физике (1960) -- [ c.127 ]



ПОИСК



Атомные свойства изоляторов и полупроводников

Иванов Б. Н. О некоторых свойствах плазмы полупроводников и металлов

Квазиимпульс и оптические свойства полупроводников

Классификация и общие свойства полупроводников

Контакт электронного и дырочного полупроводников. Свойства электронно-дырочного перехода

Общие свойства и применение полупроводников

Оптические и электрические свойства аморфных полупроводников

Оптические свойства полупроводников

Основные свойства и группы полупроводников

Отличительные свойства полупроводников

Отличне свойств диэлектриков от свойств металлов и полупроводников

Полупроводники

Полупроводники Основные свойства

Полупроводники термоэлектрические свойства

Свойства атомные полупроводников

Свойства важнейших полупроводников

Свойства однородных полупроводников

Физические свойства полупроводников

ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ПОЛУПРОВОДНИКОВ. С. Д. Лазарев, Мейлихов

Электрические свойства контакта полупроводников р- и л-типов

Электрические свойства полупроводников

Элементы со свойствами полупроводников

Элементы, обладающие свойствами полупроводников



© 2025 Mash-xxl.info Реклама на сайте