Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводники жидкие

Фазовый переход полупроводник — металл имеет место при плавлении нек-рых полупроводников (Ge, Si см. Жидкие полупроводники, Жидкие металлы), а также в ряде неупорядоченных и аморфных систем (сильно легированные и аморфные полупроводники, жидкие и газообразные металлы, в частности вблизи критич. точки).  [c.802]

В последние годы исключительно интенсивно развивается физика некристаллических веществ, к которым относятся жидкие металлы и полупроводники, стекло, аморфные металлические сплавы и т. д. Основной отличительной чертой кристалла является то, что атомы или молекулы, составляющие его, образуют упорядоченную структуру, обладающую периодичностью с дальним порядком. Из-за математических упрощений, связанных с этой периодичностью, физические явления в кристаллических твердых телах были хорошо поняты сразу после создания квантовой механики.  [c.353]


Метод зонной плавки широко применяют прежде всего как один из эффективных методов очистки полупроводниковых материалов от примесей. Очистка полупроводников этим методом основана на том, что примеси неодинаково растворимы в твердой и жидкой фазе основного вещества. Наиболее распространен случай, когда растворимость примеси в жидкой фазе больше, чем в твердой. Тогда расплавленная зона при движении будет захватывать примесь и переносить ее в конец слитка. Этот процесс движения зоны (в том же направлении) можно повторять  [c.83]

Изложено термодинамическое обоснование возможности ретроградного распада с выделением жидкой фазы. Приведены оригинальные данные о прецизионном построении кривых ретроградного солидуса в важнейших полупроводниковых системах с участием германия, кремния, арсенида индия и др. Рассмотрены кинетика распада и структурный механизм этого процесса. Обосновано использование диаграммы фазовых равновесий при выборе уровня легирования полупроводников и режимов их термической обработки. Описаны возможности направленного изменения свойств материалов, обеспечивающих надежную работу электронных устройств.  [c.51]

Диффузионный метод (диффузионные р-н-переходы). Электронно-дырочный переход может быть получен также диффузией акцепторной примеси в донорный полупроводник или донорной примеси в акцепторный полупроводник. Диффузию можно вести из газообразной, жидкой или твердой фазы. Глубина проникновения примеси и залегания р—/г-перехода определяется температурой и вре-  [c.218]

Следует, однако, иметь в виду, что если примесные атомы уже ионизированы, то примесное поглощение наблюдаться не будет. Так как температура истощения примеси падаете уменьшением энергии ее ионизации, то для наблюдения длинноволнового примесного поглощения необходимо охлаждение полупроводника до достаточно низкой температуры. Так, например, спектр примесного поглощения германия, легированного золотом (энергия ионизации примеси = 0,08 эВ, граница поглощения л 9 мкм), наблюдается при температуре жидкого азота (77 К), в то время как при легировании германия сурьмой ( = 0,01 эВ, = 135 мкм) примесное поглощение можно наблюдать лишь при гелиевых температурах (4 К).  [c.323]

ЯВЛЕНИЯ (поверхностные — явления, обусловленные избытком свободной энергии поверхностного слоя тела, особенностями его структуры и состава термоэлектрические — электрические явления, возникающие в металлах и полупроводниках при наличии градиентов температуры фотоэлектрические— электрические явления, происходящие в веществе под действием электромагнитного излучения эмиссионные—явления, связанные с испусканием электронов твердыми и жидкими телами в результате внешних воздействий)  [c.303]


Рис. 2-14. Прибор для определения температуро-и теплопроводности жидких полупроводников. Рис. 2-14. Прибор для <a href="/info/3896">определения температуро</a>-и теплопроводности жидких полупроводников.
В некристаллич. и жидких П. примеси ведут себя иначе, чем в кристаллических. Отсутствие кристаллич. структуры приводит к тому, что примесный атом иной валентности, чем замещае 1ЫЙ, может насытить своя валентные связи, так что ему будет невыгодно присоединять лишний электрон или отдавать свой электрон. В результате примесный атом оказывается электрически неактивным. Это обстоятельство не позволяет. менять путём легирования тип проводимости, что необходимо, вапр., для создания р — п-переходов, Нек-рые аморфные П. изменяют электронные свойства под действием легирования, но в значительно меньшей степени, чем кристаллич. П. Чувствительность аморфных П. к легированию может быть повышена технол. обработкой. Насыщение аморфного 81 водородом и последующее легирование донорами или акцепторами обеспечивает п- или р-тип проводимости. Таким способом по-лзч1ен р — -переход в плёнках аморфного 8г, аморфный 8[ стал перспективны.м материалом для солнечных батарей (см. Аморфные и стеклообразные полупроводники, Жидкие полупроводники).  [c.38]

Свободному растеканию носителей, накопленных на границе полупроводник— жидкий кристалл, препятствует потенциальный рельеф, создаваемый, например, неподвижными зарядами, всегда существующими в диэлектрических слоях (таким диэлектрическим слоем между полупроводником и ЖиДким кристаллом в ПВМС является, например, диэлектрическое зеркало). В этом случае пространственное распределение потенциального рельефа носит случайный характер. В компенсированном арсениде галлия вариации поверхностного потенциала мог)т вызываться также флуктуациями ншрины запрещенной зоны из-за неоднородного распределения компенсирующей примеси (уровень таких флуктуаций может доходить до 200 мВ), Но потенциальный рельеф может быть сформирован и специально—например, на поверхности полупроводника может быть создана регулярная решетка прорезанием (или травлением) полупроводника на определенную глубину  [c.193]

Заключая вышесказанное, еще раз повторим, что для достижения максимальной разрешающей способности необходимо выполнение нескольких условий минимальный накопленный заряд наличие вариации (флуктуапий) поверхностного потенциала на границе раздела полупроводник — жидкий кристалл минимальная толщина полупроводника (или глубина поглощения света в нем) малость толщины жидкого кристалла и его диэлектрической анизотропии.  [c.194]

При модо.лироваиии полей с помощью поля электрич. тока в сплошной среде модель выполняется из полупроводника [жидкий электролит, залитый в сосуд из  [c.268]

Курс охватывает почти все основные разделы классической и квантовой статистической механики и многие ее приложения, например групповые разложения для неидеальных газов, теорию полупроводников, жидкий гелий, кооперативные явления, флуктуации, теорию электролитов, уравнение Больцмана. Четко излагаются основные принципы статистической механики метод ансамбля Гиббса и связь между различными ансамблями, свойства статистических сумм. Приводится большое число задач на примеиепие общих принципов статистической механики, что делается, пожалуй, впервые в учебной литературе. Подбор задач и их решения отличаются оригинальностью и новизной и показывают, что автор сам много и активно работал в различных областях статистической физики.  [c.5]

Первые успешные опыты были проведены на сплавах системы благородный металл (Аи, Рс )+17—25% (ат.) элемента полупроводника (Si, Ge). Рентгенограммы и электронограммы аморфных металлов такие же, как и у жидких расплавов (отсутствуют дифракционные пятна и кольца). Электросопротив-  [c.640]

Простая модель электронного газа, созданная Друде в 1900 г., успещно предсказала законы Ома и Видемана — Франца. Однако она не объяснила зависимость электропроводности от температуры, а также магнитные свойства и малую величину электронной теплоемкости по сравнению с классическим значением 3/ . В настоящее время ясно, почему удельное сопротивление особо чистых металлов падает от типичного для комнатных температур значения 10 мкОм см до значения менее 10 з мкОм -см при температуре жидкого гелия в то время как удельное сопротивление концентрированного сплава падает всего в два раза в том же диапазоне температур. Поведение полупроводников также хорошо понято удельное сопротивление экспоненциально возрастает при уменьшении температуры, и при очень низких температурах чистые полупроводники становятся хорошими диэлектриками. Добавка в образец полупроводника небольшого количества примесей чаще всего существенно уменьшает удельное сопротивление (в противоположность чистым металлам, в которых наличие примесей ведет к увеличению удельного сопротивления).  [c.187]


Фотолюминесценция — люминесценция, возникающая при возбуждении светом видимого и ультрафиолетового диапазонов частот фотовоэбуждение). На практике фотовозбуждение используется для получения люминесценции жидких растворов, стекол, твердых диэлектриков и полупроводников. При этом роль центров люминесценции играют специально вводимые в основное вещество ионы или молекулы. Так, например, в твердые диэлектрики и стекла вводят в виде небольших примесей ионы неодима (Nd +) и других редкоземельных элементов. В жидкие растворители вводят, в частности, молекулы органических красителей.  [c.184]

Зонная теория твердого тела удовлетворительно объясняет специфические особенности полупроводникав. Эта теория является следствием применения квантовой механики к проблеме твердого тела, но зонная модель распространяется и на апериодическое поле, свойственное некристаллическим веществам. Наличие жидких и аморфных полупроводников свидетельствует о том, что полупроводниковые свойства в первую очередь определяются природой химической связи данного атома с его ближайшим окружением, т. е. ближний порядок является определяющим. Разумно под термином химическое строение понимать совокупность энергетических, геометрических и квантовохимических характеристик вещества (порядок, длина и энергия связи, рашределение и пространственная направленность электронных облаков, эффективные заряды и т. д.). Но главным в учении о химическом строении является природа химической связи всех атомов, входящих в состав данного вещества.  [c.94]

В таблицах при отсутствии дополнительных обозначений приведены данные для твердого иоликристалличе-ского состояния. В других случаях приняты сокращения (м/к) — монокристаллическое состояние (в случае, когда для вещества приведены данные для монокристалли-ческого и поликристаллического состояний, во избежание ошибок специально выделено значение поликристаллического состояния — (п/к) )с ц и Х1 —восприимчивости, измеренные вдоль и перпендикулярно оси наиболее высокой симметрии x > X . Хс — восприимчивости вдоль направлений векторов трансляций элементарной ячейки данной кристаллической решетки (г) — газообразное, (ж) — жидкое, (ТВ) — твердое состояние (р) — раствор р — концентрация дырок в полупроводнике п— концентрация электронов в полупроводнике Тал — температура плавления Твсп — температура испарения АГ — интервал температур, в котором температурная зависимость х следует закону Кюри — Вейсса, прочерк в таблицах означает, что значение температуры измерения в оригинальной работе не приведено.  [c.594]

Выбор метода получения аморфных материалов определяется спецификой аморфизируемого вещества. Так, расплавленные Ge и Si обладают металлическими свойствами, и поэтому для получения аморфных полупроводников Ge и Si используют первую группу методов [59]. Для аморфизации Те и особенно Se вполне достаточно быстрого охлаждения в обычных закалочных средах. Аморфизация металлических сплавов требует скоростей до 1 с [60, 61]. Аморфные твердые тела, полученные сверхбыстрой закалкой из жидкого состояния, метастабильны. Они, как считается, обладают большей стойкостью к кристаллизации, чем аморфные вещества, полученные напылением.  [c.274]

Например, углерод может существовать в модификации графита, являясь при этом проводником, и алмаза - диэлектриком такие типичные при нор.мгальных условиях полупроводники, как германий и гсремпий, при воздействии очень высоких гидростатических давлений становятся проводниками, а при воздействии очень низких температур - диэлектриками Твердые и жидкие металлы - проводники, но пары металлов являются диэлектриками.  [c.5]

Описаны природа и закономерности образования дефектов в эпитаксиальных слоях полупроводников. Обобщены и проанализированы данные о влиянии структурных несовершенств (различие периодов решетки, наличие градиента состава и наследование дефектов из подложки и др.) на морфологические особенности композиций на основе многокомпонентных твердых растворов соединений Рассмотрены. основные механизмы и источники образования дислокаций при эпитаксии. Впервые рассмотрены вопросы стехиометрии при жидко- и газофазной эпитаксии. Особое внимание уделено влиянию электрически активных дефектов на характеристики ин-жекционных лазеров, светодиодов и других полупроводниковых приборов.  [c.54]

Использующиеся в практике полупроводники могут быть подразделены на простые полупроводники (их основной состав образован атомами одного химического элемента) и сложные полупроводниковые композиции, основной состав которых образован атомами двух или большего числа химических элементов. В настоящее время изучаются также стеклообразные и жидкие полупроводники. Простых полупроводников существует около десятка, они приведены в табл. 8-2. В современной технике особое значение приобрели кремний, германий и частично селен. Сложными полупроводниками являются соединения элементов различных групп таблицы Менделеева, соответствующие общим формулам (например, Si ), A4 Bv (InSb, GaAs, GaP), A B>v ( dS, ZnSe), a также некоторые  [c.230]

Большинство твердых и жидких тел имеет сплошной (непрерывный) спектр излучения, т. е. излучают энергию всех длин волн от О до оо. К твердым телам, имеющим непрерывный спектр излучения, относятся непроводники и полупроводники электричества, металлы С окисленной шероховатой поверхностью. Металлы с полированной поверхностью, газы и пары характеризуются селективным (прерывистым) спектром излучения. Интенсивность излучения зависит от природы тела, его температуры, длины волны, состояния поверхности, а для газов — еще от толщины слоя и давления. Твердые и жидкие тела имеют значительные поглощательную и излучательную способности. Вследствие этсго в процессах лучистого теплообмена участвуют лишь тонкие поверхностные слои для непроводников тепла они составляют около 1 мм для проводников тепла — 1 мкм. Поэтому в этих случаях тепловое излучение приближенно мо) но рассматривать как поверхностное явление. Полупрозрачные тела (плавленый кварц, стекло, оптическая керамика и др., газы и пары) характеризуются объемным характером излучения, в котором участвуют все частицы объема вещества. Излучение всех тел зависит от температуры. С увеличением температуры тела его энергия излучения увеличивается, так как увеличивается внутренняя энергия тела. При этом изменяется не только абсолютная величина этой энергии, но и спектральный состав. При увеличении температуры повышается интенсивность коротковолнового излучения и уменьшается интенсивность длинноволнового излучения. В процессах излучения зависимость от температуры значительно большая, чем в процессах теплопроводности и конвекции. Вследствие этого при высоких температурах основным видом переноса может быть тепловое излучение.  [c.362]


Появление спутниковой, тропосферной, космической связи и глобального радио- и телевещания на сверхвысоких частотах, сверхдальней радиолокации, радиоастрономии, радиосиектросконии потребовало создания радиоприемных устройств с ничтожно малым уровнем шума. Новые возможности в этом отношении открылись перед радиотехникой в связи с достижениями в области изучения свойств различных веществ при глубоком их охлаждении и в связи с освоением новых методов построения радиоприемных схем. В результате этого в 50-х годах появились идеи создания параметрических и квантовых парамагнитных усилителей. Такие схемы обычно охлаждают с помощью жидкого азота, а в последнее время — жидкого гелия. Современные параметрические усилительные схемы осуществляются на основе использования для изменения параметров схемы диодов, ферритов, полупроводников и других нелинейных элементов. Квантовые парамагнитные усилители в настоящее время строятся на двух нринцинах. В первом из них взаимодействие волны слабого сигнала с усиливающим парамагнитным веществом происходит в объемном резонаторе (усилители резонаторпого тина), а во втором — в замедляющих волноводах (усилители бегущей волны). Все эти устройства мало похожи на привычные радиоприемники и пока еще достаточно сложны в осуществлении и эксплуатации, но зато их чувствительность может быть доведена до 10 вт.  [c.380]

Селен Se (Selenium). Порядковый номер 34, атомный вес 78,96. Для селена известно несколько аллотропических форм. Стекловидный селен получается при отвердевании жидкого селена и представляет чёрную массу со стекловидным изломом. При нагревании выше 100 стекловидный селен быстро превращается в серый кристаллический селен. Последний обладает заметной фотопроводимостью и легко проявляет фотоэффект. Оба эти свойства обусловливают его применение в электрических приборах. Кристаллический селен, являясь полупроводником, проявляет униполярность, будучи помещён между двумя дисками, сделанными из разных металлов, что используется для изготовления сухих выпрямителей. Кристаллический селен весьма хрупок = 220°, кап — плотность 4,8. Жидкий селен представляет собой чёрную, непрозрачную, очень вязкую жидкость. Помимо указанных форм, селен обнаруживает способность давать и другие аллотропические видоизменения.  [c.360]

Следует проводить тщательное разграничение между приведенными выше определениями. Часто считают, что соединение , которое известно вначале как промежуточная твердая фаза, продолжает существовать до некоторой степени и в жидком сплаве. Примером может служить система Mg — Bi с промежуточной фазой MggBia. Против этого можно возразить, что в жидком сплаве наличие индивидуальных молекул, имеющих характер продолжительно существующих определенных групп атомов, невероятно, поскольку таких молекул нет в кристаллическом состоянии. Ближний порядок в жидком сплаве имеет случайный характер. Важно, однако, что электронное строение твердой промежуточной фазы отлично от чистого металла. В сплавах Mg-Bi с отношением атомов 3 2 распределение электронов, приблизительно соответствующее ионной формуле (Mg2+)j (Bi2-)2, по-видимому, возможно как для твердого, так и для жидкого состояний. Эта гипотеза может быть проверена при помощи электрических и магнитных измерений. Как и в полупроводниках, можно ожидать минимума электропроводности вблизи составов, отвечающих обычным валентным отношениям.  [c.13]

ФОСФОРЕСЦЕНЦИЯ — люминесценция, продолжающаяся значительное время после прекращения ее возбуждения ФОТО ДЕЛЕНИЕ — деление атомного ядра гамма-квантами ФОТОДИССОЦИАЦИЯ—разложение под действием света сложных молекул на более простые ФОТОИОНИЗАЦИЯ — процесс ионизации атомов и молекул газов под действием электромагнитного излучения ФОТОКАТОД — холодный катод фотоэлектронных приборов, испускающий в вакуум электроны под действием оптического излучения ФОТОЛИЗ— разложение под действием света твердых, жидких и газообразных веществ ФОТОЛЮМИНЕСЦЕНЦИЯ—люминесценция, возникающая под действием света ФОТОМЕТРИЯ— раздел физической оптики, в котором рассматриваются энергетические характеристики оптического излучения в процессах его испускания, распространения и взаимодействия с веществом ФОТОПРОВОДИМОСТЬ изменение электрической проводимости полупроводника под действием света ФОТОРЕЗИСТОР — полупроводниковый фотоэлемент, изменяющий свою электрическую проводимость под действием электромагнитного излучения ФОТОРОЖ-ДБНИЕ — процесс образования частиц на атомных ядрах и нуклонах под действием гамма-квантов высокой энергии ФОТОУПРУГОСТЬ — возникновение оптической анизотропии и связанного с ней двойного лучепреломления в первоначально оптически изотропных телах при их деформации  [c.293]

ФОТОЭФФЕКТ [внешний (закон третий число фотоэлектронов, вырываемых из катода за единицу времени, пропорционально нн генсивности света красная граница — минимальная частота света, при которой еще возможен фотоэффект и которая зависит от химической природы вещества и состояния его поверхности уравнение Эйнштейна определяет кинетическую энергию фотоэлектрона как разность энергии, приобретенной электроном от поглощения фотона, и работы выхода, совершаемой электроном для выхода из металла) внутренний <есть перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках и диэлектриках, происходящее под действием света имеет красную границу, определяемую равенством энергии активации и энергии фотона) многофотонный происходит при очень больших интенсивностях света, достижимых с помощью лазеров]  [c.294]

Известно [Л. 131], что при наложении постоянного электрического поля высокой напряженности на дисперсии металлов или полупроводников в жидких диэлектриках возникают ориентированные структуры. Под действием электрического поля происходит агрегатирование частиц дисперсий и их организация в структуры, растущие вдоль силовых линий поля. Исследованиями установлено, что при напряженности поля больше критической происходит электрический пробой суспензий, после чего они из диэлектриков превращаются в металлические проводники электрического тока. При этом пробой обусловлен образованием проводящего мостика из частиц проводников или полупроводников. В указанных выше работах в качестве диэлектриков применялись вазелиновое масло, авиационный бензин, бензол, нитробензол, серный эфир и т. д. Исследовались суспензии алюминия, меди, платины, карбида бора, закиси меди. В более поздних работах [Л. 132] исследовалось формирование структур металлонаполненных полимерных композиций в электрическом поле. Образующиеся при этом токо-  [c.228]

TaBHFiie частицы и.ч чётного числа фермионов, напр, нее мезоны, построенные из кварка и антикварка, атомные ядра с чётным числом нуклонов (дедЪрон, ядро Не и т. п.). Б. являются также фононы. в твердом теле и в жидком Не, экситоны, в полупроводниках и ди-алектриках и др.  [c.221]

Б двумерных системах, в структурах металл—диэлектрик — полупроводник (МJ ,n-структурах) для электронов над поверхностью жидкого гелия и в др. системах, где положпт. и отрицат. заряды разнесены в пространстве на расстояние, значительно превышающее ср, расстояние d между зарядами каждого слоя (рис. 1). Этим обеспечиваетсн од1городность фона.  [c.274]


Среди пространств, модуляторов наиб, перспективны устройства, основанные на фоторефракции в крис. таллах, а также на сочетании полупроводников и жидких кристаллов. Среди оперативных регистрирующих сред наиб, пригодны фототермопластики и термохром-ьые слои на основе окислов V.  [c.508]

ДВУМЕРНЫЕ ПРОВОДНИКИ — искусственно созданные электропроводянлие системы на границе раздела двух плохо проводящих сред, напр, вакуум — диэлектрик, полупроводник—диэлектрик. Пример Д. п.— слой электронов, удерживаемых над поверхностью диэлектрика с отрицательным сродством к электрону (напр., жидкого Не рис.) силами электростатического изображения (электроны поляризуют диэлектрик и притягиваются к нему), а также внеш. постоянным  [c.565]


Смотреть страницы где упоминается термин Полупроводники жидкие : [c.178]    [c.190]    [c.192]    [c.224]    [c.568]    [c.288]    [c.348]    [c.224]    [c.243]    [c.277]    [c.300]    [c.283]    [c.247]    [c.569]    [c.647]    [c.37]    [c.206]    [c.298]   
Модели беспорядка Теоретическая физика однородно-неупорядоченных систем (1982) -- [ c.454 ]



ПОИСК



Изоляторы и полупроводники . 3. Описание с помощью одноэлектрониых функций Грина . 4. Сопротивление жидких металлов

Полупроводники

Химическая область систем жидких полупроводников

Электронная структура- жидких полупроводников



© 2025 Mash-xxl.info Реклама на сайте