Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решетка молекулярная

Практическая работа над картами механизмов деформации состоит из нескольких этапов [32]. Во-первых, для рассматриваемого материала собирается таблица значений его свойств, которые необходимы для численного решения указанных ранее уравнений скоростей деформации. К их числу относятся параметр кристаллической решетки, молекулярный объем, вектор Бюргерса, модули упругости и сдвига и их температурные зависимости, различные коэффициенты диффузии.  [c.27]


Примечание-. Структура несколько похожа на линейную решетку молекулярного водорода.  [c.209]

Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]

Установлено [17], что значения твердости поверхности железа в процессе наводороживания достигают максимума, а затем уменьшаются. Это связывают с тем, что молекулярный водород сначала деформирует кристаллическую решетку металла в местах прилегания к поверхности микропустот, заполненных водородом, в результате чего твердость повышается, а затем в процессе дальнейшего наводороживания вызывает растрескивание и разрыхление поверхности, которое приводит к снижению твердости.  [c.15]

Высвечивание дискретных центров наблюдается у молекулярных кристаллов, где в узлах кристаллической решетки расположены отдельные молекулы. Из-за слабого взаимодействия между собой молекулы в кристалле сохраняют относительную самостоятельность, в результате этого поглощение и излучение происходят в одном и том же центре.  [c.362]


Рассмотренный случай дифракции на трехмерной решетке имеет исключительно важное значение. Он осуществляется практически при дифракции рентгеновских лучей на естественных кристаллах. Лучи Рентгена представляют собой электромагнитные волны, длина которых в тысячи раз меньше длин волн обычного света. Поэтому устройство для рентгеновских лучей искусственных дифракционных решеток сопряжено с огромными трудностями. Мы видели, что трудность эта может быть обойдена путем применения лучей, падающих на решетку под углом, близким к ЭО". Однако дифракция рентгеновских лучей была осуществлена задолго до опытов с наклонными лучами на штрихованных отражательных решетках. По мысли Лауэ (1913 г.), в качестве дифракционной решетки для рентгеновских лучей была использована естественная пространственная решетка, которую представляют собой кристаллы. Атомы и молекулы в кристалле расположены в виде правильной трехмерной решетки, причем периоды таких решеток сравнимы с длиной волны рентгеновских лучей. Если на такой кристалл направить пучок рентгеновских лучей, то каждый атом или молекулярная группа, из которых состоит кристаллическая решетка, вызывает дифракцию рентгеновских лучей. Мы имеем случай дифракции на трехмерной решетке, рассмотренный выше. Действительно, наблюдаемые дифракционные картины соответствуют характерным особенностям дифракции на пространственной решетке.  [c.231]

Благодаря методу Лауэ решаются две задачи огромной важности. Во-первых, открывается возможность определения длины волны рентгеновских лучей, если известна структура той кристаллической решетки, которая служит в качестве дифракционной. Таким образом создалась спектроскопия рентгеновских лучей, послужившая для установления важнейших особенностей строения атома (ср. 118). Во-вторых, наблюдая дифракцию рентгеновских лучей известной длины волны на кристаллической структуре неизвестного строения, мы получаем возможность найти эту структуру, т. е. взаимное расстояние и положение ионов, атомов и молекул, составляющих кристалл. Таким путем был создан структурный анализ кристаллических образований, легший в основу важнейших заключений молекулярной физики.  [c.231]

К молекулярным кристаллам относят твердые тела, в узлах кристаллической решетки которых располагаются либо одинаковые молекулы с насыщенными связями (На, I2, Вгг, I2), либо атомы инертных газов (Аг, Ne, Кг, Хе, Rn). К группе инертных газов следовало бы также отнести и гелий. Однако силы взаимо- 4  [c.64]

Снова, как и в случае молекулярных кристаллов, при расчете энергии сцепления ионных кристаллов будем исходить из обычных классических представлений, считая, что ионы находятся в узлах кристаллической решетки (положениях равновесия), их кинетическая энергия пренебрежимо мала и силы, действующие между ионами, являются центральными. Последнее утверждение для ионных кристаллов вполне справедливо, так как потенциаль-  [c.71]

В общем случае при расчете энергии сцепления ионных кристаллов необходимо также учитывать нулевые колебания решетки и молекулярные силы взаимодействия. При таком учете формула Борна—Майера для энергии сцепления ионного кристалла, приходящейся на одну ионную пару, имеет вид  [c.75]

При изучении распространения света в анизотропной среде обычно исходят из уравнений Максвелла. Электромагнитная теория света дает детальное описание всех явлений, наблюдаемых на опыте и связанных с естественной оптической анизотропией. Кроме того, эта теория может связать электрическую, а следовательно, и оптическую анизотропию с молекулярным строением вещества, т. е. с расположением атомов и молекул в кристаллической решетке.  [c.30]

В методе молекулярной динамики начальные значения координат задаются псевдослучайно, т. е. исключаются перекрывающиеся конфигурации. В качестве начальной конфигурации можно выбрать также структуру периодической решетки. Начальные скорости обычно выбирают одинаковыми по абсолютной величине и со случайными направлениями. При этом полная кинетическая энергия должна соответствовать заданной температуре. После того как атомы поочередно отпускаются из начального состояния, система начинает релаксировать к равновесному состоянию.  [c.191]


В твердых кристаллических телах молекулы располагаются на расстояниях порядка Го и образуют кристаллическую решетку.f Молекулярные движения, которыми обусловлена тепловая энергия твердого тела, представляет собой неупорядоченные колебания молекул около устойчивых центров. Благодаря этой устойчивости твердые тела сохраняют объем и форму.  [c.8]

Опыты с нейтронами и молекулярными пучками. Длина волны де Бройля обратно пропорциональна массе частицы. Следовательно, при той же скорости длина волны нейтрона или молекулы в тысячи раз меньше, чем длина волны электрона. Для успешного наблюдения дифракции волн на кристаллах необходимо, чтобы длина волны была порядка расстояний между узлами кристаллической решетки. Поэтому для наблюдения дифракции тяжелых частиц необходимо пользоваться частицами с достаточно малыми скоростями.  [c.63]

Структура твердых тел, описание кристаллических решеток и другие аналогичные вопросы достаточно подробно излагаются в курсе молекулярной физики. Там же описаны механические и тепловые свойства твердых тел. В этой книге рассмотрены главным образом электронные свойства твердых тел. Но прежде необходимо проанализировать типы связи атомов и молекул в кристалле, которые обеспечивают устойчивое существование кристаллической решетки.  [c.332]

Размеры включений или неоднородностей в смеси (диаметры дисперсных частиц, капель, пузырьков в газовзвесях, аэрозолях, эмульсиях и суспензиях, диаметры волокон и зерен в композиционных и поликристаллических материалах, диаметры пор в пористых средах и грунтах, толщины пленок в газожидкостных смесях) во много раз больше молекулярно-кинетических (расстояний между молекулами, размеров кристаллической решетки, средних длин свободного пробега молекул). Таким образом, указанные неоднородности содержат большое количество молекул (см. рис. 0.1). Но тем не менее имеет место следующее.  [c.17]

При анализе экспериментальных результатов и объяснении физических причин небольшого износа и силы трения при фрикционном взаимодействии некоторых металлов, в частности политетрафторэтилена с металлами, часто не учитывается такой важный момент, как способность полимеров к образованию жидкокристаллических структур. Сущность жидкокристаллического состояния (ЖКС) заключается в том, что некоторые вещества благодаря своему особому молекулярному строению при достижении температуры, соответствующей разрушению трехмерной кристаллической решетки, не переходят непосредственно в изотропную жидкость, а сохраняют упорядоченность во взаимном расположении молекул.  [c.97]

Технические полупроводники могут быть разбиты на четыре группы 1) кристаллы с атомной решеткой (графит, кремний, германий) и с молекулярной решеткой (селен, теллур, сурьма, мышьяк, фосфор) 2) различные окислы меди, цинка, кадмия, титана, молибдена, вольфрама, никеля и др. 3) сульфиды (сернистые соединения), селениды (соединения с селеном), теллуриды (соединения с теллуром) свинца, меди, кадмия и др. 4) химические соединения некоторых элементов третьей группы периодической таблицы элементов (алюминий, галий, индий) с элементами пятой группы (фосфор, сурьма, мышьяк) и др. К числу полупроводников относятся некоторые органические материалы, в частности полимеры, имеющие соответствующую полупроводникам по ширине запрещенную энергетическую зону. Особенности свойств некоторых органических полупроводников, как гибкость, возможность получения пленок при достаточно большой механической прочности, заставляют считать их перспективными.  [c.276]

Стекло получается при быстром охлаждении расплавленного материала. Если вести охлаждение расплава медленно, то увеличивается вероятность перехода вещества в кристаллическое состояние быстрое охлаждение с соответственно быстрым возрастанием вязкости приводит к тому, что молекулы не успевают образовать кристаллическую решетку и остаются закрепленными в тех случайных положениях. в которых они оказались к моменту повышения вязкости, препятствующего молекулярным перемещениям. )  [c.164]

По Полани и Цвикки и по теории атомной решетки, молекулярное сопротивление разрыву, например, для кристалла каменной соли должно составлять примерно среднего значения модуля упругости этого вещ ества т. е. около 2—4-10 кг см , в то время как в действительности каменная соль становится пластичной уже при напряжении около 20 кг см и разрушается при напряжении порядка 50 кг1см .  [c.79]

По сравнению с твердыми инертными газами колебания решетки молекулярных кристаллов могут вызвать ббльшие затрудаения из-за сложности их кристаллических структур. Полосы этих колебаний наблюдались, например, в ИК- и КР-спектрах кристаллов азота, окиси углерода и двуокиси углерода (табл. 2.10).  [c.37]

Указанные условия реализуются различными способами сварки путем энергетического воздействия на материал в зоне сварки. Энергия вводится в виде теплоты, уиругопластической деформации, электронного, ионного, электромагнитного и других видов воздействия. В результате поверхностные атомы металлов и кристаллических неметаллических материалов образуют общие для соединяемых заготовок кристаллические решетки, а на поверхности пластмасс происходит объединение частей молекулярных цепей.  [c.182]

Размер включений и неоднородностей в смеси много больше молекулярно-кинетических равмеров (расстояний между молекулами, размеров кристаллической решетки, средних длин свободного пробега молекул, т. е. неоднородности содержат очень большое количество молекул (см. рис. 0.1).  [c.13]

Металлические связи образуют структуры путем взаимодействия положительных ионов решетки (атомных остатков) и делока-лизированных, обобществленных электронов. Эти связи являются гомеополярными. Они по существу не относятся к химическим, и понятие металлические связи можно считать качественным, так как металлы не имеют молекулярного строения, а их атомы соединяются в кристаллические образования. Этот вид связи и обусловливает высокую прочность, пластичность и электропроводность металлов. Энергия связи — около Ю Дж/моль. Прочная металлическая связь наблюдается при образовании интер-металлидов и некоторых твердых растворов. Одна из ее особенностей — отсутствие насыщения, определяемого валентностью соответствующих атомов.  [c.10]


Эффект водородной хрупкости стали наиболее существенно проявляется в интервале температур от минус 20 до плюс 30°С и зависит от скорости деформации [18, 20]. Различают обратимую и необратимую водородные хрупкости. Охрупчивающее влияние водорода при его содержании до 8-10 мл/100 г в больщинстве случаев процесс обратимый, то есть после вылеживания или низкотемпературного отпуска пластичность металла конструкции небольшого сечения восстанавливается вследствие десорбции водорода. Обратимая хрупкость стали обусловливается, в основном, наличием водорода, растворенного в кристаллической решетке. Необратимая хрупкость зависит от содержания в стали водорода в молекулярном состоянии, который агрегирован в коллекторах, где он находится под высоким давлением, вызывающим значительные трехосные напряжения и затрудняющим пластическую деформацию стали. Пластические свойства металла при необратимой хрупкости пе восстанавливаются даже после вакуумного отжига, так как в структуре стали происходят необратимые изменения [21, 22] образование трещин по [раницам зерен, где наблюдается наибольшее скопление водорода, и обезуглероживание стали.  [c.16]

Как известно из общего курса физики, материальные тела обладают сложной молекулярной структурой, причем молекулы среды совершают тепловые движения хаотичные в газах, более или менее упорядоченные в жидкостях и аморфных телах и колебательные в кристаллических решетках твердых тел. Эти внутренние движения определяют физические свойства тел, которые в модели сплошной среды задаются наперед основными феноменологическими закономерностями (например, законы Бойля — Мариотта, Клапейрона — в газах, законы вязкости — в ньютоновских и неиыотоповских жидкостях, закон Гука — в твердых телах).  [c.103]

При расчете энергии сцепления молекулярных и ионных кристаллов в силу того, что конфигурация электронов в этих кристаллах не слишком сильно отличается от их конфигурации в-изолированных атомах или ионах, обычно ограничиваются вычислением классической потенциальной энергии системы сферически симметричных частиц, образующих определенную кристаллическук> структуру. Считается, что силы, действующие между атомами или ионами, являются центральными, т. е. полная потенциальная энергия системы зависит только лишь от расстояния между взаимодействующими частицами, которые локализованы в узлах решетки и кинетическая энергия которых пренебрел<имо мала.  [c.63]

В первом приближении различные тепловые возбуждения можно рассматривать независимо, однако следует помнить, что в высших приближениях уже приходится учитывать их взаимодействие. Среди всех возможных типов возбуждений следует особо выделить чрешеточныеч) возбуждения динамических степеней свободы, которые связаны с колебаниями частиц, образующих кристаллическую решетку (атомов, ионов или молекул) вблизи их положений равновесия. Если решетка состоит из молекул, то решеточные возбуждения связаны с колебаниямхг молекул как целого, однако наряду с ними возможны молекулярные возбуждения, связанные с колебаниями отдельных атомов или ионов внутри молекулы. Молекулярные возбуждения такого типа встречаются в кристаллах в тех случаях, когда межатомное взаимодействие в группе атомов превышает взаимодействие между атомами соседних групп.  [c.316]

Зауер и Темперли [225] рассмотрели влияние отличной от нуля температуры, пользуясь приближением Брэгга —Вильямса, т. е. предполагая наличие дальнего порядка. Как и в теориях, основанных на предположении о молекулярном поле (см. п. 55), решетка разделялась на две подрешетки с антинараллельными ориентациями. Кроме того, вводились параметры п г , характеризующие доли диполей с неправильными ориентациями в каждой из подрешеток. Нахождением минимума свободной энергии кристалла рассчитывались равновесные значения / и в зависимости от приложенного магнитного ноля при любой температуре.  [c.522]

В неорганической химии молекулы являются типичной формой существования химического соединения в паро- и газообразном состоянии. Поэтому во всех рассмотренных структурах нельзя выделить обособленные молекулы в кристаллической рещетке. Такие кристаллические рещетки, в которых отсутствуют дискретные молекулы, называются координационными. К ним относятся ионные, металлические и атомные решетки. К ионным принадлежит решетка ЫаС1, к металлическим — решетка натрия, к атомным — решетки кремния и сульфида цинка. На,рис. 10 для сравнения приведена элементарная ячейка молекулярной решетки кристалла йода.  [c.16]

При сближении ионов до расстояний порядка их собственных размеров валентные эдектроны данного атома вступают в сильное взаимодействие с соседними ядрами и их электронными оболочками, обеспечивающее возникновение химической связи. Поэтому валентные электроны нельзя считать локализованными у данного атома и в некоторых случаях они получают возможность перемещаться по всему кристаллу. Конечно, в молекулярных кристаллах связь между атомами, образующими решетку, имеет характер ван-дер-ваальсовых сил. Однако в подавляющем больщинотве явлений, происходящих в твердых телах, электроны играют самую существенную роль. Поэтому рассмотрим наиболее общий случай, когда в кристалле содержатся ионы и валентные электроны.  [c.47]

Вместе с тем длительность фосфоресценции может быть различной и часто у одного и того же фосфора развивается несколько свечений различной продолжительности. В ряде случаев, одновременно с длительным, наблюдается и кратковременное свечение, которое накладывается на него и вызвано чаще всего непосредственным возбуждением ионов активатора и близко по своим свойствам с молекулярным свечением. Отличие состоит в том, что атомы активатора взаимодействуют с кристаллической рещеткой основного вещества, поэтому поглощаемые и излучаемые ими частоты представляют собой комбинацию частот чисто электронного перехода центра свечения с частотами колебания решетки основного вещества.  [c.182]

Как обнаружили более поздние исследования, смолы, такие, как бакелит и фостерит, обладают тем же свойством, если нагружать их в горячем С1ЭСТ0ЯНИИ, а затем охладить. Объяснениесостоит в том, что структура этих материалов состоит из прочного упругого скелета, или молекулярной решетки, на который не действует тепло, а остальное пространство заполнено массой слабо связанных друг с другом молекул, которая при нагревании размягчается. Когда горячий образец нагружается, нагрузку несет упругий скелет, который без препятствий упруго деформируется.  [c.175]

Установлено, что трение твердых тел имеет молекулярно-механическую природу. На участках фактического контакта поверхностей, как показано в главе 1, действуют силы межмолекулярного притяжения, которые проявляются на расстояниях, в десятки раз превы-и1ающих межатомное расстояние в кристаллических решетках. При отсутствии либо наличии промежуточной вязкой прослойки (влага, загрязнение и т.п.) между контактирующими поверхностями молекулярные силы вызывают адгезию на площадках фактического контакта и поверхности как бы "прилипают" друг к другу. Строго говоря, адгезия имеет сложную природу. Поэтому наряду с молекулярной теорией существует несколько других теорий адгезии.  [c.65]

Кристаллы полимеров отличаются от обычных низкомолекулярных кристаллов (атомных или молекулярных), которые в механическом, кинетическом и термодинамическом см1.1сле являются квазиизотроп-ными, так как силы связей между узлами в направлении различных кристаллографических осей практически не различаются. При кристаллизации линейных полимеров ситуация резко изменяется, так как появляется некоторая преимущественная ось, совпадающая с направлением цепи главн .1х валентностей. В этом направлении связи между узлами ковалентные и равнопрочность всей решетки исчезает.  [c.91]


В процессе удаления водорода из покрытия возможно появление растягивающих напряжений растяжения, что вызывает появление сетки трещин. Обратимый характер водородной хрупкости наблюдается при содержании Hj до 0,5 см /100 г. При содержании его выше 5-8 см / 100 г J o6eHHo высокопрочные стали приобретают тенденцию к необратимой хрупкости. Появление необратимой хрупкости связано с накоплением молекулярного водорода в дефектах кристаллической решетки  [c.104]

Иной характер имеет различие между газообразным и красталлическим состояниями вещества. Кристаллическое состояние есть анизотропная фаза вещества, а газообразное состояние представляет собой изотропную фазу его. Поэтому непрерывный переход из твердого состояния в газообразное, а также в жидкое при высоких температурах (например, больших критической) едва ли возможен, соответственно чему кривая фазового равновесия между кристаллической и жидкой фазами не имеет конца и, в частности, критической точки фазового превращения кристаллическая фаза — жидкость, ло-видимому, не существует. Вместе. с тем нужно иметь в 1виду, что при температуре вблизи точки кристаллизации в свойствах кристаллической и жидкой фаз имеются сходные черты. Вообще при температурах, близких к температуре плавления, жидкость по своим свойствам гораздо ближе к твердому состоянию, чем к газообразному. Подтверждением этого является наличие у жидкостей вблизи точки плавления некоторого порядка в расположении молекул, вследствие чего можно говорить условно о квазикристаллической структуре жидкости. Близость свойств жидкого и твердого состояний хорошо видна из табл. 4-2, в которой приведены значения молярной теплоемкости ряда жидкостей (преимущественно расплавленных металлов, представляющих собой с точки зрения молекулярной структуры простейшие жидкости). У жидкостей молярная теплоемкость заключена между 27,6 и 36,9 кдж/кмоль град, тогда как у кристаллических тел она составляет согласно закону Дюлонга —Пти 25 кдж1кмоль град. Таким образом, молярная теплоемкость жидкостей практически такая же, как у кристаллических тел. Это означает, что частицы жидкости подобно атомам или ионам кристаллической решетки совершают периодические колебательные движения, причем в жидкостях центр колебаний может вследствие теплового движения перемещаться, в пространстве. Последнее объясняет некоторое превышение теплоемкости жидкостей по сравнению с твердым состоянием.  [c.125]

Молекулярная электроника позволяет создавать радиосхемы в твердом теле с помощью электроактивных примесей бора, галлия, алюминия, фосфора, сурьмы мышьяка, образуя в кристаллах зоны, выполняющие функции резисторов, конденсаторов, индуктивностей, диодов и транзисторов. Для создания подобных схем необходимо строго дозировать атомы перечисленных элементов и вводить их в точно намеченные места кристаллической решетки. Твердотельные схемы чрезвычайно малы по размерам и вносят новые представления и теоретические предпосылки в расчет, конструирование и технологию производства радиоаппаратуры.  [c.4]

В кристаллах с молекулярной решеткой и слабыми Ван-дер-Ва-альсовыми связями возможна ориентация и более крупных частиц.  [c.20]

В диэлектриках с атомной или молекулярной решеткой электропроводность связана только с наличием примесей, удельная проводи vio Tb их весьма мала.  [c.37]


Смотреть страницы где упоминается термин Решетка молекулярная : [c.54]    [c.672]    [c.8]    [c.171]    [c.745]    [c.153]    [c.411]    [c.7]    [c.333]    [c.219]   
Математическая теория упругости (1935) -- [ c.646 ]



ПОИСК



Молекулярная решетка 427, XIII

Молекулярные кристаллы. Инертные газы 33 Ионные кристаллы 39 Когезия в ковалентных кристаллах и металлах 42 Задачи , Недостатки модели статической решетки

Молекулярный вес

Решетка молекулярная состоящая из сложных элементов

Энергия решетки молекулярных (ван-дер-ваальсовых) кристаллов



© 2025 Mash-xxl.info Реклама на сайте