Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инвариантный тор гиперболический

Согласно результатам KAM-теории, траектории типичных эллиптических периодических решений окружены инвариантными торами. Гиперболические периодические решения имеют две инвариантные поверхности (сепаратрисы), заполненные решениями, асимптотически приближающимися к периодической траектории при t — +00 или t — -00. Различные асимптотические поверхности могут пересекаться, образуя в пересечении довольно запутанную сеть. Поведение асимптотических поверхностей будет подробно обсуждаться в следующей главе.  [c.230]


Кстати сказать, это условие геометрически означает отсутствие перегиба у кривой Яо(7) =Л в точке /=/о. Таким образом, уравнение йН =а будет иметь столько же корней, для которых а > О, сколько корней, для которых а, <0. Это равносильно тому, что при малых значениях е О возмущенная система будет иметь ровно столько периодических решений эллиптического типа, сколько она имеет решений гиперболического типа. В этой ситуации обычно говорят, что при распаде невозмущенного инвариантного тора /=/° рождаются пары изолированных периодических решений. Согласно результатам КАМ-те-ории, траектории типичных эллиптических периодических решений окружены инвариантными торами. Гиперболические периодические решения имеют две инвариантные поверхности (сепаратрисы), заполненные решениями, асимптотически приближающимися к периодической траектории при /- - оо. Различные асимптотические поверхности могут пересекаться, образуя в пересечении довольно запутанную сеть (см. рис. 44). Поведение асимптотических поверхностей будет подробно обсуждаться в следующем параграфе.  [c.231]

Рождение гиперболических инвариантных торов Перейдем к точным формулировкам. Положим д Но,  [c.239]

JO. Рождение гиперболических инвариантных торов  [c.241]

О < е < ео гамильтонова, система, с гамильтонианом (10.9) обладает гиперболическими инвариантными торами Т (е), непрерывно зависящими от е. При этом для каждого j О найдется такое o(j) > О, мера Щ(гоО )) положительна, а мера множества Kj и Wj s) равна нулю.  [c.243]

Пусть W[eo) — множество точек из ttq, для которых при всех О < е < о имеется гиперболический инвариантный тор согласно теореме 1. Мера множества ttq (J W[s) равна нулю, поэтому для  [c.243]

В настоящей главе мы продолжаем пополнять наш список примеров, двигаясь в нескольких направлениях. Сначала будем искать гиперболические множества, которые являются аттракторами (см. определение 3.3.1). До сих пор все известные нам примеры такого вида, а именно сжимающиеся периодические орбиты, гиперболические автоморфизмы тора, где весь тор был аттрактором, и произведение этих двух систем, когда инвариантный тор, сужение автоморфизма на который гиперболично, притягивает все точки в своей окрестности, были достаточно просты с геометрической точки зрения. В первых двух параграфах мы опишем гораздо более замысловатые примеры гиперболических аттракторов.  [c.533]

Заметим еще, что даже в случае невырожденной системы остается еще исследовать движения в зонах неустойчивости (дополнении к инвариантным торам) в случае п > 2 и по крайней мере при i 1/е или t 1/е" . Возможно, в этих зонах существуют инвариантные (п — 1)-мерные торы эллиптического и гиперболического типа (обобщение на случай произвольной размерности периодических движений из 20). Напомним, что при п > 2 инвариантные торы размерности п не делят гиперповерхность энергии Н = h размерности 2п — 1. Следовательно, сепаратрисы указанных гиперболических торов могут уходить очень далеко по этой гиперповерхности, вызывая неустойчивость системы. Аналогичный механизм неустойчивости исследуется в следующем разделе.  [c.108]


Появление гиперболических странных аттракторов в модельных системах является скорее исключением, чем правилом. Многочисленные исследования (как строгие математические, так и с использованием ЭВМ) показали, что в диссипативных системах со стохастическим поведением, наряду с нетривиальными гиперболическими множествами, обычно имеются еще и устойчивые периодические траектории. Тем самым, общая ситуация для таких систем, по-видимому, такая же, как и для гамильтоновых, т. е. динамика на типичном аттракторе похожа на динамику консервативной системы, имеющей и стохастические слои, и инвариантные торы KAM (см. гл. 6, 2).  [c.204]

При бифуркации цикла, объединение гомоклинических траекторий которого некритично и состоит из р торов и бутылок Клейна (р>1), рождается инвариантное гиперболическое множество, содержащее счетное число двумерных инвариантных многообразий.  [c.118]

Итак, рождение гиперболических инвариантных (п- 1)-мерных торов возмущенных уравнений Гамильтона является препятствием к их полной интегрируемости. Аналогичные рассуждения показывают, что рождение большого числа т-мерных гиперболических торов несовместимо с наличием тп + 1 независимых интегралов, аналитических по е.  [c.242]

Таким образом, мы столкнулись с интересной ситуацией. Для обоих гладких примеров (т. е. растягивающих отображений окружности и гиперболического автоморфизма тора) со сложной, экспоненциально растущей структурой орбит все три естественные меры экспоненциального роста орбит — скорость роста числа периодических точек р, топологическая энтропия и энтропия действия на фундаментальной группе h, — совпадают. Совпадение первых двух величин является широко распространенным, хотя и далеко и не универсальным явлением. Этот факт, так же как и структурная устойчивость, связан с наличием локальной гиперболической структуры (см. 6.4, теорему 6.4.15, и 18.5, теорему 18.5.1). Совпадение же h, с другими двумя характеристиками в большой степени случайно и зависит как от наличия гиперболичности, так и от малой размерности. Можно показать, что уже для автоморфизмов торов больших размерностей это совпадение может не иметь места (см. упражнение 3.2.8). Однако теорема 8.1.1 показывает, что /г, Дня топологических цепей Маркова скорость роста числа периодических точек и топологическая энтропия также совпадают. Причиной этому вновь служит гиперболичность, поскольку, как мы знаем из конструкций п. 2.5 в, топологическая цепь Маркова топологически сопряжена с ограничением некоторых гладких систем, ограниченных на специальные инвариантные подмножества, которые обладают гиперболическим поведением.  [c.134]

Весьма естественен вопрос об условиях единственности такой меры. Очевидно, можно брать объединение нескольких непересекающихся копий одной и той же разделяющей системы, которое представляет собой разделяющую систему, или объединение нескольких различных систем с одинаковой энтропией, и по второму утверждению предложения 3.1.7 и второму утверждению предложения 4.3.16 мера с максимальной энтропией тогда не будет единственной. Не помогает и добавление условия топологической транзитивности (упражнение 4.5.2). Однако, как мы увидим в 20.1, для большого естественного класса разделяющих динамических систем, который, в частности, включает все транзитивные топологические цепи Маркова, гиперболические автоморфизмы тора, подковы, растягивающие отображения и т д, инвариантная мера с максимальной энтропией единственна.  [c.191]

Вообще, любой гиперболический автоморфизм гг-мерного тора, определенный в конце 1.8, является диффеоморфизмом Аносова. В этом случае мы можем с помощью предложения 1.2.2 найти евклидову норму в К", в которой матрица L становится сжимающим отображением в пространстве E (L) и растягивающим в E L) (см. (1.2.4) и (1.2.5)), спроектировать риманову метрику, порожденную этой нормой, на Т" и рассмотреть инвариантное разложение в каждой точке на подпространства, параллельные Е+ Ь) и E L). Можно взять Л = г ( -( ,) + 5, м = г -Ь S  [c.269]

В просто малоразмерной ситуации могут наблюдаться явления, характерные для общих динамических систем, например экспоненциальный рост числа периодических точек, положительность топологической энтропии (определение 3.1.3), нетривиальные гиперболические множества (определение 6.4.2) и присутствие большого количества инвариантных мер. Гладкие примеры из нашей второй группы, т. е. растягивающие отображения из 1.7, квадратичные отображения и двумерные подковы из 2.5 и гиперболические автоморфизмы двумерного тора ( 1.8) — представители этой категории. Имеются, однако, два различия между системами малых размерностей и ситуацией в динамике в целом. В первом случае некоторые сложные динамические явления появляются в упрощенной форме сравните, например, конструкцию марковского разбиения на параллелограммы для гиперболического автоморфизма двумерного тора, описанную в 2.5, с об-  [c.388]


Интересно отметить, что подобный факт имеет место и для ( диффеоморфизмов двумерных многообразий а именно, по следствию Д.5.10 любой такой диффеоморфизм обладает инвариантным гиперболическим множеством типа подковы, энтропия которого аппроксимирует топологическую энтропию сколь угодно хорошо, в отличие от одномерного случая это не топологический факт. Например, Мэри Рис привела пример минимального гомеоморфизма двумерного тора с положительной топологической энтропией [ ]. Та роль, которую играла теорема о промежуточном значении, в двумерном сл) ае принадлежит гиперболичности. Гиперболичность устанавливается с помощью неравенства Рюэля (теорема Д.2.13), которое утверждает, что из положительности топологической энтропии следует наличие некоторого экспоненциального разбегания орбит в линеаризованной системе. Подобный факт также имеет место для голоморфных отображений сферы Римана и для голоморфных диффеоморфизмов комплексных двумерных поверхностей. В обоих случаях гиперболичность используется. В первом случае мы можем воспользоваться гиперболичностью благодаря конформности самого  [c.500]

Доказательство теоремы 1 основано на идеях КАМ-теории. Согласно 9, при малых > О инвариантные торы являются гиперболическими. При п = 1 они превращаются в периодические решения, и теорема 1 становится частным случаем теоремы Пуанкаре из п. 5 8. Действительно, условие 3) теоремы 1 при этом заведомо выполнено, а условие 1) совпадает с условием невырожденности кевозмущенной системы. Далее, невырожденность матрицы УК ПК эквивалентна двум условиям det V О и det(/i n/< ) ф 0. Первое из них сводится к условию невырожденности критической точки функции h, а второе эквивалентно второму из неравенств (8.15). Следовательно, применима теорема Пуанкаре.  [c.240]

Условие 2) теоремы 1 существенно для наличия невырожденных инвариантных торов возмущенной системы. Дело в том, что при малом возмущении функции Г амильтона изоэнергетически невырожденные периодические решения не исчезают, а переходят в периодические решеиия того же периода. Для инвариантных торов размерности m 2 это уже не так. В работах В. К. Мельникова [128], Ю. Мозера [129], С. Граффа [198] показано, что гиперболические приводимые горы с сильно несоизмеримым набором частот (условие (Ю.4)) сохраняются при возмущении уравнений Гамильтона. Однако аналогичный результат для негиперболических инвариантных торов (например, устойчивых) в общем случае не удается получить даже на формальном уровне (исключение составляют случаи, когда т=1и п=п — 1). Обсуждение этих вопросов можно найти в работе Ю Мозера [129].  [c.240]

Предположим, что сумма (10.6) отлична от нуля и все критические точки функции h невырождены. В частности, число критических точек четно, причем половина из них — локальные минимумы (где h" > 0), а половина — локальные максимумы h" < 0). Тогда, согласно теореме 1, половина критических точек функции h отвечает (п— 1)-мерным инвариантным торам невозмущенной задачи, которые при малых значениях параметра е > О переходят в гиперболические торы возмущенных уравнений Гамильтона.  [c.241]

Согласно результатам п. 2, в предположении 1) система с гамильтонианом ехр 7 0 невырождена. Далее, пусть П — матрица вторых производных функции ехр Tio по импульсам у,ф. Несложно показать, что К иК совпадает с числом 6 из условия 2), которое (по предположению) отлично от нуля. Теперь можно воспользоваться теоремой 1 из 10. Условия 1) и 3) этой теоремы заведомо выполнены. Так как /i"(Ao)o < О, то выполнено условие 2). Следовательно, возмущенная гамильтонова система с гамильтонианом (11.4) при малых значениях е > О имеет п-мерный гиперболический инвариантный тор, заполненный траекториями условно-периодических движений. Этот тор аналитичен по [c.247]

Невырожденные гиперболические инвариантные торы гамильтоновых систем имеют асимптотические многообразия, сплошь заполненные траекториями, неограниченно приближающимися к условно-периодическим траекториям на гиперболическом торе при t — 00. В интегрируемых гамильтоновых системах эти поверхности, как правило, попарно совпадают. В неинтегрируе-мых случаях ситуация иная асимптотические поверхности могут трансверсально пересекаться, образуя в пересечении довольно запутанную сеть. Поражаешься сложности этой фигуры, которую я даже не пытаюсь изобразить. Ничто не является более подходящим, чтобы дать нам представление о сложности задачи трех тел и, вообще, всех задач динамики, в которых нет однозначного интеграла... (А. Пуанкаре [146]).  [c.252]

Сами по себе гомоклинные точки еще не дают полной картины всей этой очень сложной области вблизи сепаратрисы. Так как период фазовых колебаний обращается в бесконечность на сепаратрисе, то в ее окрестности имеется бесконечно много вторичных резонанов, соответствующих высоким гармоникам частоты фазовых колебаний. Каждый из этих резонансов имеет свою собственную систему чередующихся эллиптических и гиперболических точек, со своим сложным движением в их окрестности и многократными пересечениями как своих сепаратрис, так и сепаратрис первичного резонанса в гетероклинных точках. Все эти сепаратрисы, по-видимому, всюду плотно заполняют доступное им фазовое пространство. Пересечение сепаратрис фактически показывает, что в этой области не могут существовать инвариантные торы вследствие изменения топологии траекторий ). Подробное обсуждение этих вопросов дано Драгтом и Финном [107]. Однако для малых возмущений все это чрезвычайно сложное поведение происходит лишь в ограниченной инвариантными кривыми области фазового пространства (рис. 3.4, а).  [c.200]

В предыдущием параграфе было показано, что малые возмущения интегрируемой системы приводят к возникновению последовательности чередующихся эллиптических (устойчивых) и гиперболических (неустойчивых) точек. Об этом говорят, в частности, численные данные, приведенные в п. 3.2г. Однако в случае больших возмущений топологические соображения М уже неприменимы и в принципе все периодические точки могут быть неустойчивыми. В случае неинтегрируемых гамильтоновых систем линейная устойчивость является, по-видимому, необходимым и достаточным условием для нелинейной устойчивости ) в том смысле, что первая гарантирует существование инвариантных торов достаточно близко к периодической траектории ).  [c.207]


В случае когда ф --постоянная функция, является едннстоенной инвариантной мерой, максимизирующей энтропию (ф = 0 и ф имеют одно и то же равновесное состояние). Для гиперболического автоморфизма двумерного тора является мерой Хаара, а конструкция 4.1 принадлежит Адлеру и Вейсу [1], Эта статья играет важную роль в развитии предмета к хорошо читается. Еслн = ь С, мера t максимальной энтропией все же имеет следующий геометрический смысл периодические точки па Й равномерно распределены относительно [5]. К. Зигмунд [19] рассмотрел типичные свойства мер па i2j.  [c.90]

Отметим очень существенное различие между отображениями из всех предыдущих примеров и растягивающими отображениями. В большинстве примеров возвращение либо было очень простым, т. е. имелись только неподвижные точки, как в случаях сжимающих отображений, гиперболических линейных отображений и градиентных потоков, либо, если нетривиальное возвращение имело место, все возвращающиеся орбиты вели себя одинаково, как в случаях сдвигов и линейных потоков на торах. Нужно оговориться, что для общих вполне интегрируемых систем различные орбиты ведут себя по-разному и в то же время нетривиальное возвращение имеет место. Однако фазовое пространство таких систем распадается на инвариантные множества (торы), и все орбиты на таком торе имеют одинаковую структуру. Орбиты же растягивающих отображений с различным поведением (периодического типа, плотные или с замыканием типа канторова множества) переплетены и не могут быть отделены друг от друга. Это делает структуру орбит очень сложной, асимптотическое поведение отдельной орбиты неустойчивым и очень чувствительным к начальному условию. Более того, любые две орбиты будут расходиться друг от друга с экспоненциальной скоростью, пока они не разойдутся на достаточно большое расстояние 6. Следовательно, невозможно предсказать поведение орбиты в течение длительного времени, если начальная позиция известна только с ограниченной точностью. Например, выполнение итераций Е2 на ЭВМ будет, очевидно, давать всего лишь столько осмысленных итераций, сколько есть значащих двоичных цифр в начальных данных. Кроме того, любое увеличение точности будет давать весьма скромное увеличение времени, в течение которого можно делать какие-либо предсказания о поведении данной орбиты удвоение числа значащих цифр в начальных данных и вычислении не более чем удвоит диапазон времени, в течение которого эти предсказания возможны. Аналогично, сокращение ошибки в измерении начальных данных вдвое даст всего лишь возможность произвести еще одну осмысленную итерацию.  [c.55]

Метод кодирования, который мы впервые использовали в доказательстве топологической сопряженности произвольного растягивающего отображения окружности с линейным отображением той же степени (теорема 2.4.6). Мы применяли этот метод еще три раза в полулокальной ситуации в пп. 2.5 б, 2.5 в, при построении топологического сопряжения полного 2-сдвига с квадратичным отображением и отображением подковы на их инвариантных подмножествах и, наконец, в п. 2.5 г когда мы установили наличие полусопряженности топологической цепи Маркова с автоморфизмом тора. Этот метод очень эффективен в применениях к глобальным и полулокальным гиперболическим проблемам, т. е. к случаям, когда близлежащие орбиты расходятся с экспоненциальной скоростью, как это имеет место в упомянутых примерах (см. гл. 6, особенно определения 6.4.1 и 6.4.2). Одна из главных особенностей этого метода — его непосредственный характер. В частности, он не требует рассмотрения вспомогательного пространства кандидатов в сопряжения. С другой стороны, этот метод применим только к проблеме топологической (но не гладкой) сопряженности и полусопряженности. Метод особенно эффективен в ситуации малых размерностей, где он нередко работает без предположений гиперболичности (см. 14.5, 14.6, 15.4).  [c.103]

Определение 2.6. Динамическая система называется равномерно частично гиперболической (РЧГ-системой), если каждая ее траектория удовлетворяет условию частичной гиперболичности и постоянные С, X, [а можно выбрать одними и теми же для всех траекторий. Инвариантное множество Л, все траектории которого являются равномерно частично гиперболическими (с одними и теми же постоянными С, X, х,), называется равномерно частично гиперболическим (РЧГ-множеств10м). Если РЧГ-множество является аттрактором, оно называется равномерно частично гиперболическим аттрактором (РЧГ-аттрак-тором). Под РЧГ-системой (соответственно РЧГ-множеством или РЧГ-аттрактором) в узком смысле мы понимаем РЧГ-сис-тему, все траектории которой удовлетворяют условию частичной гиперболичности в узком смысле.  [c.137]


Смотреть страницы где упоминается термин Инвариантный тор гиперболический : [c.230]    [c.254]    [c.253]    [c.161]    [c.201]   
Симметрии,топология и резонансы в гамильтоновой механике (1995) -- [ c.237 ]



ПОИСК



Инвариантность

Инвариантный класс гбльдероиых функций Гёлыеровость сопряжений Гёльдеровоеть орбитальиой эквивалентности потоков Гбльдеровость и дифференцируемость неустойчивого распределения Гельдеровость якобиана Когомологические уравнения для гиперболических динамических систем

Инвариантный тор

Рождение гиперболических инвариантных торов

Теорема Лившица Гладкие инвариантные меры диффеоморфизмов Аносова Замены времени и орбитальная эквивалентность для гиперболических потоков Эквивалентность расширении отображений со слоем тор Равновесные состояния и гладкие инвариантные меры



© 2025 Mash-xxl.info Реклама на сайте