Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Размеры Контроль Автоматические малые — Контроль

Достижением отечественной станкоинструментальной промышленности является разработка и использование в станках автоматических линий специальной следящей аппаратуры. Благодаря этим устройствам (так называемому активному контролю ) при выходе размера обработанной поверхности за определенную величину поля допуска инструмент автоматически, малыми импульсами, подается на некоторую величину в радиальном направлении, и тем самым поддерживается необходимый размер обработанной поверхности.  [c.119]


К пассивным контрольным устройствам относятся контрольно-сортировочные устройства, которые лишь фиксируют размеры изделий или сортируют их на группы, не влияя на ход технологического процесса. Разбраковывающие и сортирующие устройства являются исполнительными органами автоматических устройств для контроля деталей. Работают сортирующие устройства от электрического или пневматического приводов. Наиболее целесообразны для этих целей приводы в виде электромагнитов, которые перемещают или поворачивают заслонки и сортирующие желоба. Эти приводы получили широкое распространение в машиностроении. Их преимуществом является простота устройства и малое потребление энергии.  [c.142]

Датчик служит для первичного преобразования линейной или угловой величины в иную, например электрическую, величину, удобную для управления исполнительными элементами. Датчик — это важнейший орган автоматической системы контроля, определяющий не только метод контроля, но и погрешность измерения, порог чувствительности, измерительное усилие, пределы измерений и другие важнейшие характеристики всей системы. Основными требованиями к датчикам являются высокая точность, или чувствительность, стабильность точности измерения, долговечность и надежность в работе, небольшие размеры и масса, малое измерительное усилие и его постоянство в пределах рабочего хода измерительного наконечника, малая чувствительность к вибрациям и ускорениям и достаточно большие пределы измерений. Кроме того, датчик должен обеспечивать возможность визуального отсчета измеряемой величины, воз.можность работы в статическом и динамическом режимах, должен обладать небольшой инерционностью. Степень соответствия всем перечисленным требованиям определяется величиной  [c.444]

Из устройств активного контроля размеров на последних операциях наибольшее распространение на отечественных заводах и автоматических линиях машиностроения находят пневматические измерительные системы управления. Это положение объясняется тем, что пневматические измерительные системы надежнее, чем другие системы, сохраняют высокую точность в цеховых условиях вследствие их малой чувствительности к вибрации, изменению температуры, влиянию на результат измерения охлаждаю-ш ей жидкости при измерениях в зоне обработки изделия и др. Вместе с тем пневматические измерительные системы обладают существенным недостатком — повышенной инерционностью, которая вызывает рост динамических погрешностей измерений по мере форсирования режимов обработки изделий на автоматах при врезном шлифовании. Эффективность компенсации динамических погрешностей измерений в режиме слежения за обрабатываемым размером изделия зависит в значительной мере от удачного выбора параметров и варианта схемы компенсации [1].  [c.99]


Большинство работающих в настоящее время ГПС не имеют автоматических систем определения поломок и состояния режущих кромок, что вызывает необходимость введения дополнительных переходов, операций, обеспечивающих заданные шероховатость поверхности и точность обработки. Это увеличивает зависимость работы системы от человека и не позволяет организовать работу с малым участием человека. Решение этой задачи — залог эффективности ГПС, причем не столько вследствие экономии от сокращения незапланированных смен инструмента, сколько в результате устранения дорогостоящих контрольных операций, машин контроля качества и переделок брака. Дальнейшее развитие станков должно идти в направлении создания средств адаптивного контроля, измерения размеров деталей в процессе резания, устройств для автоматической компенсации износа инструмента, позволяющих получать точно заданные размеры. Такие станки обеспечат бесперебойную работу ГПС в течение 20 — 24 ч. Не решена полностью также задача обеспечения автоматизации смены инструмента. Если из магазинов в шпиндель инструмент подается автоматически, то загрузку инструментов в магазины выполняют вручную. Вручную заменяют инструмент и при его поломке. Необходимо ликвидировать эту ручную работу.  [c.641]

Контроль размеров с помощью электроконтактного измерительного прибора имеет ряд преимуществ по сравнению с некоторыми шкальными приборами или жесткими калибрами. Наряду с меньшей утомляемостью контролера и получением меньшей погрешности измерений значительно сокращается время контроля. Указанные преимущества делают возможным создание многомерных контрольно-измерительных приборов, у которых электроконтактные преобразователи расположены таким образом, что за один установ изделия на измерительную позицию автоматически проверяются несколько размеров. Наиболее подходящими для многомерных приборов являются электроконтактные преобразователи, так как они обладают сравнительно малыми габаритами (модели 228-2, 228-5, 248-6 и др., ГОСТ 3899—81). Применяя электромагниты, которые воздействуют на специальные стрелки, передающие импульсы от контактов преобразователя на точное реле, конструируют автоматические контрольно-сортировочные приборы. Электроконтактные преобразователи применяют в адаптивных систе-  [c.214]

Для того чтобы при измерении определялся действительный размер изделия, погрешности измерения должны быть достаточно малыми. Перечисленным требованиям с прогрессом в области быстродействующих, точных и надежных средств измерения, автоматических процессов контроля должны удовлетворять системы технического контроля (СТК) в совмещении своих функций с функцией управления технологическими процессами (ТП). Общая тенденция совмещения функций контроля и технологии, т. е. СТК и ТП, прослеживается по схеме рис. 8.22.  [c.343]

При контроле котельных труб на трубопрокатных и котельных заводах используются установки для автоматического контроля сплошности, позволяющие выявлять дефекты типа трещин, плен, рисок, закатов и т. п., имеющих преимущественно продольное направление. Для каждого диаметра и толщины стенки существует определенный угол падения ультразвуковых колебаний, при котором достигается максимальная чувствительность. Трубы малых и средних размеров целесообразно контролировать нормальными волнами, толстостенные— сдвиговыми [7J. Ультразвуковой контроль котельных труб производится с применением отечественных установок типа ИДЦ-ЗМ, ИДЦ-6, ИДЦ-8, УДЦ-4М, Днепр , Кристалл-1 и др. В этих установках трубы перемещают поступательно через вращающиеся искательные головки. Сканирование трубы осуществляется по спирали с малым шагом. Универсальной является установка ИДЦ-6, предназначенная для контроля труб диаметром 30—114 мм со скоростью до 3,2 м/мин при одном датчике и до 6 м/мин при двух.  [c.127]

Разгрузка имеет существенное значение для средств автоматического контроля, особенно для средств активного контроля размеров.. Весьма важна она также для датчиков с малыми пределами измерения. Несоблюдение принципа разгрузки может привести к поломке датчиков. Разгрузка должна быть предусмотрена конструкцией самого датчика. В противном случае она должна осуществляться с помощью специальной промежуточной рычажной передачи (рис. И.191, е).  [c.534]


В прежних, более примитивных машинах реакция человека была достаточной для того, чтобы изменить режим движения и работы машины, если эти режимы и работа отклонялись от нормальных. Теперь, когда продолжительность многих рабочих процессов измеряется весьма малыми долями- времени, когда многие процессы являются непрерывными, физиология человека лимитирует его непосредственную реакцию на отклонение рабочего процесса от нормального. Поэтому человек стал создавать искусственные средства управления, контроля и измерения. Такими средствами, хорошо известными в технике, являются различные регуляторы и системы автоматического регулирования рабочих процессов, приборы контроля и измерений параметров этих процессов и т. д. В некоторых случаях стало целесообразным создание специальных машин для управления и контроля процессами. Так, например, для автоматизации контроля размеров поршневых колец, пальцев, шариков для шарикоподшипников и многих других объектов стали создаваться контрольно-измерительные машины, которые производят не только обмер деталей, но и их сортировку по размерам и другим показателям. В современные автоматические линии встраиваются различные контрольно-измерительные машины и приборы, которые не только контролируют процесс, но и управляют им, сигнализируя и автоматически корректируя этот процесс в процессе работы автоматических линий и систем. Такие машины называются контрольно-управляющими.  [c.14]

Вместе с тем увеличение передаточных отношений приводит к уменьшению погрешностей срабатывания и настройки средств автоматического контроля. Как будет показано ниже, точность рычажных датчиков выше точности безрычажных. Увеличение передаточного отношения способствует лучшему формированию электрического импульса, поскольку в этом случае величина перемещения подвижных контактов датчика в большей степени превышает величину измерительного импульса, и, следовательно,, малейшее изменение контролируемого размера вызывает четкое срабатывание датчика.  [c.41]

Разгрузка имеет существенное значение для средств автоматического контроля, особенно для средств активного контроля размеров. Весьма важна она также для преобразователей с малыми пределами измерения. Несоблюдение принципа разгрузки может привести к поломке преобразователя.  [c.131]

Для измерений линейных размеров применяются датчики, непосредственно воспринимающие изменение размеров обрабатываемых заготовок. При контроле размеров детали в процессе обработки приходится иметь дело с малыми линейными перемещениями измерительного штифта датчика. Для того, чтобы сделать эти перемещения доступными для визуального восприятия на измерительных приборах шкального типа и для точной передачи на исполнительные органы автоматических устройств, эти перемещения необходимо увеличивать. В зависимости от способа преобразования измерительного импульса датчики могут быть механическими, электрическими, пневматическими и других видов. Эти наименования указывают на основной вид преобразования измерительного импульса в датчике. Во многих случаях датчики являются комбинированными устройствами, в которых имеют место одновременно несколько видов преобразований измерительных импульсов. Основными видами устройств для преобразования измерительных импульсов в датчиках являются электроконтактные с рычажными передаточными устройствами, электроиндуктивные, емкостные, фотоэлектрические и пневматические.  [c.360]

Большое количество систем для активного автоматического контроля включает а) контроль при помощи калибров, автоматически подводимых через определенные промежутки времени к обрабатываемой детали (ввиду сложности механической части в настоящее время этот метод применяется мало) б) электрические контактные приборы, сигнализирующие о достижении заданного размера или останавливающие станок после получения годного изделия. В настоящее время автоматические кон-  [c.242]

Фиг. 722-20. Контроль отверстий, имеющих малое поперечное сечение, с помощью фотоэлемента. От источника света / выходят два пучка лучей один пучок — измерительный 8 проходит через линзы, призму 9 и контролируемое отверстие 7 к фотоэлементу 6. Другой пучок —-пучок сравнения 3 проходит через нейтральный клин 4, с помощью которого регулируется его яркость. Оба световых пучка модулируются с помощью вращающегося диска 2 с отверстием. Если через контролируемое отверстие проходит такое же количество света, как и через нейтральный клин, то на фотоэлемент попадает ровный свет. Во всех других случаях в фотоэлементе возникает переменное напряжение, которое усиливается и используется в реле для управления сортирующим устройством. Изделие с завышенными или заниженными размерами выбрасывается в ящик для брака. В случае нарушения процесса машина автоматически выключается. Производительность 15 ООО шт. в час (фирма Вернер). Фиг. 722-20. <a href="/info/654708">Контроль отверстий</a>, имеющих малое <a href="/info/7024">поперечное сечение</a>, с помощью фотоэлемента. От <a href="/info/10172">источника света</a> / выходят два пучка лучей один пучок — измерительный 8 проходит через линзы, призму 9 и контролируемое отверстие 7 к фотоэлементу 6. Другой пучок —-пучок сравнения 3 проходит через нейтральный клин 4, с помощью которого регулируется его яркость. Оба световых пучка модулируются с помощью вращающегося диска 2 с отверстием. Если через контролируемое отверстие проходит такое же <a href="/info/194503">количество света</a>, как и через нейтральный клин, то на фотоэлемент попадает ровный свет. Во всех других случаях в фотоэлементе возникает <a href="/info/79025">переменное напряжение</a>, которое усиливается и используется в реле для управления <a href="/info/694406">сортирующим устройством</a>. Изделие с завышенными или заниженными размерами выбрасывается в ящик для брака. В случае нарушения процесса <a href="/info/69169">машина автоматически</a> выключается. Производительность 15 ООО шт. в час (фирма Вернер).
Автоматизация процессов производства малых по размеру плоских деталей на металлорежущих станках и прессах, операций контроля и сборки тесно связана с автоматизацией загрузки деталей. Надежность работы механизмов питания (бункерных загрузочных устройств) оказывает существенное влияние на работу автомата, поэтому правильный их выбор является одним из основных вопросов проектирования автоматов. Степень сложности автоматизации загрузки зависит от технологического процесса, а также формы и размеров заготовок. Область применения автоматических загрузочных устройств в основном ограничивается заготовками, имеющими малый вес, простую геометрическую форму, требующими незначительного технологического времени на обработку, сборку или контроль и т. п.  [c.140]


Не вызывает сомнения, что для решения вопроса об автоматизации смены и регулирования инструментов можно использовать средства автоматического контроля размеров изделия в процессе работы. Наибольшее распространение автоматический контроль и подналадка инструмента получили на шлифовальных станках. Это произошло не случайно, а в связи с малой стойкостью абразивного инструмента и необходимостью постоянного наблюдения за размерами шлифуемой детали. Подобного рода устройства часто основаны на том, что деталь, размер которой вышел из допуска вследствие износа круга, включает при своем сходе со станка механизм, подающий инструмент к детали, до тех пор, пока не будет получена деталь требуемого размера.  [c.116]

Однако пневмоэлектрические контрольные устройства имеют сравнительно малые пределы измерений и требуют тщательной очистки и стабилизации давления воздуха, используемого в системе. В фотоэлектрических системах автоматического контроля применяются датчики типа ДФМ. Эти системы позволяют сортировать детали на большое число размерных групп (до 50) с точностью 0,8 мкм. Производительность устройств контроля с фотоэлектрическими датчиками не ниже производительности электроконтактных систем. Вследствие значительных габаритных размеров фотоэлектрического датчика создание на его основе автомата для контроля нескольких параметров детали затруднительно.  [c.252]

При сложности осуществления автоматической загрузки или транспортирования деталей вследствие их малых размеров или сложной формы применяются полуавтоматические контрольные устройства. Подобные устройства могут применяться и при контроле в процессе обработки деталей, когда снятие детали со станка, очистка ее поверхности от смазки и установка на измерительную позицию прибора осуществляются вручную, а подналадка режущего инструмента или упора, ограничивающего его перемещение, — автоматически.  [c.558]

Цехи массового производства крупных отливок малой номенклатуры. Особенности цехов данной группы проанализированы на типовом примере крупного цеха (см. рис. 83), описанного в приложении. Основные направления совершенствования производства в этом цехе характерны для многих отечественных и зарубежных цехов и участков. В СССР к данной группе относится цех литья под давлением, который освоил технологию литья под давлением крупногабаритных тонкостенных отливок из магниевых сплавов — картера коленчатого вала и картера коробки передач. Для изготовления отливок были выбраны чехословацкие машины LO 1800/100 и LO 630/45. При организации производства учтены требования к температурным режимам для магниевых сплавов. Ввиду больших габаритных размеров пресс-формы изготовлены в комплекте с приборами для автоматического контроля и регулирования температуры каждой части пресс-формы. Обеспечивается поддержание определенного темпа работы машины, что в сочетании с правильным расчетом системы охлаждения пресс-форм создает опти-j мальный тепловой режим.  [c.165]

Одним из основных показателей качества прошлифованных изделий является шероховатость обработанной поверхности. Наличие однозначных взаимосвязей между шероховатостью поверхности и величиной, поддающейся контролю в процессе обработки, позволяет за счет управления процессом шлифования по этой регулируемой величине обеспечить требуемое значение Для процессов шлифования жесткими шлифовальными кругами установлены функциональные зависимости шероховатости поверхности от скорости съема металла, скорости поперечной подачи, частоты вращения круга и детали, усилий резания, текущего значения диаметра круга и других регулируемых величин. Построение автоматической системы с использованием жестких шлифовальных кругов и регулируемой величины, обеспечивающей заданное значение шероховатости, подразумевает получение заданной точности геометрических размеров изделия за счет процесса выхаживания и установки круга на заданный размер. Для эластичного шлифования указанная установка круга отсутствует, так как ЭШК в процессе работы поджимается к обрабатываемому изделию постоянной силой Р. Поэтому при реализации автоматической системы эластичного шлифования с регулируемой величиной, функционально связанной только с шероховатостью поверхности, трудно ожидать обеспечения высокой точности геометрических размеров изделия. Поэтому подобные системы могут найти применение, например, на операциях обдирки, зачистки, тонкой шлифовки, где снимаемый припуск мал. Для разработки алгоритмов таких систем могут быть использованы функциональные зависимости (27)—(29), приведенные в п. 3-гл. I.  [c.150]

В связи с повышением производительности машин и скоростей движения отдельных их органов, а также в связи с требованиями к высокому качеству изделий человек стал испытывать непреодолимые затруднения в управлении машинами, контроле технологических процессов, выполняемых машинами, измерении отдельных параметров выпускаемой продукции и т. д. В прежних, более примитивных машинах реакция человека была достаточной для того, чтобы изменить режим движения и работы машины, если эти режимы и работа отклонялись от нормальных. Теперь, когда продолжительность многих рабочих процессов измеряется весьма малыми долями времени, когда многие процессы являются непрерывными, физиология человека лимитирует его непосредственную реакцию на отклонение рабочего процесса от нормального Поэтому человек стал создавать искусственные средства управления, контроля и измерения. Такими средствами, хорошо известными в технике, являются различные регуляторы и системы автоматического регулирования рабочих процессов, приборы контроля и измерения параметров этих процессов и т. д. В некоторых случаях стало целесообразным создание специальных машин для управления процессами и их контроля. Так, например, для автоматизации контроля размеров поршневых колец, пальцев, шариков для шарикоподи]ипников и многих других объектов стали создаваться контрольно-измерительные машины, которые производят не только обмер деталей, но и их сортировку по размерам и другим показателям. В современные автоматические линии встраиваются различные контрольно-измерительные машины и приборы, которые не только контролируют процесс, но и управляют им, сигнализируя и автоматически корректируя этот процесс в процессе работы автоматических линий и систем. Такие машины называются контрольно-управляющими.  [c.13]

Для измерения постоянных тт медленно меняющихся параметров преимущественно используют более простые методы - механические или оптические. Пневматические методы применяют как бесконтактные. Для измерения быстро-мепяющихся параметров, а также для автоматического контроля размеров преимущественно применяют электрические методы, достоинствами которых являются малая инерционность, малое влияние на объект измерения благодаря малым массам и размерам датчиков, дистанцион-ность, удобная регистрация результатов с  [c.475]

Изотопные приборы, основанные на использовании проникающей способности у- (реже р-) излучения, в настоящее время занимают более половины всех поставок радиационной техники. В основу почти всех этих приборов положен один и тот же простой принцип счет в детекторе меняется, если меняется толщина или вид материала между детектором и источником. На основе этого принципа конструируются и выпускаются различные толщиномеры, плотномеры, уровнемеры, счетчики предметов, 7-дефектоскопы и многие другие приборы. На этом принципе основаны многочисленные у-релейные устройства, автоматически контролирующие и регулирующие ход производственных процессов. Бета-излучение сильно поглощается веществом. Из-за непрерывности (З-спектра (см. гл. VI, 4, п. 4) и из-за искривления пути электронов в веществе (см. гл. Vni, 3) разные электроны источника имеют разный пробег, от нулевого до некоторого максимального. Количество прошедших через вещество электронов довольно резко зависит от толщины слоя. Поэтому р-толщиномеры имеют довольно хорошую точность, но могут измерять лишь небольшие толщины. Такие толщиномеры применяются, например, для контроля за толщиной производимой фотопленки. Пленка проходит между источником и детектором. Малейшее отклонение толщины от стандартной изменяет число поглощаемых пленкой электронов, т. е. меняет скорость счета детектора. Для больших толщин используются у-толщино-меры. Интересной разновидностью прибора такого типа является односторонний у-толщиномер, измеряющий толщину определенного материала по величине у-излучения, рассеянного назад. Такие толщиномеры применяют для контроля размеров труб на Московском, нефтезаводе. Приборы, основанные на проникающей способности  [c.683]


Контролируемая пластина располагается на трех сферических опорах параллельно эталонной грани с зазором 0,2—0,5 мм. Особенностью прибора является возможность контроля тонких прозрачных пластин, а также ]нлнфованных пластин за счет малых углов падения лучей на объект контроля. Точность измерения (цена одной интерференционной полосы) — 1 мкы для излучения с длиной волны 1 = = 0,63 мкм. Размер контролируемой пластины — до 100X100 мм . Контрастное изображение нн1ерферограмм наблюдается на телевизионном мониторе, причем может быть применена система его автоматической обработки на микроЭВМ. Пластина может располагаться вертикально для исключения влияния прогиба.  [c.78]

Для контроля протяженных объектов широкого сортамента (типоразмеров, марок материалов и т. д.) разработаны универсальные дефектоскопы тиров ВД-ЗОП,- ВД-31П. Универсальность обеспечивается применением четырех частот возбуждающего тока, использованием ВТП со сменными катушками ряда типоразмеров, наличием регулируемых фильтров, блока счетчиков общего числа прутков и числа дефектных прутков, а также осцил-лографнческого индикатора и скоростного самописца, предназначенного для выбора оптимальных режимов работы и документации процесса контроля. В дефектоскопах используются трансформаторные проходные ВТП с возбуждающей обмоткой, имеющей отношение длины к диаметру в пределах единицы, и двумя короткими измерительными обмотками, включенными в мостовую схему (см. рис. 61). При этом база значительно меньше единицы. Ввиду малой относительной длины возбуждающей обмотки необ-ходимо с помощью фазорегулятора уменьшать влияние поперечной вибрации детали (см. рис. 67, б), выбирая фазу опорного напряжения фазового детектора. Па выходе фазового детектора включен ряд перестраиваемых фильтров, с помощью которых в соответствии со скоростью контроля ослабляется влияние мешающих факторов, обусловленных изменением о и размеров объекта. Отфильтрованный сигнал поступает на пороговое устройство, соединенное с блоком автоматической сортировки и маркером. При ко ггроле ферромагнитных материалов влияние их структурной неоднородности уменьшают подмагничиванием постоянным магнитным полем.  [c.140]

Рентгеновский автоматический дифрактометр ДАРН-2,0 используют для определения напряжений в крупногабаритных объектах. Приборы такого типа необходимы для контроля напряжений вблизи сварных швов, в изделиях сложной формы типа лопастей турбин, гребных винтов, паровых котлов, когда невозможно вырезать из детали образцы малого размера, удобные для нс ользования в дифрактометрах общего назначения.  [c.494]

Ввиду опасных и вредных условий в кузнечных и прессовых цехах (не менее чем в литейных цехах) актуальна комплексная автоматизация, включающая диагностирование кузнечно-штамповочного оборудования. В штамповочном производстве для изготовления деталей из рулона, листа или ленты широко применяются одно- и многопозиционные прессы различных типов, манипуляторы, роботы, поворотные столы и транспортеры. Вопросы диагностирования поворотных столов, транспортеров, манипуляторов и роботов были рассмотрены выше. Специфичным для этих линий, как и для ряда литейных, является диагностирование прессов. У прессов с электроприводом целесообразно применение датчиков крутящего момента, с помощью которых контролируется характер изменения нагрузок на коленчатый вал как при холостых, так и при рабочих перемещениях ползуна. Запись частоты вращения или скорости этого вала позволяет обнаруживать разрегулировку и износ фрикционной муфты. Датчик остановки ползуна в верхней мертвой точке дает дополнительную информацию о работе муфты и коман-доаннарата [54]. Широко применяется измерение напряжений в станине пресса с помощью тензометрических датчиков (с целью предотвращения поломок, своевременной смены инструмента). Здесь целесообразно использовать микроусилители, расположенные в месте измерения напряжений. Ударные нагрузки при вырубке, пробивке отверстий и т. п. можно определять с помощью пьезоакселерометров, установленных на ползуне пресса. Диагностирование гидросистем и привода гидравлических прессов мало чем отличается от рассмотренных выше методов, разработанных для другого автоматического оборудования. Здесь ввиду ударного характера рабочих нагрузок требуется контроль энергии удара и предъявляются более высокие требования к частотным характеристикам датчиков и аппаратуры. Большие размеры прессов и рас-  [c.150]

В дефектоскопе использутотся трансформаторные проходные преобразователи с возбуждающей обмоткой, имеющей отношение длины к диаметру в пределах единхщы и двумя короткими измерительными обмотками, включенными в мостовую схему. При этом база значительно меньше единицы. Ввиду малой относительной длины возбуждающей обмотки необходимо уменьшать влияние поперечной вибрации детали с помощью фазорегулятора (см. рис. 45, б), выбирая фазу опорного напряжения фазового детектора. На выходе фазового детектора включен ряд перестраиваемых фильтров, с помощью которых в соответствии со скоростью контроля ослабляется влияние мешающих факторов, обусловленных изменением а и размеров детали. Отфильтрованный сигнал поступает на пороговое устройство, соединенное с блоком автоматической сортировки и маркером. При контроле ферромагнитных материалов влияние структурной неоднородности 5тиеиьшают подмагничиванием постоянным магнитным полем.  [c.137]

Токарный станок 163 с САУ [37 ]. Для повышения точности и производительности обработки валов большой длины и низкой жесткости станок 163 был оснащен системой программного управления размером статической настройки. Как известно, обработка валов малой жесткости характерна большой погрешностью формы в продольном сечении из-за собственных деформаций обрабатываемой детали. Эта погрешность достигает величин порядка 0,5—1 мм. Ее устранение связано с увеличением числа проходов и снижением режимов обработки, что приводит к потери производительности. Принципиально система автоматического управления ничем не отличается от САУ станка 1А616. Разница заключается лишь в конструкции датчика пути, чертеж которого представлен на рис. 8.4. В задачу датчика входит автоматическое измерение во время обработки координаты положения суппорта в продольном направлении. Устройство контроля положения суппорта представляет собой многосекционный реохорд I кругового типа, ползушка 2 которого через зубчатые передачи 4 кинематически связана с ходовым валиком 3 станка.  [c.530]

При срабатывании реле замыкается соответствующий контакт —6 ), вследствие чего реле становится на самопитание. Одновременно замыкаются контакты реле 1Р1—1Р6, которые щунти-руют сопротивления / , включенные в цепь исполнительного реле РС (реле срабатывает, когда окажутся щунтированнымн три сопротивления / ). В этот момент размер медианы близок к размеру образца, по которому настраивается датчик. Контакты Г—6 должны последовательно размыкаться при включении соответствующих контактов 1—6. Таким образом, при поступлении на измерительную позицию седьмой детали импульс, полученный от первой детали, автоматически снимается . Прибор фиксирует значение скользящей медианы. В этом случае центры группирования двух соседних выборок отстоят друг от друга на величину а. Из схемы следует, что при таком методе контроля грубые погрещности обработки и измерения практически мало влияют на результат измерения. Это объясняется тем, что для срабатывания датчика достаточно, чтобы размер детали превысил настроечный. Величина же самого превышения не имеет значения. Для срабатывания системы достаточно, чтобы 50% размеров деталей выборки имели размеры больше настроечного и 50%—меньше. Следовательно, данная система работает по принципу да — нет . При этом веса отдельных результатов измерения являются одинаковыми, независимо от их величины.  [c.110]

Указанные требования к точности поверочных измерительных средств надо признать очень высокими. Уровень точности автоматических средств контроля все еще существенно отстает от требований производства. Относительная точность контроля понижается, как правило, с ужесточением допусков контролируемых размеров, и, следовательно, наиболее тщательно точность работы автомата должна проверяться при весьма малых абсолютных значениях допустимых предельных погрешностей измерений. Ца современных автоматических линиях массового производства гГрименяются автоматы для контроля размеров, допуски которых часто не превышают 3- -10 мк. Допустимые предельные погрешности измерений при этом составляют 1 2 мк, и, следовательно, погрешности измерительных средств, применяемых для проверки точности работы автоматов, в подобных условиях не должны превышать долей микрона.  [c.365]

Гидропривод дает возможность получать большие усилия и мощности при малых размерах и массе мс--ханизма. Среди достоинств гидропривода — простота бесступенчатого регулирования скоростей и подач дли получения нужных режимов резания позможность управления режимами резания во врем.ч работы механизмов и контроля давления непосредственно у рабочих механизмов самосмазываемость гидравлических механизмов рабочей жидкостью простота автоматизации и возможность автоматического регулирования режимов резания по заданной программе удобство управления применение стандартных узлов.  [c.100]


Мобильные варианты - MG ЮЗМ/2,25 и MG 165 М/2,25 Аппарат MG 121 VF стоит отдельно в новом семействе. Главным его отличием является применение новой 120 кВ микрофокусной трубки с переменным фокусом и воздушным охлаждением. Управление анодным током и размером фокусного пятна осуществляется с помощью третьего электрода (аналог - сетка триода), что дает возможность эффективно испол ьзовать аппарат для контроля малых изделий, причем размер фокусного пятна регулируется автоматически и близок к минимально возможному при данной мощности. Металлокермическая трубка M N 121 имеет мощность 120 Вт, размер фокусного пятна от 70 до 300 мкм максимальный ток 2 мА до 60 кВ, 1 мА при 120 кВ.  [c.151]


Смотреть страницы где упоминается термин Размеры Контроль Автоматические малые — Контроль : [c.491]    [c.439]    [c.374]    [c.616]    [c.421]    [c.525]    [c.2]    [c.373]    [c.53]   
Справочник технолога машиностроителя Том 2 Издание 2 (1963) -- [ c.732 ]



ПОИСК



Автоматический контроль размеров

Контроль автоматический

Контроль малых размеров

Контроль размеров



© 2025 Mash-xxl.info Реклама на сайте