Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Объект измерения

Точные измерения необходимо выполнять в помещениях при температуре 20° G. В момент измерения объекты измерения и измерительные средства должны иметь одинаковую температуру и предохраняться от местного нагрева. Погрешность измерения А/ (мм), вызванная отклонениями от нормальной температуры и разностью коэффициентов линейного расширения материалов детали и измерительного средства, вычисляют по формуле  [c.79]


Выбор измерительного средства в зависимости от допуска размера объекта измерения определяется тем, какой процент негодных деталей можно пропустить как годные и какой процент деталей допустимо неправильно забраковать. Чем больше отношение погрешности измерений к допуску и чем больше отношение допуска к значению технологического разброса, тем большее число деталей будет неправильно забраковано или неправильно признано годными.  [c.64]

Важно подчеркнуть, что достижение высокой точности у технических термометров сопротивления требует применения тех же принципов, которые лежат в основе конструирования самых точных эталонных термометров. Дополнительные требования, предъявляемые к техническим термометрам (прочность, невысокая стоимость, иногда также малые размеры), должны удовлетворяться без чрезмерного снижения требований к точности измерений, которая зависит от качества теплового контакта с объектом измерения, отсутствия механических напряжений на чувствительном элементе, защиты от коррозии, возможности периодической поверки термометра.  [c.231]

Для измерения яркостной температуры в видимой части спектра широко используются оптические пирометры с исчезающей нитью переменного и постоянного накала. Яркостная температура тела измеряется путем сравнения спектральной интенсивности излучения объекта измерения с интенсивностью излучения нити пирометрической лампы при одной и той же эффективной длине волны Хэ -При этом яркостная температура нити лампы устанавливается градуировкой по абсолютно черному телу (по его модели) или по специальной температурной лампе.  [c.185]

Оптическая система пирометра позволяет создать изображение объекта измерения в плоскости нити пирометрической лампы. При использовании лампы переменного накала ее нить является переменным эталоном интенсивности излучения — последняя зависит от силы протекающего через нить тока. Таким образом, сила тока является мерой яркостной температуры. В момент достижения равенства спектральных интенсивностей излучения объекта измерения и нити лампы вершина нити исчезает на фоне свечения тела.  [c.186]

Схема оптического пирометра с исчезающей нитью переменного накала показана на рис. 9.9. Фокусирование изображения объекта измерения 1 на плоскость нити лампы 4 осуществляется с помощью объектива 2. Окуляр 6, предназначенный для наблюдения нити лампы на фоне изображения объекта измерения, служит для получения резкого изображения нити. Изображение нити лампы через диафрагму 7 воспринимается глазом наблюдателя 8.  [c.186]


Для выделения достаточно узкой спектральной области излучения служит стеклянный красный светофильтр 5, обеспечивающий выделение участка с эффективной длиной волны около 0,65 мкм. Для облегчения наводки и фокусировки объектива и окуляра, особенно при небольшой яркости объекта измерения, этот светофильтр может быть выведен из поля зрения — его можно установить на место непосредственно перед измерением.  [c.186]

Погрещности измерения температуры яркостными оптическими пирометрами обусловлены главным образом неточностью знания степени черноты объекта измерения ех] изменением коэффициента пропускания ослабляющего светофильтра при измерениях в помещениях, температура в которых заметно отличается от 293 К отражением лучей объекта измерения от посторонних источников света поглощением лучей в слое воздуха, содержащего пары воды и углекислоты поглощением и рассеянием лучей в слое запыленного и задымленного воздуха ослаблением излучения стеклами, расположенными между объектом измерения и пирометром неточной наводкой пирометра при небольших размерах объектов измерений. Сведения о возможностях расчетной оценки этих погрешностей и рекомендации по их уменьшению содержатся в [5, 7, 12].  [c.187]

В яркостных фотоэлектрических пирометрах чувствительным элементом является фотоэлемент, что позволяет освободить этот тип приборов от известной субъективности измерений, присущих оптическим пирометрам, и, следовательно, повысить точность измерений, а также дает возможность проводить автоматическую запись температуры и использовать эти приборы в системах автоматического регулирования. Ток в цепи фотоэлемента пропорционален потоку излучения, падающего на него от объекта измерения, н может служить мерой его температуры.  [c.187]

Различают две разновидности фотоэлектрических пирометров. К первой из них относятся пирометры, использующие сравнительно узкий спектральный интервал с эффективной длиной волны 7 = = 0,65 мкм (как и у оптических пирометров). Во второй разновидности фотоэлектрических пирометров используются щирокие -спектральные интервалы с различными значениями эффективной длины волны, зависящими как от спектрального состава излучения объекта измерения, так и от спектральных свойств применяемого фотоэлемента. Отсутствие в настоящее время полных сведений о значениях степени черноты тел в различных интервалах длин волн создает серьезные трудности для пересчета яркостной температуры, измеренной пирометрами этой разновидности, на действительную, поэтому такие пирометры используют главным образом для контроля температуры, когда знание действительной температуры необязательно.  [c.187]

На рис. 9.10 показана схема фотоэлектрического пирометра типа ФЭП, основанного на использовании узкого спектрального интервала с эффективной длиной волны Яэ = 0,65 мкм. Поток излучения от объекта измерения 1 через объектив 2 и диафрагму 3, одно из двух отверстий в диафрагме 7 и красный светофильтр 5 попадает на фотоэлемент 9. Наведение пирометра и фокусировка изображения объекта измерения в плоскости отверстия диафрагмы 7 контролируются визуально с помощью визирного устройства, состоящего из окуляра 5 и зеркала 4.  [c.188]

Наряду с термобатареями в качестве приемников интегрального излучения могут быть использованы и другие теплочувствительные элементы, например болометры, в которых излучение от объекта измерения нагревает чувствительный к температуре резистор. Изменение сопротивления резистора служит мерой радиационной температуры.  [c.192]

Для исключения погрешностей, обусловленных нагревом корпуса пирометра (телескопа) из-за теплообмена его с окружающей средой и в результате поглощения излучения от объекта измерения, телескопы радиационных пирометров могут быть снабжены различными системами температурной компенсации.  [c.193]

Температура рабочих спаев термобатареи, а следовательно, и ее выходной сигнал устанавливаются в результате теплового равновесия между потоком падающей на термобатарею энергии излучения объекта измерения и отводом теплоты в корпус телескопа и окружающую среду. Поскольку это равновесие устанавливается не мгновенно, радиационные пирометры обладают определенной инерционностью. Малоинерционные пирометры имеют время установления теплового равновесия менее 0,5 с, пирометры большой инерционности — более 2 с.  [c.193]


Сразу после установления Гейзенбергом соотношения неопределенностей возник вопрос, почему одна пара динамических переменных может быть измерена с нулевым разбросом каждой из них, а другая-не может. Ответ Гейзенберга и Бора состоял в том, что при измерении динамической переменной в состояние объекта измерения вносятся самим процессом измерения неконтролируемые изменения. Если эти изменения не относятся к свойствам объекта, затрагиваемым измерением некоторой другой динамической переменной, то обе динамические переменные могут быть измерены со сколь угодно малым разбросом значений. Если же при измерении двух динамических переменных в состояние объекта вносятся зависящие друг от друга изменения, то операторы динамических переменных не коммутируют между собой и выполняется соотношение неопределенностей для разбросов результатов измерений числовых значений этих переменных.  [c.412]

Для контроля толщины немагнитных покрытий на ферромагнитной основе широкое распространение получили индукционные толщиномеры. Их действие основано на определении изменения магнитного сопротивления (проводимости) магнитной цепи, состоящей из ферромагнитной основы (деталь), преобразователя прибора и немагнитного зазора между ними, который является объектом измерений.  [c.61]

Характеристики, оцениваемые при испытании на надежность. Могут быть две основные группы характеристик изделия, которые являются объектом измерения и оценки при испытании на надежность.  [c.482]

Для механизмов узлов и тем более машин основным объектом измерения являются их выходные параметры. Процессы поврежде-  [c.482]

При измерениях в принципе обеспечивается пересечение характеристических кривых измерительного прибора и объекта измерений на диаграмме (и), причем координаты точек пересечения и являются результатами измерений. На рис. 3.1 показаны вольтамперная характеристика I(U) измеряемого объекта и характеристики двух различ-  [c.81]

Электроды сравнения предназначаются для измерения потенциалов— см. пояснения к формуле (2.1). Обычно электрод сравнения представляет собой электрод типа металл — ион металла. Относящийся к нему раствор электролита имеет электролитически проводящее соединение (через диафрагму) со средой, в которой находится объект измерений. В большинстве случаев в электродах сравнения содержатся концентрированные или насыщенные растворы солей, так что ионы этих солей диффундируют через диафрагму в среду. При этом на диафрагме возникает диффузионный потенциал, который в выражении (2.1) не учтен и который в принципе всегда представляет собой лишь погрешность при измерениях потенциала. Для сопоставления значений потенциалов важно, чтобы диффузионные потенциалы были возможно меньшими или одинаковыми.  [c.83]

При пробном включении защитного тока нужно также определять сопротивление растеканию тока в грунт с защищаемого объекта. Измеренный защитный ток Jg используется как основа для расчета защитной установки. По величине защитного тока и площади защищаемой поверхности 5 можно рассчитать среднюю плотность защитного тока  [c.269]

Связь точности измерений параметров деталей с неровностями поверхности. Неровности опорной и измерительной поверхностей объекта и неподвижной опорной и контактной поверхностей средства измерений оказывают существенное влияние на точность измерений [11, 49 [. Ускорение технического прогресса, связанное с возрастанием требований к точности, усиливает значение этого влияния. Несмотря на малые величины силовых нагрузок при малых фактических площадках контакта шероховатых поверхностей и высоки-х требованиях к точности измерений контактные деформации играют заметную роль. Значительно большую роль играют добавочные перемещения, вызываемые выступами неровностей при взаимном перемещении измерительного наконечника и объекта измерений. Если в процессе измерений геометрического параметра измеряемому объекту, контактирующему с измерительным наконечником, дают полный оборот, например для выявления овальности, огранки и т. п., то показания средства измерения прослеживают профиль неровностей измеряемого объекта, по-разному отражая случайные выбросы профиля при повторных измерениях.  [c.50]

Международная стандартизация неровностей поверхности. Ввиду своего физико-эксплуатационного значения неровности поверхности в текущем столетии сделались объектом измерений, а также национальной и международной стандартизации.  [c.58]

В качестве объектов измерения при исследованиях однотипных операций были взяты колесные тракторы. Исходя из данных работы [33] о занятости тракторов, исследования проводили на операции  [c.48]

Материал Объект измерения О Диаметр. А исх обл Условия облучения  [c.112]

Окна ЦИЛ должны выходить на север или запад, так как от прямого действия солнечных лучей, особенно в летнее время, возможно нагревание приборов и объектов измерения, что может неблагоприятно отразиться на качестве работы и правильности результатов. Если все же не удается избежать действия солнечных 6 83  [c.83]

Под измерением понимается определение количествен ных характеристик объекта измерений, например определение размера, чистоты поверхности, твердости и др. В технике наряду с понятием измерение широко применяется понятие контроль.  [c.583]

К этому разделу относятся теоретическое определение частот собственных колебаний и амплитуд вынужденных колебаний и разработка методов их расчета, часто являющегося основанием расчета на динамическую (усталостную) прочность, экспериментальное определение колебаний на работающих объектах, измерения, связанные с подсчетом сил демпфирования теория мощных вибраторов для искусственного возбуждения и воспроизведения колебательных процессов и для испытания конструкций теоретические исследования, связанные с расчетом оптимальных колебательных процессов для машин, создающих вибрационный режим, необходимый для данного технологического процесса  [c.5]


Для измерения постоянных тт медленно меняющихся параметров преимущественно используют более простые методы - механические или оптические. Пневматические методы применяют как бесконтактные. Для измерения быстро-мепяющихся параметров, а также для автоматического контроля размеров преимущественно применяют электрические методы, достоинствами которых являются малая инерционность, малое влияние на объект измерения благодаря малым массам и размерам датчиков, дистанцион-ность, удобная регистрация результатов с  [c.475]

Причина этих противоречий заключается, не только в различии методик измерения излучательной способности, но и в том, что различные исследователи.используют разные объекты измерений. В одном случае это порошки, в другом —спрессованные таблетки, в третьем— спеченные таблетки, в четвертом — покрытия, но полученные по разным те. снологическим режимам.  [c.39]

Объект измерения Условия ОрИеН Восток тгция ст ння Юг ен зда-Запад По горизонтали  [c.234]

Данный метод позволяет получать исчерпывающий объем информации от остаточных напряжениях (величины, знаки, направление главных осей) в конкретной точке поверхности объекта. Измерения проводятся с чувствительностью 0,05 — 0,15 предела тек чести материала (в зависимости от диаметра отпечатка). Погрешность измерений по отно-щению к среднестатистическим значениям с 95 Уо доверительной вероятностью не превышает 10 %.  [c.68]

Отличительной особенностью методов пирометрии является то, что информация об измеряемой температуре передается неконтактным способом. Благодаря этому удается избежать искаженийг температурного поля объекта измерений, поскольку в этом случае не требуется непосредственного соприкосновения термоприемника с телом.  [c.184]

Поток излучения объекта измерения на фотоэлементе сравнивается с потоком излучения лампы 11, которое попадает на фотоэлемент через второе отверстие в диафрагме 7 и светофильтр 8, Поочередное освещение фотоэлемента потоком излучения от объекта измерения и лампы осуществляется с помощью вибрирующей заслонки 6 модулятора 10. Накал лампы И, питаемой током выходного каскада электронного усилителя силового блока 13, автоматически регулируется таким образом, чтобы переменные составляющие сигнала фотоэлемента от сравниваемых потоков излучения объекта измерения и лампы были равны между собой. В уравно-вещенном состоянии падение напряжения на калиброванном сопротивлении R является рабочим сигналом оно однозначно связано с яркостной температурой объекта измерения и фиксируется автоматическим электронным потенциометром 12. Потенциометр может быть оттарирован в градусах яркостной температуры. Время, необходимое для установления показаний пирометра (для выхода на режим компенсации), составляет около 1 с.  [c.188]

На рис. 4.4 показано устройство манометра с трубчатой пружиной Бур-дена. Один конец трубчатой пружины 1 закреплен в держателе 6, который снабжен штуцером 7 для соединения с объектом измерения давления. Запа-яный конец пружины соединен поводком 5 с передаточным ме.ханизмом, состоящим из сектора 4 и зубчатого колеса 2, на оси которого закреплена стрелка манометра 3.  [c.38]

Погрешности, обусловленные объектом измерений. Эта группа,хотя и не связана непосредственно с измерительными операциями, момет существенным образом искажать результат измерений.  [c.21]

СВЧ преобразователи на мостовых схемах широко используются для определения очень малых изменений размеров различных деталей, проверки допусков прецизионных деталей в условиях рабочих вибраций, при балансировке вращающихся объектов, измерении скорости перемещения отра- зкающей радиоволны границы раздела. Так, при измерении скорости для некоторого положения границы раздела с помощью аттенюатора и фазовращателя (КЗ поршня) добиваются баланса моста отсутствия энергии в детекторной секции. В процессе изменения положения границы СВЧ мост разбалансируется. Скорость изменения энергии, поступающей к детектору, пропорциональна скорости перемещения отражающей границы. При смещении границы от первоначального сбалансированного положения на V2 тройник снова будет сбалансирован. Для того чтобы с помощью описывае-  [c.264]

Задачи испытания и объекты измерения должны быть указаны в разрабатываемых для каждого случая методике и плане испытаний — совокупности правил для осуществления заложенных принципов, устанавливаюш,их порядок проведения испытаний и критерии их прекращения.  [c.483]

При всех электрических измерениях применяют амперметры и вольтметры с двумя подсоединительными клеммами. Измеряемые объекты тоже имеют по две подсоединительные клеммы, которые либо соединяют оба измерительных вывода, например с объектом и электродом сравнения, либо с двумя концами отдельной токовой цепи. Каждый измерительный прибор и каждый объект измерений являются двухполюсниками, которые описываются своими характеристиками 1(H).  [c.81]

Исследования были проведены в литейном цехе станкостроительного завода, где широко используется ручной механизированный инструмент, являющийся основным для рабочих-обрубщи-ков. По данным, приведенным в работе [45], уровень вибрационной патологии у этой профессиональной группы является наиболее высоким среди рабочих, занятых в машиностроении. В качестве объектов измерений были взяты рубильный молоток ИП-4114 и шлифовальная машина ИП-2002, имеющие преобладающие уровни вибрации по сравнению с другим механизированным инструментом и вносящие вклад в суммарную вибрационную нагрузку на рабочего. Все измерения проведены с использованием виброметра 00031 и вибродозиметра ВД-01. Определение числа дискретных измерений вибрационного параметра осуществляли в соответствии с процедурой, изложенной в п. 1.  [c.57]

Акустические модели диагностики. Выбор информативных диагностических признаков связан, как было сказано выше, с характером звукообразования в машине и со структурой акустического сигнала. Поэтому важная роль в постановке акустического диагноза должна отводиться модели формирования диагностического сигнала или акустической модели диагностики. Под такой моделью понимается схема, содержащая источники случайных и/или детерминированных сигналов, а также линейные и нелинейные элементы, на выходе которой образуется сигнал, идентичный акустическому сигналу моделируемого объекта но СО ВО-купности диагностических признаков. Характеристики источн11ков и составных элементов модели однозначно связаны с измеряемыми параметрами состояния объекта. Измерение (оценка) этих параметров производится путем идентификации объекта и модели по близости диагностических признаков.  [c.24]

Механизм применяется в тех случаях, когда измеряемая величина изменяется слишком медленно или когда желательно вести одновременную запись нескольких измеряемых величин на одной ленте. Через определенные промежутки времени часовой механизм, не показанный на рисунке, включает электрический ток в обмотке электромагнита /. Якорь 2, притягиваясь к электромагниту, опускает дужку 3, которая прижимает стрелку 4 к бумаге 5 и пропитанной красками прокладке, лежащей под бумагой. При выключении электрического тока в обмотке электромагнита I якорь 2 под действием пружины 15 отходит от электромагнита 1. Дужка 3 ирн этом поднимается и освобождает стрелку 4, которая получает возмол ность установиться в новое положение. Установка стрелки 4 в новое положение происходит сле-ДУЮИ1.НМ образом. В то время, когда якорь 2 отходит от. электромагнита /, собачка а, укрепленная на якоре 2, поворачивает храповое колесо 7, укрепленное на валу 8 при этом подвил<ные контакты 9 переводятся с одник неподвижных контактов d на другие, соответствующие новому объекту измерения. Подвижная катушка 10, находящаяся в поле постоянного магнита II, получает при этом новый импульс и иереводит укрепленную на ней стрелку 4 в новое положение. Поворот валика 12 с прокладкой, пропитанной красками, происходит при повороте храпового колеса 7 при помощи червячных передач 13, 14 и зубчатой передачи 6—16.  [c.139]


Прибор состоит из двух колоколов / и 2, подвешенных па трехплечем коромысле 3, вращающемся вокруг неподвижной оси А, опущенных в два сообщающиеся между собой сосуда с жидкостью. При соединении подколоколышго пространства с объектом измерения посредством трубки 7 возникающее под колоколом давление заставит его переместиться. При этом поворачивается коромысло 3, угол поворота которого через тягу 4, входящую во вращательные пары В а Е с коромыслом 3 и зубчатым сектором 5, и зубчатую передачу 5 и 6 передается на стрелку 6 прибора. Груз 8, подвешенный на плече а коромысла 3, стабилизует движение коромысла 3.  [c.486]


Смотреть страницы где упоминается термин Объект измерения : [c.190]    [c.72]    [c.75]    [c.65]    [c.397]    [c.82]    [c.113]    [c.86]   
Основные термины в области метрологии (1989) -- [ c.0 ]



ПОИСК



Выбор измерительных средств для линейных измерений в зависимости от допусков размеров объектов измерения

Выбор измерительных средств, в зависимости от допусков раз меров объектов измерения

Датчик для измерения давления на вращающихся объектах

Измерение микроскопических объектов при помощи окулярных и объективных микрометров

Измерение неэлектрических величин, основанное на преобразовании энергии испытуемого объекта в электрическую

Измерение температуры поверхности массивных объектов ИПТ

Измерение увеличения объектива

Измерения на вращающихся объектах

Метрология Это интересно 3 Призраки — объекты измерений

Обзор методов измерения на вращающихся объектах

Общая характеристика объектов измерений

Система единиц измерения взаимодействие с внешними объектами

Системы измерения экспозиции через съемочный объект.ив

Согласование точности измерения со свойствами измеряемого объекта

Тепловой объект с измерение

Транспорт трубопроводный - Надежность объектов 427 Методы измерения напряжений

Устройство для измерения расстояния до объекта отражения

Учет в математической модели формирования результата измерения эффекта взаимодействия среды измерения с объектом измерения

Физические величины как объект измерений



© 2025 Mash-xxl.info Реклама на сайте