Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Привод позиционирования

Привод позиционирования (т.е. перемещения рабочего органа станка в требуемую позицию согласно программе) должен иметь высокую жесткость и обеспечивать плавность перемещения при малых скоростях, большую скорость вспомогательных перемещений рабочих органов (до 10 м/мин и более).  [c.276]

Введение обратной связи по скорости движения практически устраняет влияние непостоянства вязкости масла, смешанного трения и других возможных случайных погрешностей на точность перемещения. Это обеспечивает достаточно широкую область использования гидроцилиндров в приводе позиционирования станков с числовым программным управлением.  [c.67]


Рис. 58. Привод позиционирования с ходовым винтом и его расчетная схема Рис. 58. Привод позиционирования с <a href="/info/2283">ходовым винтом</a> и его расчетная схема
Более точный анализ погрешностей привода позиционирования может быть выполнен с использованием средств вычислительной техники. Если принять для привода с тяговым устройством в виде ходового винта (рис. 58, а) расчетную схему для трехмассовой упругой системы (рис. 58, б), то общее перемещение узла относительно двигателя возможно за счет упругих деформаций — закручивания привода Дф = ф2 — Ф1 и приведенной линейной деформации в осевом направлении Ах. Уравнения движения системы привода  [c.81]

Рис. 60. Схема модели привода позиционирования для расчета на аналоговой вычислительной машине Рис. 60. <a href="/info/23457">Схема модели</a> привода позиционирования для расчета на аналоговой вычислительной машине
Кодовые датчики в системах автоматического позиционирования используют вместе с устройством связи, осуществляющим сравнение действительного положения рабочего органа с заданным программой. Структурная блок-схема подобного устройства связи (рис. 284) представлена для однокоординатного привода позиционирования. Левая часть схемы применяется для привода с плавным регулированием скорости, а правая часть схемы для привода с дискретным регулированием. Информация в виде кодированных чисел поступает из блока ввода программы и из блока индикации в арифметическое устройство, вычисляющее разность координат  [c.325]

Перфолента 300 Поворотное устройство 270 Приведенные затраты 36 Привод позиционирования 79, 240 Программоноситель 300 Производительность станка 16  [c.384]

Резкое падение силы трения с увеличением скорости движения обычно наблюдается в зоне малых скоростей перемещений. Это, например, характерно для технологического оборудования (перемещение суппортов по направляющим, позиционирование автооператоров и роботов). При крутопадающей скоростной характеристике силы трения наблюдаются неустойчивость движения, характерное скачкообразное движение. Это сопровождается неравномерностью подач, снижением точности обработки, неточностью позиционирования. В связи с этим снижается производительность оборудования, возрастает износ направляющих и инструментов, ухудшается качество обработанных на станках поверхностей деталей, возникают дополнительные динамические нагрузки в механизмах привода.  [c.229]


Позиционное управление дает высокую точность позиционирования (особенно при медленных движениях), но между позициями движение происходит по нерегулируемым траекториям. При задании двух положений захвата (двухточечное управление) точность позиционирования повышается при установке механических упоров. Как при ручном, так и при автоматическом управлении перемещения захвата в заданные положения (позиции) обеспечиваются только включением и выключением приводов. С увеличением числа позиций позиционное управление переходит в контурное.  [c.562]

В связи с малым полем измерения в ТВМ и ФЭМ объекты больших размеров перемещаются с помощью точных программируемых приводов (обычно в пределах 300—500 мм). При этом абсолютная погрешность позиционирования изделия составляет 0,01—0,1 мм. Таким образом, в этих приборах реализуется принцип комбинированного сканирования объекта — высокоточного сканирования в малом поле измерения и менее точного сканирования, но имеющего большие пределы перемещения.  [c.84]

Аналогичными методическими приемами получены ВММ для оценки динамических свойств электрогидравлического шагового привода, изучены свойства регулируемых приводов главного движения, решены динамические задачи позиционирования механизмов смены инструмента, исполнительных механизмов промышленных роботов, транспортных устройств автоматических линий с гидравлическим приводом выполнен синтез приводов, обеспечивающих стабилизацию силовых параметров процесса резания.  [c.99]

С в е р д л о в С, 3, Исследование точности позиционирования дискретно управляемого пневматического привода,— Машиноведение, 1980, № 2.  [c.343]

Электрогидравлические приводы могут быть выполнены по однокаскадной или двухкаскадной схеме. Построение привода зависит от требуемой мощности на выходе, точности позиционирования и от других факторов.  [c.161]

В однокаскадных приводах управляюш,ее усилие на золотнике зависит от погрешностей изготовления золотниковой пары. При повышенных расходе и давлении, необходимых для перемещения с большой скоростью значительных масс, гидростатическая неуравновешенность на золотнике превышает возможности управляющего воздействия. Кроме того, в однокаскадных приводах используется преимущественно механическая обратная связь, износ ее элементов снижает точность позиционирования. Эти факторы ограничивают использование однокаскадных приводов.  [c.161]

Испытания поворотной планшайбы проводились при одной скорости 1,047 рад/с (60 град/с), что определяется особенностями конструкции, в зависимости от угла поворота а и направления вращения практически не меняется и составляет 0,26—0,28 рад/с. Максимальные ускорения при разгоне и торможении составляют от 18 до 10 рад /с , что приводит к инерционным моментам величиной 12 и 15 Н-м соответственно измеренная на радиусе 300 м погрешность позиционирования составила 0,3 мм, что меньше паспортного значения (+0,5 мм).  [c.85]

Рассматриваются вопросы, связанные с построением мате.матической модели промышленного робота (ПР) с электрогидравлическим приводом и ее идентификацией. Построена математическая модель, описывающая работу механизма ю-ворота руки робота, которая затем была идентифицирована с одни.м из механизмов ПР. Показано, что такая модель хорошо описывает работу механизма позиционирования робота.  [c.172]

Механизмам позиционирования станков с числовым программным управлением, где имеется возможность корректировать конечное положение выходных звеньев механизма, посвящена обширная литература [1], а исследование их динамики представляет самостоятельную задачу. Поэтому в дальнейшем будут рассматриваться механизмы позиционирования с электро-, гидро- или пневмомеханическим приводами и с цикловым управлением без обратных связей. Вопросы исследования механизмов фиксации устройств позиционирования отражены в работе [2] и в других статьях этого сборника.  [c.5]

Для устройств углового позиционирования определение коэффициентов в формуле (4) затруднено тем, что в паспортных данных и даже в работах, описывающих результаты экспериментов, обычно не приводятся величины J. Поэтому была предложена зависимость Шер от наружного диаметра поворачиваемого узла D (м), имеющего в большинстве случаев цилиндрическую форму  [c.6]


Стендовые исследования механизмов с различным типом привода в широком диапазоне изменения параметров и изучение влияния увеличения быстроходности на точность позиционирования и величину динамических нагрузок.  [c.7]

Данные табл. 1 позволяют также рассмотреть пределы изменения средних угловых скоростей поворота у различных типов электромеханических поворотных устройств, а также у механизмов позиционирования и гидравлическим, и пневматическим приводами.  [c.8]

Наибольшим уровнем средних скоростей поворота отличались кулачковые и мальтийские механизмы (при D <С 1л) эти скорости у отдельных конструкций достигали 40—50 (автоматы для пищевой промышленности). Однако в большинстве случаев они не превышали 10 с , а у механизмов позиционирования с гидравлическим и пневматическим приводами йср 5 Такие скорости достигались при D = 0,08—1,0 м. Наименьшими ср отличались электромеханические устройства с зубчатыми передачами, имеющими постоянное передаточное отношение.  [c.8]

Формулы (3) — (12) подверглись экспериментальной проверке при исследовании устройств позиционирования с кулачково-цевочными, мальтийскими, зубчато-рычажными, кулачково-зубчато-рычажными, кулачково-планетарными механизмами, а такн<е гидромеханических и пневмомеханических поворотных устройств. Эти механизмы исследовались как на натурных моделях и при испытаниях унифицированных узлов, так и при помощи математических моделей. Наибольшие трудности при исследовании математической модели представляло изучение связи быстроходности с точностью позиционирования.Эти вопросы рассмотрены в работе[4]. Проведенные исследования этих устройств, а также механизмов линейного позиционирования автоматического манипулятора с гидравлическим приводом подтвердили правильность выбранной структуры эмпирических формул.  [c.14]

Коэффициент йш в формуле (4) существенно зависит от места расположения механизма позиционирования манипулятора. Для механизма поворота руки относительно вертикальной оси он близок к коэффициентам для поворотных устройств машин-автоматов. Для механизмов поворота схвата, а также кисти, плеча и предплечья (в вертикальной плоскости) коэффициент существенно меньше из-за весовых и габаритных ограничений, накладываемых на привод этих механизмов.  [c.14]

При составлении математической модели для исследования динамики ЗРМ и определения влияния изменения его параметров на динамические характеристики устройства углового позиционирования на основе вышеприведенной кинематической схемы (рис. 1) вводятся следующие допущения 1) вал электродвигателя вращается равномерно 2) податливость и зазоры в приводе передаточного механизма не учитываются 3) податливость муфты соединения ведомых масс с выходным валом ЗРМ не учитывается  [c.47]

С повышением скорости о зазоры в звеньях становятся источниками дополнительных динамических нагрузок, действующих на детали механизма. Отсутствие силового замыкания фиксирующих элементов при выстое приводит к вибрации и перемещению ведомого звена механизма позиционирования под действием знакопеременных нагрузок в пределах зазоров. Погрешность останова ведомого звена при этом определяется в основном величинами зазоров в подвижных соединениях, поэтому при увеличении быстроходности механизма позиционирования растет и погрешность фиксации ведомого звена. Для обеспечения устойчивости выстоя необходимо правильно выбирать соотношение инерционного и статического моментов.  [c.54]

Формулируются задачи, исследования механизмов позиционирования, к которым относятся разработка новых методов экспериментального исследования, математического моделирования и диагностирования. Рассматриваются основные факторы, влияющие на допустимую быстроходность механизмов линейного и углового позиционирования и приводятся формулы для расчета скорости позиционирования. Сравниваются данные о быстродействии различных механизмов позиционирования автоматических манипуляторов.  [c.93]

Составление таблиц уровней для механизмов позиционирования манипуляторов. Подавляющее большинство манипуляторов и роботов содержат механизмы позиционирования и сравнительно небольшой процент — следящие устройства контурного управления. Поэтому в качестве примера составим таблицы уровней для механизмов линейного (табл. 5.1) и углового (табл. 5.2) позиционирования манипуляторов с гидравлическим приводом (для электромеханического привода более подробная таблица уровней дана в гл. 3).  [c.67]

Припцпп действия НМД показан на рис. 1.12. Накопитель на магнитном диске содержит пакет МД 4 и его привод 5, блок магнитных головок 3 и механизм их позиционирования, электронные схемы, обеспечивающие запись и воспроизведение информации, коммутацию магнитных головок и др. Число МД в пакете может быть от  [c.39]

При миоговариантном анализе конструкций в основном используются статистические и имптациопные модели. Статистическое моделирование применяется при оценке погрешности позиционирования рабочих органов станков и машин с ЧПУ для формирования требований при проектировании приводов подач, а также для анализа компоновок автоматических линий. По результатам анализа определяются параметры надежности и произ-  [c.63]

Промышленные роботы (ПР), применяемые в сва-ро ою.м производстве, обычно являются упнверсальпыми, пригодными для выполнения сборочны.х, сварочных, а также транспортных операции при изготовлении разнообразных конструк-ЦИ.Й. Их технологические возможности характеризуются следующими параметрами кинематическая схема, 1 рузоподъемность и число степеней подвижности форма и размеры рабочей зоны точность позиционирования характер привода и тип системы управления.  [c.63]


В системах позиционирования предусматривается настройка упоров — возмо кность регулирования их положения. Ошибки нозиционирования определяются погрешностями настройки податливостью механической системы, в том числе элементов, фиксирующих упор нестабильностью нринсимного усилия, возникающего между фиксируемым исполнительным звеном и унором. В целях повышения стабильности усилия прижима в приводе часто используются устройства ограничения момента, в частности, применяются фрикционные муфты с встроенными механизмами свободного хода, обеспечивающими расклинивание механизма при отводе узла от упора [18J. Упрош,ен-ная схема системы позиционирования с унором У и устройством ограничения момента У О показана на рис. 40. Здесь Д — двигатель, Р — редуктор, П — ползун (исполнительное звено, фиксируемое упором).  [c.118]

Во многих конструкциях (например, в пневмаигческих, гидравлических и электромеханических приводах роботов-манипуляторов) обеспечивается отключение двигателя при подходе исполнительного звена к упору и включение тормозного устройства, создающего силу, действующую либо на вал двигателя, либо неносред-ственпо на исполнительное звено. Эта тормозная сила может рассматриваться как силовое управление, корректирующее закон движения системы в зоне позиционирования. Наиболее часто оно>  [c.120]

Замкнутые системы безунорного позиционирования осуществляют операцию точного останова подвижного узла машины путем торможения и переключений привода по команде датчиков положений и скорости. В завпснмости от требований точности, конструктивных особенностей привода, требуемого быстродействия осуществляются различные законы торможения.  [c.122]

На автомате 57 шлифуют опорные шейки правой стороны распределительного вала (третью и четвертую рис. 56, г). При втором, более прогрессивном варианте технологии шлифование опорных шеек распределительного вала, кроме хвостовика, ведут на многокруговых шлифовальных автоматах с базированием в центрах, с приводом от патрона, с применением следящего люнета, при активном контроле. На торцекруглошлифовальном автомате 5S одновременно шлифуют пятую опорную шейку и хвостовик распределительного вала (рис. 56, д). Шлифование проводится в центрах с осевым позиционированием и активным контролем кругом диаметром 700 мм скорость шлифования 32 м/с припуск по диаметру 0,25 мм, по торцу — О, I мм время шлифования — 33 с, выхаживания — 3 с.  [c.104]

Действие необратимых, монотонно действующих факторов любой интенсивности приводит к увеличению циклической нестабильности определяющих параметров технологического процесса и конструкции ухудшению точности позиционирования и взаимного расположения конструктивных элементов, увеличению мгновенного поля рассеяния размеров, диапазона рассеяния рабочих усилий, опорных реакций, коэффициентов трения, снижению жесткости узлов и т. д. Все это увеличивает вервятность возникновения отказов при каждом срабатывании машины, ее очередном рабочем цикле. Исключение составляют такие факторы, как приработка базовых поверхностей, повышение квалификации обслуживающего персонала, улучшение организации обслуживания и ремонта и др., которые способствуют сокращению числа отказов в работе.  [c.74]

На основании проведенных исследований выяснено, что жесткость l (см. рис. 1 в статье А. Н. Ананьева, Е. Г. Ананьевой, И. Н. Статникова Разработка и идентификация математической модели промышленного робота с электрогидравлическим приводом ) гораздо сильнее влияет на точность позиционирования, чем жесткость С . Малые величины приводят к увеличению времени разгона, торможения, а также способствуют возникновению колебаний большой амплитуды. При больших значениях i колебания захвата отсутствуют и происходит плавное подтягивание руки к точке позиционирования. Максимальные величины ускорений при разгоне и торможении практически не зависят от С . Значения коэффициента Яд в зависимости от приведены ниже ( i — исходное значение жесткости j)  [c.59]

Приводятся результаты исследований влияния упругой податливости механизмов пневматического робота на статическую точность позиционирования. Даются оценки упругой податливости различных элементов конструкций руки манипулятора и разработана методика статического расчета. Проведены анализ и сравнение экспериментальных данных с предложенной методикой расчета. Ил. 1. Табл. 1. Библиогр. 4 назв.  [c.173]

К механизмам линейного позиционирования гидроконироваль-ных полуавтоматов относится механизм привода каретки продольной подачи копировального суппорта, состоящий из гидродвигателя, редуктора, упругой муфты, ходового винта, гайки и каретки продольной подачи. Основным критерием работоспособности этого механизма является равномерность перемещения конечного звена — каретки продольной подачи массой 700 кг. Равномерность перемещения каретки в значительной мере влияет на точность линейного позиционирования, которое осуществляется у каретки гидрокопировального полуавтомата либо с помощью жесткого упора, либо с помощью копира.  [c.72]

Для выявления влияния каждого из этих параметров на динамику и погрешность позиционирования могут использоваться методы математического моделирования, позволяющие проводить исследования модели в условиях изменения конструктивных и рабочих параметров узла в широких пределах, так как натурные эксперименты не всегда позволяют проводить подобные исследования. Потеря точности может быть вызвана также и нестабильностью срабатывания предохранительного клапана и разбросом величин давлений при фиксации планшайбы АРф, поэтому при диагностировании необходимо исследовать характер изменения давления при фиксации, стабильность характеристик реле давления и электроаппаратуры. Наличие зазоров в механизме фиксации, которое приводит к изменению контактной жесткости /ф фиксатора и упоров, также является одной из основных причин потери точности бф. Обнаружение больших смещений планшайбы в позициях, противоположных фиксатору, указывает на дефект центральной опоры (наличие больших зазоров). Потеря быстроходности (Вор (рис. 4, б) и увеличение времени цикла могут быть вызваны 1) неправильной регулировкой пути реверса фрев, что устраняется регулировкой механизма упоров управления  [c.87]

Приводятся результаты расчетного и экспериментального исследования динамики механизмов линейного и углового позиционирования гидрокопировальных полуавтоматов, в том числе методами математического моделирования на АВМ. Обосновывается выбор динамических параметров, влияющих на точность позиционирования, и указываются пути повышения точности позиционирования исследуемых механизмов на стадии конструирования, изготовления и отладки. Приводится процедура диагностирования привода продольной подачи копировального суппорта. Табл. 2, илл. 5, библ. 4 назв.  [c.94]

Система И на три координаты полностью входит в трехкоординатную систему П , которая кроме устройств, входящих в И , содержит еще устройство ввода программы с перфоленты УВП, устройство ручного набора программы или преднабора У ПН, устройство ввода коррекций У В/С, устройство технологических команд УТК, три устройства управления приводом УУП и устройство позиционирования УПз.  [c.9]


Это обстоятельство открывает возможность, после некоторой доработки схемы электропривода, повышения его устойчивости и введения двух дополнительных каналов АСССН, использовать в приводе ползуна двигатель меньшей мош Ности. Указанное еще больше улучш1ит энергетические параметры электропривода и, что особенно важно, повысит динамические качества системы. Последнее будет достигнуто за счет уменьшения момента инерции ротора, что приведет к повышению точности позиционирования ползуна при автоматическом выходе на координату.  [c.98]


Смотреть страницы где упоминается термин Привод позиционирования : [c.79]    [c.186]    [c.72]    [c.124]    [c.160]    [c.444]    [c.56]    [c.4]    [c.11]   
Конструирование металлорежущих станков (1977) -- [ c.79 , c.240 ]



ПОИСК



Позиционирование

Привод точного позиционирования



© 2025 Mash-xxl.info Реклама на сайте