Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталостный износ интенсивность

Следует различать контактную усталость поверхностных слоев, которая возникает при чистом качении и проявляется в развитии местных очагов разрушения (питтинг), и усталостный износ, когда при трении скольжения отделение микрообъемов поверхностей связано с усталостной природой разрушения. При разрушении поверхностей таких сопряжений, как кулачок—ролик, зубчатые передачи, опоры качения и др., могут иметь место оба вида разрушения. При большем проскальзывании основную роль играет изнашивание, которое протекает интенсивнее, чем образование осповидных (питтинговых) разрушений поверхности,  [c.236]


В настоящее время проведена широкая экспериментальная проверка расчетных соотношений (1.7) и (1.8) как на лабораторных образцах, так и па натурных деталях машин, испытанных на стендах и в условиях эксплуатации. Сопоставление расчетных и экспериментальных данных по интенсивности износа показало [43], что корреляция значений Д с коэффициентом пропорциональности, близким к единице, имеет место в интервале Расхождение между экспериментальной и расчетной интенсивностями износа с вероятностью 95% не превышает трех раз и лишь в отдельных случаях достигает десяти раз. Аналитическая оценка интенсивности износа, основанная на представлении об усталостном разрушении поверхностей, была применена к самым различным классам материалов резинам, резино-металлическим уплотнениям, работающим всухую, полимерам, металлам, графитам, самосмазывающимся материалам. Эта теория была распространена для расчета износа при наличии свободного абразива в контакте [52]. Интересно отметить, что понятие усталостного износа как вида разрушения, при котором материал подвергается повторному действию сил, приводящих к накоплению в нем повреждений, в настоящее время используется и для анализа процесса, который классифицируется как адгезионный износ [53]. Это свидетельствует об известной общности представления об усталостном разрушении поверхностей трения.  [c.20]

Закаленная сталь изнашивалась в условиях трения со смазкой при упругом контакте по схеме кольцевой цилиндр — плоскость. Зависимость макронапряжений от пути трения приведена на рис. 9. Величина макронапряжений колеблется вокруг определенного уровня, который определяется, как и твердость, внешними условиями, в частности нагрузкой. При меньших нагрузках остаточные напряжения и твердость меньше. Спад макронапряжений авторы объясняют разрушением материала. Зависимость объемного износа от пути трения (рис. 10) имеет две точки перегиба. Участок ОА — интенсивный износ в результате соударения высоких неровностей с контртелом и их отделения АВ — период приработки, во время которого происходит упрочнение и увеличение фактической плош ади контакта. Усталостный износ начинается в точке В. Влияние нагрузки на путь трения до начала усталостного износа представлено на рис. И. Если перейти от большей нагрузки к меньшей, то до наступления усталостного износа требуется инкубационный период. При переходе от меньшей нагрузки к большей этого периода нет. Поскольку такое поведение износа аналогично характеру распространения усталостной трещины при изменении напряжения, авторы считают, что износ происходит в результате усталостного разрушения поверхностного слоя.  [c.29]


Показатель кривой фрикционной усталости t в значительной мере влияет на расчетные значения интенсивности усталостного износа (он является показателем степени), в связи с чем важное значение имеет точность определения этого показателя.  [c.225]

При скоростях резания больших, чем v , процесс износа контактных поверхностей изменяется. Интенсивность их износа быстро возрастает, а размеры отрываемых при износе частиц уменьшаются. Наряду с рассмотренным механизмом усталостного износа все большую и решающую роль начинает играть иной механизм износа, который в основном связан с действием высоких температур, резко снижающих сопротивление инструментального материала износу. При этом обнажения задних поверхностей в результате срыва застойной зоны так же, как и при усталостном износе, приводят к снижению стойкости резцов.  [c.166]

Износ. Механизм износа эластомерных уплотнений весьма сложен и определяется комплексом физико-механических свойств и геометрическими характеристиками фрикционной пары. По И. В. Крагельскому [26, 52] характер и интенсивность износа зависят от вида нарушения фрикционных связей. В зависимости от прочности возникающей между эластомером и твердым телом связи различают пять видов нарушения единичных адгезионных связей, из которых вытекают три основных вида износа 1) адгезионный, приводящий к своеобразному скатыванию или намазыванию поверхностного слоя эластомера 2) абразивный, вызванный микрорезанием эластомера острыми выступами поверхности или частицами загрязнений 3) усталостный, вследствие многократного деформирования поверхностных слоев эластомера выступами неровностей контртела. При скольжении в эластомере перед выступом микронеровности возникает зона сжатия, а позади него — зона разрежения. Если относительное внедрение hir велико h — глубина внедрения г — радиус неровности), происходит микрорезание. Если hIr мало, происходит многократная деформация поверхностных слоев эластомера, приводящая к постепенному усталостному износу. Это основной вид износа уплотнений при трении по хорошо обработанным поверхностям и наличии смазки. Износ материалов оценивается следующими основными характеристиками удельным износом i и интенсивностью износа У, связанными  [c.79]

При абразивном износе (износ по шкурке) со = I, при усталостном износе а = 2 5 (например, для резины на основе СКН-18 сс = 1,8 СКН-26 а = 2,55 СКН-40 а = 3,84). Скорость влияет на коэффициент трения /, на прочностные свойства Од, зависящие от скорости деформации, и на температуру во фрикционной паре. Само по себе увеличение скорости приводит к снижению интенсивности износа. Однако вызываемое этим повышение температуры оказывает наибольшее влияние на износ резин.  [c.80]

Интенсивность усталостного износа для пластического контакта без учета микрорезания, по данным работ И, В. Крагельского, приближенно оценивается соотношением  [c.40]

Интенсивность усталостного износа зависит от величины нагрузки, ее длительности и количества изменений направления этой нагрузки. 244  [c.244]

При абразивном износе показатель степени близок к 1, при усталостном износе >1. В табл. 24 приведены эмпирические зависимости, полученные методом наименьших квадратов и характеризующие зависимость весовой интенсивности износа от давления перед манжетой.  [c.251]

Существуют различные виды изнашивания усталостное, абразивное, адгезионно-механическое, эрозионное, коррозионно-механическое и др. Интенсивность изнашивания деталей машин зависит от формы, размеров, физико-химических свойств, условий нагружения и теплового режима работы контактирующих поверхностей, а также физико-химических свойств смазочного материала. В зубчатых передачах, подшипниках качения и некоторых других механизмах при работе возникает усталостное изнашивание (выкрашивание), характерное для хорошо смазанных контактирующих поверхностей деталей машин, которые испытывают повторные контактные напряжения и работают в режимах качения и качения со скольжением. Абразивное изнашивание возникает в результате режущего или царапающего действия твердых тел и частиц. Данный вид износа типичен для механизмов, функционирующих в запыленной среде, в условиях недостатка смазки, при работе всухую. В трущиеся контакты в процессе работы попадают частицы песка, пыли, грязи, продукты износа. Интенсивность абразивного изнашивания механизмов зависит от физико-механических и геометрических характеристик абразива, его количества, прочностных свойств материала трущихся тел, действующей нагрузки, состояния смазочного слоя. В местах контакта  [c.9]


Как правило, недопустимы поломки деталей в результате недостаточной статической, динамической или усталостной прочности, тепловые трещины в результате нагрева детали, в ряде случаев коррозия. Для поверхностей контакта характерны такие недопустимые повреждения, как некоторые виды износа, протекающие с большой интенсивностью (молекулярно-механический износ, приводящий к задирам поверхностей, тепловой износ), выкрашивание частиц с поверхности трения и др. Следует иметь в виду, что разделение повреждений на допустимые и недопустимые зависит не только от характера повреждений, но и от тех требований, которые предъявляются к данному изделию, и от возможностей предотвратить данный процесс. Например, коррозия — допустимый вид повреждения для корпусов морских судов и недопустимый для станин станков.  [c.36]

Усталостная природа изнашивания. Последние годы все большее распространение получает усталостная (кумулятивная) теория износа, когда основная причина разрушения поверхностных слоев связывается с возникновением усталостных трещин и отделением микроскопических чешуек материала или его окислов. При этом процесс изнашивания рассматривается как кумулятивный, т. е. суммирующий действие отдельных факторов при многократном нагружении фрикционных связей, что приводит в итоге к отделению частицы износа. Как правило, наличие пленки смазки, возникновение окислов, тепловой эффект и ряд других факторов влияют на интенсивность развития усталостного процесса, не изменяя его природы. Для объяснения физической сущности явлений усталости можно использовать исследования процессов развития усталостных трещин на базе представлений о вязкости разрушения при циклическом нагружении [2041.  [c.232]

Третья стадия фреттинг-коррозии, которая характеризуется высокой интенсивностью процесса, связана с разрушением поверхностных слоев, предварительно разрыхленных усталостными и коррозионными процессами. В зоне контакта может образоваться повышенное количество продуктов износа, что способствует интенсификации процессов разрушения вплоть до абразивного изнашивания. Эта стадия фреттинг-коррозии является недопустимой при эксплуатации изделий.  [c.238]

Наиболее простой метод заключается в уплотнении испытаний по времени — в сокращении холостых ходов и простоев, в круглосуточной непрерывной работе изделия и т. п. Однако использовать этот простой метод ускорения испытаний можно только после анализа влияния перерывов в работе изделия на интенсивность процесса разрушения. Здесь могут встретиться различные случаи. Например, увеличение частоты циклов нагрузки при усталостных разрушениях в большинстве случаев не влияет на конечный результат, в то время как при изнашивании деталей наличие перерывов в работе может как увеличивать износ (например, при  [c.502]

Один из важнейших элементов подъемной установки — надшахтный копер, несущий направляющие шкивы и воспринимающий нагрузки от шахтного подъема (шкивов, подъемных сосудов, канатов, собственного веса металлоконструкций), ветра. Кроме того, металл конструкции копра подвергается интенсивному воздействию окружающей среды, что ведет к его значительному коррозионному износу. В результате всех этих воздействий возможно снижение прочности несущих конструкций копра и возникновение усталостных повреждений в сварных соединениях элементов.  [c.109]

Связь трения и износа с неровностями поверхности. Современная молекулярно-механическая теория трения объясняет силу сухого (и граничного) трения скольжения образованием и разрушением адгезионных мостиков холодной сварки контактирующих участков шероховатой поверхности и зацеплением (и внедрением) неровностей 110, 40]. Трение обусловлено объемным деформированием материала и преодолением межмолекулярных связей, возникающих между сближенными участками трущихся поверхностей. При этом износ протекает в виде отделения частиц за счет многократного изменения напряжения и деформации на пятнах фактического контакта при внедрении неровностей истирающей поверхности в истираемую поверхность. Во многих случаях износ имеет усталостный характер растрескивания поверхностного слоя под влиянием повторных механических и термических напряжений, соединения трещин на некоторой глубине и отделения материала от изнашиваемого тела. Интенсивность изнашивания зависит от величины фактического контакта и напряженного состояния изнашиваемого тела, которые в свою очередь в сильной степени зависят от размеров и формы неровностей и, в частности, от радиусов закругления выступов. В обычных условиях истирающая поверхность является существенно более жесткой и шероховатой по сравнению с той, износ которой определяется, и ее неровности оказываются статистически стабильными при установившемся режиме трения. Таким образом, в отношении износостойкости деталей неровности их поверхностей имеют первостепенное значение.  [c.46]

Понижение температуры эксплуатации увеличивает интенсивность возникновения всех видов разрушений. Следует подчеркнуть, что накопление усталостных повреждений, коррозийно-эрозионные процессы, износ трущихся поверхностей могут ускорить возникновение хрупких разрушений, создавая условия зарождения и лавинного распространения трещин.  [c.21]

Приведенные характеристики фрикционного контакта необходимы для расчетной оценки интенсивности износа, в частности при использовании аналитических зависимостей, построенных на представлении об его усталостной природе.  [c.10]

Сопоставление интенсивности линейного износа, обусловленного отделением частиц, с интенсивностью износа, связанного с пластическим оттеснением металла, показало, что во втором случае эта величина на 1—2 порядка меньше, и, следовательно, изнашивание поверхностного слоя определяется усталостными процессами на контакте.  [c.75]


Представленные в [9] результаты показывают, что усталостная теория износа хорошо описывает механизм разрушения поверхности трения и позволяет аналитически оценивать величину интенсивности износа в широком диапазоне изменения параметров.  [c.87]

Провести четкое разграничение действия разрушающих факторов не всегда возможно. Так, при работе шестерен сначала имеет место абразивный и другие виды износа рабочих поверхностей, в дальнейшем усталость поверхностных слоев металла от многократного механического перенапряжения приводит к явлениям питтинга и, в свою очередь, вызывает форсированный износ. Аналогичным образом при работе подшипников качения имеет место, во-первых, износ во-вторых, усталостное разрушение поверхностей качения, причем абразивный износ нередко выводит подшипник из строя из-за образования недопустимого люфта задолго до появления признаков усталости. Более того, интенсивный износ поверхности нередко препятствует ее разрушению от усталости.  [c.224]

Долговечность детали рассматривается с позиции усталостного разрушения и износа. В зависимости от расположения в сборочной единице или в машине деталь может воспринимать различные нагрузки, определяющие ее выносливость, а также может находиться в разном положении по отношению к сопрягаемым деталям, что определяет интенсивность ее износа.  [c.91]

Например, в агрегатах, имеющих механические узлы, подверженные интенсивному износу, старению или усталостным явлениям, плотность вероятное отказов подчиняется нормальному закону.  [c.176]

Изменение физико-механических свойств поверхности, высокая твердость, сохраняющаяся при значительных температурах, наличие внутренних сжимающих напряжений и создание благодаря химико-термической обработке микро- и субмикроскопиче-ской неоднородности вызвали повышенное сопротивление тепловому износу, уменьшение интенсивности его и, следствие, изменение вида ведущего износа. Вместо теплового ведущим видом износа стал усталостный износ, интенсивность которого значительно меньше теплового, что привело к резкому повышению стойкости штампов [52].  [c.41]

В том случае, когда напряжения в активном слое не столь велики (например, фактические давления не превышают предел текучести) и нет сильной адгезии между поверхностями, разрушение при однократном нагружении не возникает. Однако, вследствие циклического характера изменения напряжений при относительных перемепдениях поверхностей и их достаточно высоких амплитудных значений (среднее фактическое давление Рг, как правило, больше предела усталости) в активном слое происходит интенсивное накопление дефектов, приводящее к его усталостному разрушению. Усталостный износ практически всегда имеет место при фрикционном взаимодействии поверхностей. Экспериментально установлено, что при усталостном изнашивании частицы отделяются с поверхности в дискретные моменты времени и размер частицы сравним с диаметром единичного пятна контакта.  [c.316]

Инкубационный период, измеряемый временным интервалом от начала взаимодействия до первого разрушения, является характерной чертой усталостного изнашивания. Интенсивность износа в течение этого периода равна нулю. Инкубационный период становится короче при возрастании скорости накоплений повреждений, т.е. при росте температуры или напряжений в подповерхностном слое. Этот рост может быть вызван увеличением нагрузки, коэффициента трения или увеличением потока тепла в изнашиваемое тело. Заметим, что факторы, способству-  [c.351]

Следует отметить, однако, что при продолжении работы из-за ухудшения условий трения (окисления смазочного материала, попадания в него частиц износа) интенсивность пластических сдвигов может увеличиться. Концентраторы деформаций, попадая в полосы сдвигов, вызывают образование высоко наклепанных (светлотравящихся) областей, по краям которых появляются микротрещины. Развиваясь и сливаясь с другими, они приводят к усталостному выкрашиванию. Пластические сдвиги сопровождаются вьщелением теплоты, что приводит к повышению интенсивности диффузионных процессов. В частности, происходит отпуск мартенсита, т.е. разупрочнение. Это способствует появлению новых пластических сдвигов. Явление отпуска проявляется в микроструктуре поверхностного слоя в виде так называемых темнотравящихся полос. Пример этих образований приведен на рис. 5.45.  [c.367]

Характерной для усталостного износа является его (сравнительно с другими видами) небольшая интенсивность. Этот вид износа осуществляется в таких условиях, когда единичный акт касания с неровностями поверхности и деформирования на них не может вызвать мгновенного разрушения концентрация напряжений отно-  [c.295]

У ста лостно-прочностные характеристики при знакопеременном изгибе 233 Усталостные свойства корда при многократном нагружении 267, 268 Усталостные характеристики корда и резино-кордной системы 273 Усталостный износ 293, 302, 306 интенсивность 295 Усталость 182, 240 Установка для исследования динамического раздира 238 Утомление и старение резин 240 сл.  [c.356]

Расчет на долговечность при усталостном износе ведется по эмпирическим формулам. Интенсивность износа, отношение толщины снятого слоя А к пути трения5(перемещение точки, в которой определяется износ относительно другой сопряженной совпадающей поверхности)  [c.36]

Для характеристики процесса усталостного разрушения резин предложен ряд зависимостей, связывающих интенсивность истирания при усталостном износе со свойствами резины, условиями нагружения и состоянием истирающей поверхности. Наиболее известно уравнение И. В. Кра-гельского [20]  [c.64]

Предельная частота вращения подшип ihkob ограничивается а) температурой с учетом стойкости смаз н и опасности отпуска тел качения и колец б) прочностью сепараторов, разрушение которых обычно связано с предварительн лм износом в) интенсивностью усталостного разрушения пов рхностей колец и тел качения вследствие большого числа циклов нагружения в единицу времени.  [c.103]

Наличие интенсивного поверхностного износа, как правило, задерживает появление усталостных трещин. Во время испытаний образцов в вакууме на машине МИД-В7 (рис. 155) с периодической смазкой ВМ-1 [Ро=4,5 МН/м (450 кгс/мм ), у=,5200 цикл/мин, Шокр = 2 м/с] наблюдают повреждения обоих типов, причем при уста-  [c.276]

Прямое наблюдение периодичности образования и разрушения вторичных структур при граничном трении по интенсивности износа, величинам силы трения и ЭДС, возникающей при трении, было выполнено в работе [79]. Исследования проводились на прецизионной машине на образцах с минимально возможной площадью касания при непрерывной регистрации износа, силы трения и трибо-ЭДС. При установившемся режиме изнашивания отчетливо наблюдается периодическое изменение коэффициента трения и ЭДС. Длительность цикла образования и разрушения вторичных структур изменяется в зависимости от скорости скольжения и нагрузки. Влияние внешних параметров на количественные характеристики периодических кривых отмечается и в работах [76 — 78]. Анализ этих результатов свидетельствует о том, что изучение периодического характера структурных изменений является реальным путем для создания новых методов оценки износостойкости фрикционных материалов. С позиций представлений об усталостном разрушении поверхностей трения периодический характер структурных изменений открывает новые возможности для определения основных характеристик усталостного процесса числа циклов до разрушения и действующих на поверхности напряжений и деформаций. Этот сложный вопрос является весьма актуальным для дальнейшего развития усталостной теории износа, поскольку существующие методы оценки указанных параметров имеют определенные недостатки. Так аналити-  [c.30]


Неуравновешенность враш,аюш,ейся детали или узла является причиной появления в машине при ее работе динамических сил, которые дополнительно нагружают оиоры, повышают интенсивность износа подшипников, а также вызывают вибрационные явления и связанные с этим усталостные напряжения в деталях. Часто неуравновешенность может сказаться на основных показателях качества машины. Например, не уравновешенный шпиндель станка при работе вызывает колебания, которые передаются другим деталям станка, в том числе и станине в результате ухудшается качество обрабатываемых на станке поверхностей. Аналогичное явление могут вызвать неуравновешенные патроны, крупные зубчатые колеса, карданные валы, муфты и пр. Особенно тщательно должны быть уравновешены маховики и роторы турбин, обладающие большой массой.  [c.468]

При контактировании двух поверхностей в условиях сухого или граничного трения неминуемо происходит внедрение микровыступов в более, мягкое контртело. Внедривщийся элe eнт при относительном движении поверхностей деформирует -материал контртела, при этом впереди движется волна сжимающих напряжений, за индентором возникают растягивающие напряжения. Многократная смена сжимающих и растягивающих напряжений приводит к усталостному разруще-нию поверхностного слоя. Интенсивность износа определяется относительной -глубиной внедрения, числом циклов, приводящих к отделению частицы износа, и отношением поминального давления к фактическому. Относительная глубина внедрения и фактическое давление зависят от формы микронеровностей. Большое влияние на протекание процесса трения оказывает радиус закругления вершин микровыступов. При малых радиусах возможен задир и при относй елыю малом внед-80  [c.80]

При пластической деформации выступов фактическая площадь контакта почти не зависит от микрогеометрии поверхности, определяется пластическими свойствами материала и нагрузкой. Упрочнение материала влияет на формирование фактической площади контакта, которая при этом зависит от нагрузки в степени. В случае упругой деформации шероховатостей на фактическую площадь контакта существенно влияют геометрические характеристики шероховатости и упругие свойства материала. Площадь в этом случае пропорциональна нагрузке в степени 0,7-0,9. В узлах трения механизмов и машин, приборов, оборудования часто встречающимися видами износа являются адгезионный, абразивный, коррозионно-механический, усталостный. При воздействии потока жидкости, газа возникает эрозионное изнашивание. Наиболее интенсивно изнашивание протекает в процессе заедания. Поверхности трения при малых колебательных пере-меще1шях подвержены фреттинг-коррозии. В условиях кавитационных явлений возникает кавитационное изнашивание. Механизм физико-химических связей при адгезионном взаимодействии и интенсивность поверхностного разрушения непосредственно зависят от величины площади фактического контакта [4, 8—12]. Значительный рост интенсивности изнашивания наблюдается при достижении контактными нормальными напряжениями величины предела текучести материала. Энергия адгезии увеличивается при физически чистом контакте материалов и совпадающих по структуре материалов. Гладкость поверхностей способствует увеличению адге-  [c.158]

Усталостное выкрашивание бывает прогрессивным н 01 раниченным. Усталостному выкрашиванию, как правило, подвергаются только ножки зубьев. При вязких материалах процесс прогрессивного выкрашивания начинается с г]оявления вблизи от полюсной линии мелких оспинок, число и размеры которых постепенно увеличиваются до тех пор, пока рабочие поверхности ножек зубьев не уменьшатся настолько, что произойдет их обминание, интенсивный износ или задир. Прогрессивное выкрашивание создает неровности на трущихся поверхностях зуба, а сопутствующая смазка их загрязненным маслом (выкрошившимися частицами металла) ведет к усиленному износу зубьев. По мере увеличения глубины износа зубьев процесс их разрушения ускоряется и сопровождается возрастанием шума передачи.  [c.5]

В процессе приработки и дальнейшего трения шероховатость трущихся поверхностей на титане и на бронзе повышается с 7—8 до 9 класса. Визуальными наблюдениями обнаружено, что на трущейся поверхности бронзы образуется пленка окислов. Ее образование связано с хемсорбцией атомов кислорода, а также электрохимическими процессами в 3%-ном растворе ЫаСГи с повышением температуры в контакте. Наличие заполированных участков на трущейся поверхности бронзы и титана, сохранение одинаковой шероховатости поверхности бронзы независимо от нагрузки и относительно низкий износ дают основание предполагать, что ее износ не обусловлен микрорезанием, а происходит за счет контактного усталостного разрушения [41 ]. Измерения микротвердости поверхности бронзы в процессе испытаний показали, что она возрастает с 220 кгс/мм до предельного значения 375—400 кгс/мм , которое несколько ниже, чем при трении бронзы по стали. Глубина наклепанного слоя бронзы находится в пределах 30—60 мкм. По сравнению с трением по стали износ бронзы при трении по оксидированному титану в несколько раз ниже при равных удельных нагрузках. Данные, приведенные на рис. 100 и табл. 54, показывают примерно одинаковую износостойкость БрОФЮ-1 и БрОЦ10-2 при трении в воде по оксидированному сплаву ВТ5. Возрастание интенсивности износа с нагрузкой носит примерно линейный характер. Аналогичная зависимость износа этих бронз обнаруживается и от пути трения.  [c.205]


Смотреть страницы где упоминается термин Усталостный износ интенсивность : [c.74]    [c.93]    [c.400]    [c.97]    [c.71]    [c.38]    [c.85]    [c.21]    [c.76]    [c.114]    [c.159]   
Основы прогнозирования механического поведения каучуков и резин (1975) -- [ c.295 ]



ПОИСК



Износ Интенсивность

Усталостная



© 2025 Mash-xxl.info Реклама на сайте