Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь влияние на с алюминием

Металл и степень его чистоты. Влияние энергии дефектов упаковки проявляется и на стадии II. В алюминии при комнатной температуре стадия II упрочнения выражена очень слабо, и стадия / сливается со стадией III. При криогенных температурах все три стадии хорошо выявляются. Напротив, кристаллы меди при /=20° С имеют четко выраженную стадию П. В зависимости от ориентировки она начинается от значений v//=5-f-20% и заканчивается при 7///=15 35%. Начало стадии III связывают с интенсивным поперечным скольжением, которое для меди, обладающей довольно низкой энергией дефекта упаковки, более затруднено, чем для алюминия. Для твердых растворов протяженность стадии II объясняют влиянием добавок на энергию дефекта упаковки,  [c.189]


Вместе с тем текстура куба оказалась очень чувствительной к малым добавкам. Добавки в медь алюминия (0,2%) и кадмия (0,1%) благоприятствуют образованию текстуры куба, тогда как введение 0,0025% (ат.) фосфора в медь чистотой 99,99% (по массе) подавляет образование кубической текстуры и обеспечивает полное рассеяние текстуры рекристаллизации после отжига (прокатка с обжатием 95%, отжиг 1 ч при 300°С). В то же время заметного влияния на текстуру холодной прокатки меди фосфор не оказывает.  [c.405]

Как правило, с применением автоклавов изготовляют отливки из сплавов на основе алюминия, магния, меди и титана. Но известны работы [58] по изучению влияния газового давления в пределах О— 8 МН/м на структуру и механические свойства стали 40. Давление на зеркало жидкой стали в закрытой изложнице производилось азотом из баллона через газоотводящую трубку, снабженную прямым и обратным клапанами и манометром для определения рабочего давления газа.  [c.64]

Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности.  [c.4]


Переменное смачивание оказывает существенное влияние на процесс коррозии сплавов, в том числе меди и латуни. Сплавы на медной основе показали лучшую коррозионную стойкость в атмосфере, чем в морской воде. Во влажном субтропическом климате следует избегать контактов титановых сплавов с углеродистыми сталями и алюминием, так как последние разрушаются. Контакт титановых сплавов с нержавеющими сталями не представляет опасности ввиду малой разности их электродных потенциалов и сильной поляризуемости титановых сплавов. Титановые сплавы более коррозионностойкие, чем нержавеющие.  [c.102]

Более низкие механические характеристики поверхностных слоев проявляются и в меньших по сравнению с объемом значениях микротвердости. В работе [67] исследовалось влияние подготовки поверхности образца и времени между подготовкой поверхности и измерением на микротвердость металлов. Несмотря на то что оба эти фактора оказывают существенное влияние на величину Яц, характер зависимости микротвердости от нагрузки для различных металлов (армко-железо, алюминий, медь) одинаков при нагрузках на индентор 2—5 гс значение всегда меньше, чем при больших нагрузках (рис. 5).  [c.25]

Как правило, легирующие элементы снижают константу скорости образования диборида титана, поэтому соответствующим легированием матрицы можно создать специальный сплав, в котором реакция с борным волокном будет заторможена. На графике рис. 24 иллюстрируется влияние некоторых легирующих элементов на константу k при температуре 760° С. Кремний и олово не влияют на константу k медь и германий понижают ее пропорционально их содержанию в твердом растворе. Сложное влияние оказывает молибден, алюминий и ванадий. По степени эффективности снижения константы на первом месте стоит ванадий, причем, как видно,минимальное значение константы достигается в сплаве Ti—40% V.  [c.68]

ВЛИЯНИЮ контакта с титаном на скорость коррозии ряда металлов и сплавов при равной площади поверхности контактирующих образцов. Количественно оценивая данные, можно отметить, что электрохимическое поведение титана при контакте в морской воде с другими металлами аналогично поведению нержавеющей стали типа 18-8. Это позволяет сделать вывод о возможности замены нержавеющей стали титаном в условиях контактирования с другими металлами без опасности существенного усиления кон тактной коррозии. При оценке контактной коррозии с титаном как и с другими электроположительными металлами, следует учи тывать соотношение площадей контактирующих металлов и уда ленность от места контакта. Так, по данным Коттона, в воде в кон такте с титаном при соотношении площадей 10 1 (титан—катод другой металл — анод) сильно корродировали углеродистая сталь алюминий, пушечная бронза умеренной коррозии подвергались алюминиевая латунь, сплавы медь-никель, с незначительной ско ростью корродировала нержавеющая сталь типа 18-8. При обрат ном соотношении площадей (Т1 Me = 1 10) единственным ме таллом, который подвергался коррозии, была углеродистая сталь Эффект контактной коррозии при этом соотношении площадей был в 12 раз меньше, чем при соотношении площадей 10 1.  [c.37]

Систематизированы данные о коррозии сталей, никеля, титана, меди, алюминия и их сплавов. Показана взаимосвязь коррозионных повреждений с микро-и макроструктурой объекта, его химическим составом, термической и деформационной обработкой, а также внешними факторами, оказывающими влияние на коррозию. Даны рекомендации по предотвращению коррозионных повреждений и стандартные методы испытаний. Приведены марки коррозионностойких металлических материалов.  [c.2]

Питтингообразование алюминия интенсивно развивается в речных водах, содержащих хлориды, карбонаты и медь. Влияние меди особенно существенно в жесткой воде, так, содержание 0,02 мг/л меди способно привести к питтинговой коррозии алюминия. В мягкой воде, несмотря на ее большую коррозионную агрессивность, опасная концентрация меди выше, но и растворимость меди в мягкой воде больше. Образовавшийся на поверхности алюминия питтинг может развиваться в средах, которые сами по себе не способны вызвать коррозию. Во всех речных водах скорость роста глубины поражения быстро снижается со временем. При движении воды со скоростью >0,3 м/с питтингообразование замедляется или вообще подавляется. Повышение температуры может интенсифицировать процесс развития питтингов, но в то же время при температуре выше 50 °С в агрессивных жестких водных средах питтингообразование подавляется вследствие образования защитных пленок оксидов.  [c.54]


Когда медь находится в контакте с алюминием, воздействие сернистого газа на анод приводит к увеличению коррозионного тока всего лишь на 30,7%. В случае же, когда сернистый газ оказывает влияние на катод, ток увеличивается примерно в 3 раза. Аналогичная картина наблюдается и при воздействии сернистого газа на пару медь—железо. И в этом случае наибольшее увеличение тока наблюдается тогда, когда сернистый газ начинает принимать участие в катодном процессе. Воздействие SO2 на анод не привело к увеличению тока, при воздействии же SO2 на катод, ток возрос примерно в 5 раз.  [c.213]

На латунь и медь, функционирующие в качестве катодов, благоприятного влияния практически не оказывает ни один из ингибиторов. На сталь, находящуюся в контакте с алюминием, полезно влияют все ингибиторы за исключением бензоата натрия при контакте с цинком — все ингибиторы. Коррозию алюминия при контакте с цинком уменьшают все ингибиторы за исключением нитрита натрия. Но ни один из изученных ингибиторов при выбранной концентрации не в состоянии полностью подавить ток коррозионных пар.  [c.275]

Во 2-е издание книги включен материал по новым разновидностям пайки диффузионной, контактно-реактивной описаны последние достижения в области технологии пайки сплавов на основе алюминия, меди, титана и др. Изложены основные сведения по физико-химическим основам процессов пайки, особенно по взаимодействию паяемого металла с жидким припоем. Обобщен практический опыт по оценке влияния составов припоев, паяемых металлов и основных технологических факторов на качество паяных соединений.  [c.2]

С позиций организации водного режима ТЭС наибольшее значение имеет химическая коррозия металлов с образованием кислородных соединений. Для железа, меди, алюминия, хрома, никеля и других технически важных металлов в воздушной среде (в атмосфере) металлическое состояние является термодинамически неустойчивым. За исключением золота, платины, иридия, серебра и палладия, все металлы в присутствии кислорода подвергаются окислению, покрываясь окисной пленкой. Ее свойства оказывают решающее влияние на развитие химической коррозии. Очень важно, будет первичный слой продуктов коррозии сплошным или пористым. Для того чтобы образующиеся окислы могли закрыть всю окисляющуюся поверхность, необходимо, чтобы объем получившихся окислов был больше объема окислившегося металла (Уок>1 ме). Соотношение объемов окисла и исходного металла для некоторых из них приведено в табл. 1.1.  [c.27]

В ряде работ того времени было отчетливо показано исключительное влияние примесей в металле на его свойства. Так, при исследовании старения сплавов алюминия с медью, приготовленных на чистом алюминии, было установлено, что в отличие от технических сплавов алюминия с медью чистые сплавы стареют при комнатной температуре. Было показано далее, что старению при комнатной температуре подвержены и чистые сплавы алюминия с медью и магнием, не содержащие кремния, причем не в меньшей, если не в большей степени, чем сплавы, приготовленные на техническом алюминии. Тем самым сразу же была поставлена под сомнение господствовавшая тогда теория старения, основывавшаяся на признании роли Mg2Si в качестве упрочняющей фазы в сплавах типа дуралюмин. В связи с этими работами была подвергнута ревизии диаграмма состояния А1 — Си — Мд, в результате чего было установлено существование пропущенной в прежних работах фазы А12СиМд.  [c.482]

Исследование влияния легирующих добавок на свойства цинкового покрытая, полученного из расплава, показало, что d и Sn не влияют, а Си увеличивает толщину покрытия, при этом в присутствии Си и d увеличивается устойчивость цинкового покрытия в атмосферных условиях. Алюминий, введенный в расплав до 0,25 %, вызьтает резкое снижение толщины покрытия и коррозионной стойкости, но увеличивает пластичность биметалла. При одновременном содержании меди и алюминия в цинковом покрытии медь при содержании более 0,02 % подавляет действие алюминия, и стойкость оцинкованной стали в атмосферных условиях повышается. Однако в присутствии алюминия в атмосфере с высокой влажностью возникают темные пятна, ухудшая внешний вид изделия. Добавка олова, кадмия, сурьмы, меди, введенных в расплав вместе с алюминием и свинцом, предотвращает возникновение тем-  [c.54]

Фиг. 10. Влияние холодной прокатки на механические свойства ции-кового сплава с 4% меди и 0,2% алюминия ] -вдоль напраилени прокатки 2 — поперек ыа[ равления прокатки. Фиг. 10. Влияние <a href="/info/274304">холодной прокатки</a> на механические свойства ции-кового сплава с 4% меди и 0,2% алюминия ] -вдоль напраилени прокатки 2 — поперек ыа[ равления прокатки.
Вообще говоря, в морской воде в качестве окислителя могут выступать ионы или молекулы воды и растворенный кислород. Исследованию катодных процессов в хлоридсодержащих средах были посвящены работы Г. В. Акимова, Н. Д. Томашева, Г. Б. Кларк, И. Л. Розенфельда. Как показали исследования, коррозия магния и его сплавов протекает в основном за счет водородной деполяризации алюминий и его сплавы, коррозионностойкие и конструкционные стали, никель и никелевые сплавы, медь, медные сплавы подвергаются коррозии с кислородной деполяризацией. Растворимость кислорода в морской воде ограничена. При протекании коррозии с кислородной деполяризацией очень часто скорость катодного процесса определяется диффузией кислорода и поверхности металла. В таких условиях перемешивание среды или перемещение поверхности металла относительно среды является важным фактором, который может оказать существенное влияние на характер коррозии. При перемешивании скорость катодного процесса будет уве-личиваться и металл из пассивного состояния может переходить в пробойное состояние (см. рис. 18).  [c.43]


Наиболее опасными видами коррозии алюминиевых сплавов являются межкристаллитная коррозия и коррозионное растрескивание. Более высокой стойкостью обладают сплавы, не содержащие в своем составе медь. Промышленный алюминий марок АД и АД1, сплавы с марганцем АМц, сплавы с магнием АМг2, АМгЗ обладают высокой коррозионной стойкостью и могут применяться в морских и тропических условиях. Методы производства полуфабрикатов не оказывают влияния на их коррозионную стойкость. Сварные соединения из этих сплавов по коррозионным свойствам близки к основному металлу.  [c.74]

В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]

Разложение окиси азота на металлических и окисных катализаторах исследовали авторы работ 251, 268— 281]. Установлено, что эта реакция ингибируется кислородом. По данным работы [271], кислород, образующийся в реакции, оказывает более значительное влияние на скорость процесса по сравнению с кислородом, добавленным к N0 в качестве разбавителя. Это различие обусловлено тем, что при разложении N0 образуется атомарный кислород, адсорбирующийся на поверхности катализатора. Адсорбция атомарного кислорода приводит к уменьшению числа активных центров и, следовательно, к снижению активности катализатора с повышением степени разложения N0. В области низких температур катализатор по этой причине может оказаться полностью инактивированным. На это указывают, в частности, экспериментальные результаты Мюллера и Барка [268], выполнивших качественное исследование разложения окиси азота на меди, железе, цинке, серебре, свинце, алюминии, олове, висмуте, кальции, магнии, марганце, хроме, латуни, окислах олова и ванадия. Их эксперименты осуществлены в статических условиях при длительном выдерживании окиси азота в контакте с металлическими спиралями или мелкими кусками исследуемых металлов.  [c.104]

При обычных температурах и атмосферном давлении минеральт ные масла в объеме (в толстом слое) почти не окисляются, при повышении температуры окисление ускоряется изменение физико-химических свойств масел при температуре 100 °С исчисляется сутками, а при 250 °С — минутами. Скорость окисления значительно изменяется в присутствии металлов, в особенности их окислов и металлических мыл. Свинец является наиболее сильным катализатором окисления за ним следует медь и железо. Алюминий почти не оказывает влияния на процесс окисления. Каталитическое действие других металлов слабое, они могут даже тормозить окисление. Наличие воды в масле, как показывают опыты Н. М. Черножукова, делает окисление более интенсивным.  [c.367]

Из контактных ингибиторов кроме упомянутого выше бензтри-азола для защиты цветных металлов находит применение и бумага, пропитанная бензоатом натрия. Этот ингибитор защищает сталь, цинк, серебро, не оказывает вредного влияния на алюминий, медь, латунь, слабо защищает чугун. Имеются указания, что он обладает свойством расползаться на поверхности и поэтому защищает и те участки поверхности, которые не находятся в непосредственном контакте с ингибитированной бумагой.  [c.328]

С момента разработки стали Гадфильдом было выполнено большое число исследований, направленных на установление зависимости ее свойств от содержания основных элементов. В настоящее время работы по улучшению свойств стали при использовании ее в конкретных условиях эксплуатации продолжаются. В литературе имеются данные по влиянию на механические свойства стали 110Г13Л углерода, марганца, алюминия, кремния, хрома, никеля, вольфрама, молибдена, титана, ванадия, церия, меди, фосфора. Из сталей с более высоким содержанием марганца, чем у стали Гадфильда, получила распространение сталь 45Г17ЮЗ [198]. Она обладает более высокой пластичностью при более низкой прочности.  [c.286]

Такой эффект катодного выделения более положительных металлов и, вследствие этого, ускорение коррозии наблюдается также, если в растворе находятся соли тяжелых металлов с достаточно положительным электрохимическим потенциалом (Pt, Au, Ag, Си, Ni и, в меньшей степени, Fe). Поэтому в замкнутых полиметаллических системах, по которым циркулируют водные растворы, например, морская вода, наблюдается усиление коррозии алюминия и его сплавов, если в этой системе находятся медь или медные сплавы, даже при отсутствии электрического контакта с алюминием. Таким образом, сравнительно высокую коррозио1ь ную стойкость чистого алюминия и некоторых его сплавов, кроме основного влияния защитных кроющих пассивных пленок (анодный контроль), в значительной мере объясняют высоким перенапряжением выделения водорода на поверхности алюмнння, особенно в пассивном состоянии (катодный контроль). Примеси тяжелых металлов (в первую очередь в практических условиях железа или меди) сильно понижают химическую устойчивость алюминия не только вследствие нарушения сплошности защитных пленок, но и благодаря облегчению катодного процесса. Присадки более электроотрицательных металлов с высоким перенапряжением водорода (Mg, Zn) в меньшей степени понижают коррозионную стойкость алюминия.  [c.261]

Как было отмечено, алюминий и его сплавы очень чувствительны к контактированию с другими металлами. Самыми опасными являются контакты с более положительными металлами — медью и медными сплавами. В ряде условий вреден контакт с железом, сталью и коррозионно-стойкой сталью. Контакт с цинком и кадмием в условиях, когда алюминий находится в пассивном состоянии, безвреден и даже несколько защищает алюминий. Магний и магниевые сплавы, несмотря на то, что они имеют значительно более отрицательный потенциал, при контакте с алюминием оказываются также опасными, так как вследствие сильной катодной поляризации алюминия он может перейти в активное состояние под влиянием защелачивания среды (эффект катодной нерезащиты алюминия). В результате опасных контактов происходит более существенное разрушение алюминия в электропроводных средах, содержащих ионы хлора. В атмосферных условиях при достаточной влажности отрицательное влияние контактов также может проявляться, хотя и будет распространяться только на поверхность алюминия, непосредственно прилегающую к контакту.  [c.265]


В работе [188] приведены данные по сравнительному влиянию на адгезию пленок меди на поверхности алюминия ионов Ne и Не с энергией 3,2 10 Дж. Электронные потери этих ионов примерно одинаковы, а смещения атомов в ядерных столкновениях значительно интенсивнее в случае более тяжелых ионов неона. Бомбардировка гелием вызвала лишь незначительное увеличение адгезионного взаимодействия, тогда как бомбардировка неоном привела к увеличению адгезии в 20 раз. Интерпретация Э1их данных оказалась не простой, поскольку исследование границы не обнаружило заметного перемешивания меди и алюминия. Предполагается, что атомы на границе перемеш аю1 ся в основном параллельно поверхности. Следствием перемещения являются более совершенный контакт поверхностей и увеличение числа межатомных связей. Роль электронных возбуждений рассматривается в работе [219]. Экспериментальные данные свидетельствуют об улучшении адгезии в условиях незначительности процессов, связанных с упругими взаимодействиями в области межфазной границы. Однако в случае металлов, обладающих газом коллективизированных электронов, значение электронных возбуждений в обеспечении адгезии не слишком убедительно. Более вероятно влияние этого вида возбуждений в случае контакта ковалентных и особенно ионных кристаллов. Вместе с тем эксперименты проведены в основном без принятия специальных мер для очистки поверхностей от окислов и других поверхностных соединений и адсорбционных слоев. В этих условиях роль электронных возбуждений может оказаться существенной.  [c.149]

Выбор материала и конструкции разрядного канала. Керамика из AI2O3 широко применяется в вакуумной технике, в том числе и при высоких температурах [177]. И тем не менее даже в настоящее время трудно иметь полное представление о ее поведении в процессе длительного срока службы при воздействии различных факторов (температуры, среды, нагрузок и т.д.). В работе [178] показано, что наиболее сильное влияние на свойства керамики оказывает высокая температура при длительном нагреве изменяется ее микроструктура — происходит так называемое термическое старение. Этот процесс связан с рекристаллизацией (ростом кристаллов) керамики, сопровождающейся уменьшением ее кажущейся плотности, прочности, термостойкости, теплопроводности, ползучести и испарения. Керамика из окиси алюминия подвергается существенному старению даже при относительно невысоких температурах, если время нагрева составляет тысячи часов. Термическая обработка (выдержка) корундовой керамики при 1300 °С в течение 500, 1000 и даже 2000 ч практически не приводит к заметному изменению ее структуры. Нагрев до 1700°С вызывает резкие изменения уже в первые часы работы. Установлено [178], что прочность спеченной керамики после нагрева в вакууме при 1900 °С в течение 10 ч снижается примерно в четыре раза, при этом размер кристаллов увеличивается в шесть раз. Поэтому керамика А-995, работающая в АЭ на парах меди при температурах 1500-1600 °С, с целью сохранения ее свойств предварительно подвергается обжигу при более высоких температурах. В нашем случае температура обжига составляет (1700 20) °С.  [c.37]

И наконец, необходимо учитывать, в каком состоянии примеси находятся в металле влияние на электросопротивление данного количества примеси намного слабее, когда эта примесь находится в виде второй фазы, а не в твердом растворе. Так, при содержании в алюминии значительных количеств железа оно может в определенных условиях выпадать из твердого раствора. В этом случае электросопротивление становится меньше и образец кажется более чистым, чем это есть на самом деле [67]. Такие образцы еле-дует отжечь при достаточно высокой температуре, чтобы все нри-сутствугош ее в них железо перешло в твердый раствор. Аналогичным образом электросопротивление образцов меди после отжига в окислительной атмосфере оказывается значительно ниже, чем после отжига в восстановительной атмосфере или высоком вакууме [27]. По-видимому, некоторые примеси взаимодействуют с кислородом, диффундируюш,им в металл, и это взаимодействие сильно уменьшает рассеяние этими примесями электронов проводимости. Поэтому при определении содержания примесей в меди необходимо тщательно выбирать условия отжига.  [c.444]

Опытным путем сопоставляли адгезионную прочность покрытий, сформированных на черных и цветных металлах [183]. Покрытия формировали из порошкообразного полипропилена марки ПП-1 с дисперсностью менее 250 мкм к стальным поверхностям и поверхностям, изготовленным из цветных металлов. Адгезионную прочность определяли методом отслаивания через 24 ч после нанесения покрытий вибровихревым способом. Скорость отслаивания составляла 4—10 мм/мин. Максимальная адгезионная прочность для стальных поверхностей, сформированных при температуре 235—265 °С, составляла 2,25 -10 Па. Адгезионная прочность для цветных металлов, на которых покрытия формировались при 290—300 °С, составляла для алюминия — 0,8 -10 Па, меди и бронзы — 0,5 -10 Па. Приведенные данные свидетельствуют о том, что адгезионная прочность пленки полиэтилена на цветных металлах меньше, чем на стальной поверхности. Способ очистки поверхностей оказывает влияние на адгезионную прочность пленок, сформированных из слоя прилипших частиц. Для определения этого влияния проводили исследования по адгезии пленки фторопласта-4 толщиной 200 мкм, нанесенной на стальную поверхность. Адгезионную прочность определяли методом отслаивания [184]. В зависимости от методов очистки поверхности адгезионная прочность пленки фторопласта к стали марки Ст-3 изменялась следующим образом  [c.235]

Добавка к хромато-фосфатному ингибитору солей кобальта, церия, хрома, марганца, кадмия, цинка и никеля оказывает положительное влияние на поведение стали. Соли же урана, кремния, таллия, циркония, железа, меди, сурьмы, бериллия и алюминия, наоборот, снижают эффективность ингибиторов. С экономической точки зрения наиболее приемлема добавка цинка. Оптимальные составы получаются при введении цинка в количестве от 1 до 2 мг/кг на 25 мг/кг полифосфата.  [c.150]

Коррозионная активность адипиновой кислоты исследована недостаточно. В справочниках [4, 5] указывается, что алюминий корродирует в ней со скоростью 0,25, а медь — 0,5 мм/год, однако эти данные относятся к 90° С, т. е. к твердой кислоте, и поэтому вызывают сомнение. В связи с этим были проведены опыты по изучению коррозии сталей в расплавленной адипиновой кислоте и в ее парах, поскольку эта кислота способна возгоняться (табл. 18.15). При 180—190° С адипиновая кислота как в расплавленном виде, так и в парах вызывает сильную коррозию углеродистой стали, но не оказывает практически никакого влияния на хромоникелевую сталь. На этом основании для изготовления реакторов получения полиэфира, работающих при 190—200° С, была рекомендована сталь Х18Н10Т.  [c.359]

На стойкость алюминия особенно сильное влияние оказывают часто встречающиеся примеси железа и меди. Железо содержится в алюминии обычно в больших количествах, чем медь на этом основании оно рассматривается как наиболее вредная примесь. Вследствие малой растворимости железа в алюминии (при 500°С растворяется 0,005% железа), оно находится главным образом в гетерогенном состоянии, — в виде фазы РеАЬ, более благородной, чем алюминий поэтому в данном случае гомогенизирующая термообработка невозможна. Даже небольшое содержание железа значительно снижает стойкость алюминия высокой чистоты так, в воде, очищенной пермутитом, и в растворе хлорида натрия коррозионно стоек алюминий, содержащий до 0,07%, а в рас- творе соды — до 0,014% железа. Так же вредна примесь железа и в алюминиевых сплавах. Исключение составляет алюминиевый  [c.507]

В настоящее время серийно применяется довольно большое число титановых сплавов. Большой диапа.зон их структур и свойств обусловлен, в частности, полиморфизмом титана, хорошей растворимостью многих элементов (по крайпеп мере в одной из фаз), а также образованием химических соединений, обладающих переменной растворимостью в титане. В соответствии с приведенными выше диаграммами состояния все легирующие элементы по влиянию на полиморфизм титана можно разбить на три группы. Первая группа представлена а-стабилизаторами — элементами, повышающими стабильность а-фазы из металлов к числу а-стабилизаторов относится алюминий. Ко второй группе принадлежат -стабилизаторы — элементы, повышающие стабильность р-фазы эти элементы в свою очередь можно разбить на две подгруппы. В сплавах титана с элементами первой подгруппы при достаточно низкой тедшературе происходит эвтектоидный распад р-фазы к числу таких элементов относятся хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт. В сплавах титана с элементами второй подгруппы при достаточно высокой их концентрации Р-твердый растнор сохраняется до комнатной температуры, не претерпевая эвтектоидного распада. Такие элементы иногда называют изоморфными р-стабилизаторами. К ним пр1шадле-жат ванадий, молибден, ниобий, тантал. Третья группа прелстаклена нейтральными упрочнителями, т. е. легирующими элементами, мало  [c.402]

Сложнее обстоит дело с влиянием скорости при вытяжных и других формоизменяющих операциях штамповки. Эксперименты и теоретические исследования свидетельствуют о том, что пр вытяжке малогабаритных деталей простой формы типа стаканчиков или коробок увеличение скорости даже до 100 м/с лишь незначительно ухудшает коэффициент вытяжки и только при скорости порядка 300 м/с, когда в деформруемом материале развиваются заметные силы инерции, его штампуемость ухудшается . Что касается вытяжки деталей сложной формы типа оболочек двойной кривизны, то здесь данные разноречивы. Особенно, по-видимому, опасно увеличение скорости при вытяжке деталей, у которых должна быть глянцевая поверхность, например облицовочных абтокузовных. С возрастанием скорости на диаграмме рас-тяжейин металлов расширяется площадка текучести и, следовательно, на поверхности штампуемого материала могут появиться полосы скольжения и она станет шероховатой, что для таких деталей недопустимо. В настоящее время поэтому при увеличении у вытяжных прессов числа ходов используют двухскоростные муфты или другие механизмы или применяют для вытяжки листоштамповочные прессы с шарнирным приводом (например, фирма Шулер ФРГ), обеспечивающие при общем увеличении числа ходов неизменную или даже пониженную скорость на рабочем участке хода пресса. Принятые в настоящее время в промышленности скорости вытяжки составляют для низкоуглеродистых сталей 0,15...0,3 м/с, нержавеющих сталей, 0,1...0,15 м/с, алюминия и его сплавов 0,5...0,9 м/с, меди и латуней 0,4...1 м/с.  [c.216]


При соприкосновении с медью и другими металлами алюминий образует гальваническую пару, в результате действия которой происходит разрушение алюминия электрохимической коррозией. Это обстоятельство ока13ывает немаловажное влияние на ухудшение контактов в соединениях и оконцева-няях алюминиевых жил.  [c.5]


Смотреть страницы где упоминается термин Медь влияние на с алюминием : [c.297]    [c.552]    [c.1230]    [c.578]    [c.297]    [c.279]    [c.154]    [c.258]    [c.102]    [c.476]    [c.106]    [c.100]    [c.435]    [c.55]    [c.43]   
Справочник по специальным работам (1962) -- [ c.617 , c.627 , c.629 ]



ПОИСК



Алюминий с медью

Медиана



© 2025 Mash-xxl.info Реклама на сайте